DEPARTMENT OF CIVIL ENGINEERING GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE.

(An Autonomous Institution Affiliated to Anna University, Chennai)

M.E STRUCTURAL ENGINEERING 2023 REGULATIONS CURRICULAM & SYLLABI

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE DEPARTMENT OF CIVIL ENGINEERING <u>VISION AND MISSION OF THE DEPARTMENT</u>

VISION

To provide quality education in Civil Engineering to the societal growth in sustainable manner on par with global standards

MISSION

.

- To establish the process of teaching and learning to meet the global standards for sustainable built environment
- * To make Civil Engineering department a renowned high-tech consultancy centre.
- * To carry out socially relevant and forward looking research for societal needs.
- Integrated with opportunities for teamwork, leadership, values, ethics and social activities.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013 DEPARTMENT OF CIVIL ENGINEERING (Structural Engineering) PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The following Programme Educational Objectives are designed based on the department mission:

PEO 1: To impart conceptual knowledge and develop analytical skills to design and build sustainable structural systems with an exposure to real time projects.

PEO 2: To develop research attitude in the field of Structural Engineering covering a wide spectrum of themes.

PEO 3: To excel in the profession with team work and leadership qualities having social responsibility and ethical values.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013 DEPARTMENT OF CIVIL ENGINEERING (Structural Engineering)

PROGRAMME OUTCOMES (POs)

Students in the Structural Engineering Programme should be at the time of their graduation be in possession of the following:

- **PO 1:** An ability to independently carry out research/investigation and development work to solve practical problems.
- **PO 2:** An ability to write and present a substantial technical report/document.
- **PO 3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
- **PO 4:** An ability to use the advanced techniques, modern engineering skills, instrumentation and software packages necessary for structural engineering practice.
- **PO 5:** To execute and manage the multidisciplinary projects with higher standards and sustainability.
- **PO 6:** An ability to recognize the need for life-long learning to meet the challenging and demand driven needs of the society with a high level of enthusiasm.

CURRICULAM

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013 M.E. STRUCTURAL ENGINEERING FIRST SEMESTER

SI	Course			CA	End	Total	H	lours	/Wee	ek
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
		TH	EORY							
1	23SEFCZ1	Research Methodology and IPR (Common to all Branches)	FC	40	60	100	3	0	0	3
2	23SEFC02	Analytical and Numerical Methods (Common to SE, GE)	FC	40	60	100	3	0	0	3
3	23SEPC01	Computer Methods of Structural Analysis	PC	40	60	100	3	1	0	4
4	23SEPC02	Design of Advanced Reinforced concrete structures	PC 16	40	60	100	3	0	0	3
5	23SEPC03	Theory of Elasticity and Plasticity	PC	40	60	100	3	0	0	3
6	23SEPEXX	Professional Elective I	PE	40	60	100	3	0	0	3
7	23SEACXX	Audit Course-I	AC	40	60	100	2	0	0	0
		PRA	CTICAL	K //		•			•	
8	23SEPC04	Experimental Techniques Laboratory	PC	60	40	100	0	0	4	2
		TOTAL		340	460	800	20	1	4	21

SEMESTER II

SI.	Course	Course Course Title		CA	End	Total]	Hours	s/Wee	ek
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
		TH	EORY							
1	23SEPC05	Finite Element Analysis for Structural Engineers	PC	40	60	100	3	0	0	3
2	23SEPC06	Structural Dynamics	PC	40	60	100	3	0	0	3
3	23SEPC07	Advanced Steel Structures	PC	40	60	100	3	0	0	3
4	23SEPEXX	Professional Elective II	PE	40	60	100	3	0	0	3
5	23SEPEXX	Professional Elective III	PE	40	60	100	3	0	0	3
6	23SEACXX	Audit Course-II	AC	40	60	100	2	0	0	0
		PRA	CTICAL							
7	23SEPC08	Finite Element analysis and Applications Laboratory	PC	60	40	100	0	0	4	2
8	23SEEE01	Mini Project	EEC	60	40	100	0	0	4	2
		TOTAL		360	440	800	17	0	8	19

SEMESTER III

SI.	Course	Course Title	Category	y CA Marks	End	Total	Hours/Week				
No	Code	Course little	Category		Sem Marks	Marks	L	Т	Р	С	
		Т	HEORY								
1	23SEPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3	
2	23\$\$OEXX	Open Elective - I	OE	40	60	100	3	0	0	3	
		PR	ACTICAL								
3	23SEEE02	Internship/Industrial Training	EEC	100	-	100	-	-	**	2	
4	23SEEE03	Project - I	EEC	60	40	100	0	0	24	12	
		TOTAL	NTTY MA	240	160	400	6	0	24	20	

**4 weeks Internship / Industrial Training

SEMESTER IV

SI	Course	C TH	Cottoo CA	End	Total	Hours/Week				
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
			PRACTICA							
1	23SEEE04	Project - II	EEC	60	40	100	0	0	48	24
		TOTAL		60	40	100	0	0	48	24

Total Credits - 84

	Course Work	S.	34	No of Ci	redits	A	
S. No	Subject Area	Ι	Π	Ш	IV	Total	Percentage
1.	Foundation Course	6	-	-	-	6	7.14 %
2.	Professional Cores	12	11	-	-	23	27.38 %
3.	Professional Electives	3	6	3	-	12	14.29 %
4.	Employability Enhancement Courses	-	2	14	24	40	47.62 %
5.	Open Elective Courses	-	-	3	-	3	3.57 %
	Total Credits	21	19	20	24	84	100

Summary of Credit Distribution

FOUNDATION COURSES (FC)

SL No	Course			CA	End	d Total		Hours/Week			
Sl. No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С	
1	23SEFCZ1	Research Methodology and IPR (Common to all Branches)	FC	40	60	100	3	0	0	3	
2	23SEFC02	Analytical and Numerical Methods (Common to SE, GE)	FC	40	60	100	3	0	0	3	
		TOTAL		80	120	200	6	0	0	6	

PROFESSIONAL CORES (PC)

	Course	MITT	m	CA	End	Total	Н	ours	/We	ek
Sl. No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23SEPC01	Computer Methods of Structural Analysis	PC	40	60	100	3	1	0	4
2	23SEPC02	Design of Advanced Reinforced concrete structures	PC	40	60	100	3	0	0	3
3	23SEPC03	Theory of Elasticity and Plasticity	PC	40	60	100	3	0	0	3
4	23SEPC04	Experimental Techniques Laboratory	PC	60	40	100	0	0	4	2
5	23SEPC05	Finite Element Analysis for Structural Engineers	PC	40	60	100	3	0	0	3
6	23SEPC06	Structural Dynamics	PC	40	60	100	3	0	0	3
7	23SEPC07	Advanced Steel Structures	PC	40	60	100	3	0	0	3
8	23SEPC08	Finite Element analysis and Applications Laboratory	PC	60	40	100	0	0	4	2
		TOTAL TOTAL	6	360	440	800	18	1	8	23
		CE CO		Ð					•	

PROFESSIONAL ELECTIVES (PE)

CI	C				End	T-4-1	Hours/V		Hours/W		/Wee	ek
SI. No	Course Code	Course Title	Category	CA Marks	Sem Marks	l otal Marks	L	Т	Р	С		
1	23SEPE01	Stability of Structures	PE	40	60	100	3	0	0	3		
2	23SEPE02	Theory and Applications of Cement Composites	PE	40	60	100	3	0	0	3		
3	23SEPE03	Structural Health Monitoring	PE	40	60	100	3	0	0	3		
4	23SEPE04	Design of Formwork	PE	40	60	100	3	0	0	3		
5	23SEPE05	Analysis of Laminated Composite Plates	PE	40	60	100	3	0	0	3		
6	23SEPE06	Design of Concrete Bridges	PE	40	60	100	3	0	0	3		
7	23SEPE07	Prestressed Concrete Structures	m PE	40	60	100	3	0	0	3		
8	23SEPE08	Experimental Techniques and Instrumentation	PE	40	60	100	3	0	0	3		
9	23SEPE09	Structural Optimization	PE	40	60	100	3	0	0	3		
10	23SEPE10	Advanced Concrete Technology	PE	40	60	100	3	0	0	3		
11	23SEPE11	Plates and Shells	PE	40	60	100	3	0	0	3		
12	23SEPE12	Fracture Mechanics	PE	40	60	100	3	0	0	3		
13	23SEPE13	Design of Steel Concrete Composite Structures	PE	40	60	100	3	0	0	3		
14	23SEPE14	Maintenance and Rehabilitation of Structures	РЕ	40	60	100	3	0	0	3		
15	23SEPE15	Prefabricated Structures	PE	40	60	100	3	0	0	3		
16	23SEPE16	Corrosion in Reinforced Concrete Elements	PE	40	60	100	3	0	0	3		
17	23SEPE17	Offshore Structures	PE	40	60	100	3	0	0	3		
18	23SEPE18	Earthquake Resistant Design of Structures	PE	40	60	100	3	0	0	3		
19	23SEPE19	Substructure Design	PE	40	60	100	3	0	0	3		
20	23SEPE20	Design of Structures for Dynamic Loads	PE	40	60	100	3	0	0	3		
21	23SEPE21	Design of Tall Buildings	PE	40	60	100	3	0	0	3		
22	23SEPE22	Cold Formed Steel Structures	PE	40	60	100	3	0	0	3		
23	23SEPE23	Smart Materials and Smart Structures	PE	40	60	100	3	0	0	3		
24	23SEPE24	Soil Structure Interaction (Common with ME Geotechnical Engineering)	PE	40	60	100	3	0	0	3		
25	23SEPE25	Fundamentals of Concrete 3D Printing	PE	40	60	100	3	0	0	3		
26	23SEPE26	Nano Technology	PE	40	60	100	3	0	0	3		

End **Hours/Week** SI. Total Course CA **Course Title** Category Sem No Code Marks Marks L Т Р С <u>Marks</u> Building Bye-Laws and Codes of 23SEOE01 OE Practice OE 23SEOE02 Planning of Smart Cities 23SEOE03 Green Building OE Environment Health and Safety 23EEOE04 OE Management 23EEOE05 Climate Change and Adaptation OE OE 23EEOE06 Waste to Energy 23GEOE07 Energy in Built Environment OE 23GEOE08 Earth and Its Environment OE Natural Hazards and Mitigation OE 23GEOE09 23EDOE10 **Business Analytics** OE 23EDOE11 Introduction to Industrial safety OE 23EDOE12 **Operations Research** OE Occupational Health and Safety OE 23MFOE13 Cost Management of Engineering OE 23MFOE14 Projects 23MFOE15 **Composite Materials** OE 23TEOE16 **Global Warming Science** OE 23TEOE17 Introduction to Nano Electronics OE OE **23TEOE18** Green Supply Chain Management 23PSOE19 OE Distribution Automation System Electricity Trading & Electricity Acts OE 23PSOE20 23PSOE21 Modern Automotive Systems OE Virtual Instrumentation **23PEOE22** OE **23PEOE23 Energy Management Systems** OE Advanced Energy Storage **23PEOE24** OE Technology Design of Digital Systems OE 23AEOE25 **Basics of Nano Electronics** OE 23AEOE26 Advanced Processor OE 23AEOE27 23VLOE28 HDL Programming Languages OE 23VLOE29 CMOS VLSI Design OE 23VLOE30 High Level Synthesis OE Artificial Intelligence 23CSOE31 OE

OPEN ELECTIVES (OE)

32	23CSOE32	Computer Network Management	OE	40	60	100	3	0	0	3
33	23CSOE33	Block Chain Technologies	OE	40	60	100	3	0	0	3

AUDIT COURSES (AC)

(Common to all branches)

GI	Course	Course Title		CA	End	Tatal	Н	ours	/Wee	ek
51. No	Code	Course Title	Category	CA Marks	Sem Marks	l otal Marks	L	Т	Р	С
1	23SEACZ1	English for Research Paper writing	AC	40	60	100	2	0	0	0
2	23SEACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23SEACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23SEACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23SEACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23SEACZ6	Stress Management by Yoga	AC	40	60	100	2	0	0	0
7	23SEACZ7	Personality Development through life enlightenment skills	AC	40	60	100	2	0	0	0
8	23SEACZ8	Sanskrit for Technical Knowledge	AC	40	60	100	2	0	0	0

EMPLOYABILTY ENHANCEMENT COURSES (EEC)

SI.	Course	Course Course Title	Category	СА	End	Total	Hours/Week				
No	Code	Course little	Category	Marks	Sem Marks	Marks	L	Т	Р	C	
1	23SEEE01	Mini Project	EEC	60	40	100	0	0	4	2	
2	23SEEE02	Internship / Industrial Training	EEC	100		100	-	-	**	2	
3	23SEEE03	Project - I	EEC	60	40	100	0	0	24	12	
4	23SEEE04	Project - II	EEC	60	40	100	0	0	48	24	
		TOTAL		280	120	400	0	0	76	40	

**4 weeks Internship / Industrial Training

11

R

- L : Credits for Lecture Hours
- P : Credits for Practical Hours
- C : Total Number of Credits
- T : Credits for Tutorial Hours

п

SYLLABI

23SEFCZ1	RESEARCH METHODOLOGY AND IF (Common to all Branches)	METHODOLOGY AND IPR nmon to all Branches) SEMESTER I						
PREREQUIS	ITES	CATEGORY	L	Т	P	С		
	NIL	FC	3	0	0	3		
Course	• To impart knowledge on research methodology,	Quantitative meth	ods f	or pi	oble	m		
Objectives	solving, data interpretation and report writing.			-				
	• To know the importance of IPR and patent rights							
UNIT – I	INTRODUCTION				91	Periods		
Definition and	objectives of Research - Types of research, Various Ste	eps in Research j	proce	ss, N	lathe	matical		
tools for anal	ysis, Developing a research question-Choice of a pr	oblem Literatur	e rev	view,	Sur	veying,		
synthesizing, o	critical analysis, reading materials, reviewing, rethinki	ng, critical eval	uatio	n, in	terpr	etation,		
Research Purpo	oses, Ethics in research – APA Ethics code.							
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOI	LVING			91	Periods		
Statistical Mod	leling and Analysis, Time Series Analysis Probability Dis	stributions, Fund	amen	tals o	of Sta	atistical		
Analysis and I	nference, Multivariate methods, Concepts of Correlation a	and Regression, I	Funda	imen	tals c	of Time		
Series Analysis	s and Spectral Analysis, Error Analysis, Applications of Sp	ectral Analysis.						
UNIT – III	DATA DESCRIPTION AND REPORT WRITING				91	Periods		
Tabular and g	aphical description of data: Tables and graphs of frequencies	ency data of one	varı	able,	Tab	les and		
graphs that she	by the relationship between two variables, Relation betw	ween frequency of	listrit	oution	ns an	d other		
graphs, prepari	ng data for analysis.	6 D 1 I		4 N 6	1	·		
Structure and	Components of Research Report, Types of Report, Layo	ut of Research I	kepor	τ, Μ	echai	iism of		
writing a resear	INTELLECTUAL PROPERTY	1			0.1	Dowioda		
UNII – IV	INTELLECTUAL PROPERTY	Ducasa of Datant			91	rerious		
technological r	escarch innevation notenting development	Process of Patent	ing a		even	opment:		
International	consticution, international constration on Intellectual Property	orty Procedure	for a	ranta	of	natente		
Patenting unde	r PCT	ity. Theedule	lor g	ants	01	patents,		
I utenting unde	PATENT RIGHTS				91	Periods		
Patent Rights:	Scope of Patent Rights Licensing and transfer of technol	ogy Patent infor	matic	n an	d dat	tabases		
Geographical I	ndications.		matic	/ii uii	u uu			
Contact Perio	ds:							
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Period	s					
]		
REFERF	INCES:							
1 Stuart Melv	ille and Wayne Goddard, " Research methodology: an in	t roduction ", Juta	Acad	lemi	$c, 2^{nd}$	edition,		
2014.								
2 Donald H.M	AcBurney and Theresa White, " Research Methods ", 9 th Ea	lition, CengageLe	earnii	ıg, 2	<i>013</i> .			
3 RanjitKuma	ur, "Research Methodology: A Step by Step Guide for Beg	ginners ", 5 th Edit	ion, 2	2019.				
4 Dr. C. R. K	othari and GauravGarg, " Research Methodology: Metho	ds and Trends",	New	age	inter	national		

publishers, 4th Edition, 2018.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon cc	mpletion of the course, the students will be able to:	Mapped
CO1	Formulate research question for conducting research.	К3
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K2
CO4	Develop a structured content to write technical report.	K3

 COURSE ARTICUL	ATION M	ATRIX				I
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	-	2	1	1
CO2	2	1	1	2	1	-
CO3	2	1	1	2	1	-
CO4	-	3	1	1	1	-
CO5	1	1	2	1	-	1
23SEFCZ1	2	3	2	2	1	1

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	40	40	20		-	-	100		
CAT2	40	40	20	S STREET	_	-	100		
Individual		Mass	1	Dal M					
Assessment 1 /		122	A COLOR						
Case Study 1/	-	50	30	20	-	-	100		
Seminar 1 /			-	T 7/					
Project1				東 (/					
Individual									
Assessment 2 /			SWAN.						
Case Study 2/	-	50	30	20	-	-	100		
Seminar 2 /		// 8/							
Project 2		8		1 1					
ESE	30	30	20	20	-	-	100		

23SEFC02	ANALYTICAL AND NUMERICAL (Common with ME Geotechnical E	L METHODS		SEM	ESTE	RI
PREREOU	ISITES	CATEGORY	L	Т	Р	С
(NIL	FC	3	0	0	3
Course	To familiarise the foundations of numerical me	thods and analysis tee	chnic	jues m	ostly ı	used in
Objectives	various applications in engineering and technolog	gy.		L	2	
UNIT – I	SOLUTIONS OF EQUATIONS AND EIGEN PROBLEMS	VALUE			9 P	eriods
Error Analysis: Sources of Error in Numerical Computations, Absolute and Relative Errors, Round off and Truncation Errors. Solutions of nonlinear algebraic and transcendental equations by fixed point iteration method and Newton Raphson method. Solutions of linear system of equations by Gauss Elimination, Gauss Jordan and Gauss Seidel method. Eigen value of Matrix by Power method and Jacobi method						
UNIT – II	CURVE FITTING AND INTERPOLATION				9 P	eriods
Curve fitting form. Newto difference for	g: Fitting a straight line and parabola by method on's divided difference formula, Lagrange's int ormula	l of least squares. Cu erpolation-Newton's	rves For	reduc ward a	ible to and bac	linear ckward
UNIT –	NUMERICAL DIFFERENTIATION AND N	UMERICAL			9 P	eriods
III	INTEGRATION	~				
Numerical integration three point (rule.	approximation of derivatives using it by Trapezoidal, Simpson's one third rule and Gaussian quadrature formula - Double integratio	interpolation polyn simpson's three eigl on using Trapezoidal	omi nt ru and	als - le- Tw Simps	Num vo poin son on	erical nt and e third
UNIT –	NUMERICAL SOLUTION OF ORDINAL	RY DIFFERENTIA	L		9 P	eriods
IV	EQUATIONS	1				
Taylor series method - Euler method - Modified Euler method - Fourth order Runge - Kuttamethod for solving first order equations – Predictor and corrector methods: Milne's and Adam Bashforth methods.						
UNIT – V	NUMERICAL SOLUTION OF PARTIAL DI EQUATIONS	FFERENTIAL			9 P	Periods
Finite differe	ence solutions for the second order ordinary diffe	rential equations – Fi	nite	differe	nce so	lutions
for one dime	ensional Heat Equation (Both Explicit and Implic	it Methods) One dime	nsio	nal wa	ve equ	ation -
Laplace and	Poisson equation.	2				
Contact Per	iods:					
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 P	eriods Total: 45 Pe	riod	S		

REFERENCE BOOKS:

1	Steven C. Chapra, Raymond P., Canale, "Numerical Methods for Engineers", McGraw Hill
	Education Pvt Ltd 8 th Edition 2021.
2	Srimanthapal "Numerical Methods, Principles, Analyses and Algorithm", Oxford
	University Press, New Delhi, 1 st Edition, 2009.
3	Veerarajan T and Ramachandran T "Numerical Methods with Programming in C"
	McGraw Hill Education Pvt Ltd, New Delhi, 1 st Edition, Reprint, 2016.
4	S.S.Sastry, "Introduction to Methods of Numerical Analysis", Prentice Hall of India, Delhi,
	5 th Edition, 2015.
5	Dr. J.S Chitode "Numerical Methods" Technical Publications, Pune, 2010.

COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Manned
CO1	Understand the numerical solutions to algebraic, exponential, logarithmic, transcendental and linear system of simultaneous equations.	K3
CO2	Appreciate the numerical techniques of interpolation and error approximations in various intervals in real life situations.	К3
CO3	Apply the numerical techniques of finite differences to numerical differentiation and numerical integration in engineering problems.	К3
CO4	Understand the numerical solution to first order ordinary differential equations by different methods like single step and multistep.	К3
CO5	Solve second order partial differential equations with initial and boundary conditions by using certain techniques with engineering applications.	К3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	2	K	2	2	
CO2	3	5 2	300		2	3	
CO3	3	2	3	-	2	2	
CO4	3	2	2		2	2	
CO5	3	2	3	14	2	2	
23SEFC02	3	2	3	11-	2	3	
1 – Slight, 2 – Moderate, 3 – Substantial							
		NAV	AV.				
	//	ALEA	人员。	11			

ASSESSMENT P	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %			
CAT1	20	40	40		-	-	100		
CAT2	20	40	40		-	-	100		
Individual		14100	Dias -	acus					
Assessment 1 /		- TONES	a showing	27					
Case Study 1/	-	50	50	- and -	-	-	100		
Seminar 1 /									
Project1									
Individual									
Assessment 2 /									
Case Study 2/	-	50	50	-	-	-	100		
Seminar 2 /									
Project 2									
ESE	20	40	40	-	-	-	100		

SSESSMENT P	ATTERN –	THEORY

23SEPC01	23SEPC01 COMPUTER METHODS OF STRUCTURAL ANALYSIS					SEMESTER I				
PREREQUIS	res		CAT	EGORY	L	Т	Р	C		
	NIL			РС	3	1	0	4		
Course	To Understand force and displacement measur	ements, energ	y conc	epts, appl	ying l	Flexil	oility	and		
Objectives	Objectives Stiffness Matrix methods, and sub structuring techniques.									
UNIT – I	FUNDAMENTAL CONCEPTS					1	2 Per	iods		
Force and disp	acement measurement - Generalized measure	ement – Const	trainec	l measurei	nents	– Pr	incip	le of		
superposition -	Stiffness and flexibility matrices in constra	ined measurer	ments	- Stiffnes	ss an	d fley	xibilit	y of		
systems and ele	ments - computing stiffness and flexibility coe	efficients.								
UNIT – II	ENERGY CONCEPTS AND TI	RANSFORMA	ATIO	N OF		1	2 Per	iods		
	INFORMATION									
Strain energy in	terms of stiffness & flexibility matrices - Be	tti's law – App	plicati	on of Bett	i's la	w - C	ompu	iting		
displacements	and forces from virtual work - other end	ergy theorems	s - T	ransforma	tion	of fo	orces	and		
displacements	in general – Stiffness and flexibility in	general - No	ormal	coordinat	es a	nd o	rthog	onal		
transformation	- Principle of contragradience.	24	25.							
UNIT – III	FLEXIBILITY METHOD	6				1	2 Per	iods		
Statically deter	minate structures - Indeterminate structures	- Choice of	redun	dants lead	ling t	o ill	and	well		
conditioned m	trices Transformation to one set of redundation	ants to anothe	er – In	nternal for	ces d	lue to	o the	rmal		
expansion and	ack of fit - Reducing the size of flexibility r	natrix – Appli	cation	to pin - j	ointe	d pla	ne tru	iss –		
continuous bea	ns – Frames – Grids (Concept only).	T								
UNIT – IV	STIFFNESS METHOD	x //				1	2 Per	iods		
Introduction –	Development of the stiffness method – Analog	y between fley	xibility	and stiffi	ness –	Appl	icatio	on of		
stiffness approa	ch to pin jointed plane truss – Continuous bea	ms – Frames -	lack	of fit – Gri	ds (C	Conce	pt on	ly) –		
Space frames in	troduction only – Static condensation techniqu	e - Direct stiff	ness a	pproach.						
UNIT – V ANALYSIS BY SUBSTRUCTURING AND ITERATION 12 Periods						iods				
Analysis by su	bstructuring technique using the stiffness an	nd the flexibil	lity m	ethod wit	h tric	liagor	nalisa	tion.		
Iteration method for continuous beams and frames.										
Contact Perio	s: 806 ///	XA.	68							
Lecture: 45 Pe	riods Tutorial: 15 Periods Practical:	0 Periods T	'otal: (60 Periods	5					
REFERF	NCES:	01:00	1							

1	William McGuire, Richard H. Gallagher, Ronald D. Ziemian, "Matrix structural Analysis", Wiley, 2015.
2	Pandit G.S, Gupta S.P, "Structural Analysis-A matrix Approach", Tata McGraw Hill Publishing
	Company Ltd, 2008.
3	Manicka Selvam V.K, "Elements of Matrix Stability Analysis of structures", Khanna Publishers, 2006.
4	Natarajan C. And Revathi P., "Matrix Methods of Structural Analysis: Theory and Problems", PHI
	Learning Pvt. Ltd, 2014.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Apply fundamental principles to evaluate the characteristics of structures.	К3
CO2	Compute the forces and displacements using energy concepts.	К3
CO3	Apply the flexibility matrix method for the analysis of beams, trusses and frames.	K3
CO4	Analyze the continuous beams, frames and trusses using stiffness matrix methods.	K3
CO5	Perform complex analytical procedures such as sub structuring and iteration techniques.	К3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	2	2	-	1				
CO2	1	-	2	2	-	1				
CO3	3	-	3	3	1	1				
CO4	3	-	3	3	1	1				
CO5	2	-	3	2	1	1				
23SEPC01	3	-	3	3	1	1				
1 - Slight, 2 - 1	Moderate,	3 – Substantia	ıl							

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	20	60	S. S. S. S. S. S.			100
CAT2	20	20	60	SALV!			100
Individual	25	25	50				100
Assessment 1 /							
Case Study 1/			-	T 77			
Seminar 1 /				Ξ //			
Project1			2				
Individual	25	25	50				100
Assessment 2 /		1/ 16	2 4 1	11			
Case Study 2/		// 9/					
Seminar 2 /		1 8					
Project 2		LI W					
ESE	20	20	60				100

23SEPC02	DESIGN OF ADVANCED REINFORCED CONCH STRUCTURES	S	SEMESTER I							
PREREQUIS	TES	CATEGO	DRY	L	Т	Р	С			
	NIL	PC		3	0	0	3			
Course	To familiarize with the design of structural elements using	To familiarize with the design of structural elements using limit state of design concept and								
Objectives	understand the inelastic behaviour of concrete elements.									
UNIT – I	DESIGN OF BEAMS				9	Per	iods			
Review of basi	c concepts - Design of beams circular in plan and Spandrel b	eams-Desig	n of C	orbel	s - I)esig	n of			
Deep beams –	Short-term and long-term deflection of reinforced concrete be	ams and sla	lbs – E	stima	ation	of c	rack			
width in reinfor	ced concrete members.									
UNIT – II	DESIGN OF SLABS				9	Per	iods			
Yield line theo	bry of slabs - Hillerberg's strip method of design of slabs-	Design of t	flat sla	bs a	nd fl	at p	lates			
according to B	S method- Design of grid floors.									
UNIT – III	DESIGN OF SPECIAL RC ELEMENTS				9	Per	iods			
Design of slend	ler columns - Design of shearwalls - Design of pile caps.			•						
UNIT – IV	INELASTIC BEHAVIOUR OF CONCRETE BEAMS AN	D FRAMES	S		9	Per	iods			
Inelastic behav	iour of concrete beams- Moment-rotation curves- Plastic hinge	e formation-	Mome	ent re	edistr	ibuti	on -			
Bakers method	of analysis and design- Design of cast-in-situ joints in frames									
UNIT – V	DETAILING AND FIELD PRACTICE				9	Per	iods			
Detailing requi	rements for various concrete elements in ductility, durability	and fire re	esistanc	e asj	pects	- C	odal			
requirements- (Quality control of concrete									
Contact Perio	Contact Periods:									
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										
REFER	ENCES:									

1	Varghese P.C., "Advanced Reinforced Concrete", Prentice Hall of India, New Delhi, 2009
2	Varghese P.C., "Limit state design of Reinforced Concrete", Prentice Hall of India, New Delhi, 2008
3	Krishna Raju, N., "Advanced Reinforced Concrete Design", CBS Publishers and Distributers, 2008
4	Unnikrishnan Pillai S and Menon D., " Reinforced concrete Design", Tata McGraw Hill Book Co., New
	Delhi, 2003.
5	N.C.Sinha and S. K.Roy, "Fundamentals of Reinforced concrete", S. Chand& Co Ltd., 2007
6	Pankaj Agarwal and Manish Shaikande, "Earthquake Resistant Design of structures", Prentice Hall of India
	Pvt. Ltd, New Delhi, 2006

COURS	SE OUTCOMES:	Bloom's
Upon co	ompletion of the course, the students will be able to:	1 axonomy Mapped
CO1	Analyse and design the circular beam, spandrel beam, deep beams and its serviceability	K3
	criteria	
CO2	Apply the concepts of yield line theory of slabs as per codal provisions	К3
CO3	Design the slender columns, pile caps and shear walls	K3
CO4	Implement the concept of inelastic behaviour of concrete elements and in joints	К3
CO5	Execute the detailing of concrete elements with respect to durability, ductility and fire	K2
	resistance	

COURSE ARTI	COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	2	3	1	1	2					
CO2	3	2	3	1	1	2					
CO3	3	2	3	1	1	2					
CO4	3	2	3	1	1	2					
CO5	3	2	3	3	1	2					
23SEPC02	3	2	3	3	1	2					
1 - Slight, 2 - M	oderate, 3 – 3	Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	20	20	60				100				
CAT2	20	20	60	14 A.			100				
Individual	25	25	50	all all			100				
Assessment 1 /											
Case Study 1/											
Seminar 1 /			- La	F //							
Project1			× %								
Individual	25	25	50				100				
Assessment 2 /			SW2 1	//							
Case Study 2/				11							
Seminar 2 /		7 B									
Project 2											
ESE	20	20	60				100				
	•	1980		N. YAR			*				

23SEPC03		THEORY OF ELASTICITY AND PLA	STICITY	S	EMESTER I					
PREREQUI	SIT	ES	CATEGORY	L	L T P (
	NIL PC 3 (
Course	То	import knowledge on the stress and strain fields	and p	lastic	state,					
Objectives	tor	sion behavior of non-circular and thin-walled se	ections and energ	y prin	nciples	for e	lastic			
	me	dium.								
UNIT – I	AN	VALYSIS OF STRESS AND STRAIN				9 Pe	riods			
Analysis of	stre	ss and strain – Stress-strain relationship- Gen	eralised Hooke's	Law	– Co	ompati	bility			
equations –T	wo a	and three dimensional problems in Cartesian and P	olar coordinates.							
UNIT – II	TV	VO DIMENSIONAL PROBLEMS IN CART	FESIAN AND P	OLA	R	9 Pe	riods			
	CC	ORDINATES								
Plane stress a	and j	plane strain - Airy's stress function - Bending of	beams by uniform	n load	l – Thi	ick cyl	inder			
under uniform	m pr	essure-Shrink and Force fits- Stress concentration	- Flat plate subjec	eted to	in pla	ne tra	ction			
and shear wit	th Ci	rcular hole – Boussinesque's Equation-Wedge pro	oblem subjected to	o incli	ned loa	ading.				
UNIT – III	TC	DRSION				9 Pe	riods			
Torsion of N	lon (circular and Prismatic bars - St. Venant's approa	ach – Prandtl app	roach	- Holle	ow sec	ction-			
Membrane an	nalog	gy of torsion- Torsion of thin walled open and close	sed cell – Multi-ce	elled s	ection	S				
UNIT – IV	EN	NERGY THEOREMS				9 Pe	riods			
Strain energy	y for	· 2D and 3D- principle of complementary energy	- Principle of vir	tual v	ork –	Recip	rocal			
theorem- Eng	gesse	er Theorem – Raleigh Ritz method.	N							
UNIT – V	PL	ASTICITY	1			9 Pe	riods			
Physical assu	ump	tions - Yield criteria for metals- Plastic stress	and strain relatio	ons –	Strain	harde	ning-			
Application t	Application to simple problems in tension, bending and torsion.									
Contact Periods:										
Lecture: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									
REFE	ERE	NCES:								

REFERENCES:

1	Timeshenko.S.P and Goodier.J.N, "Theory of Elasticity", McGraw-hill international edition, 2017.
2	Alexander Mendelson, "Plasticity: Theory and Application", Krieger Publishing Company, 1983.
3	Sadhu Singh, "Theory of Elasticity and metal forming processes", Khanna publishers, 2005.
4	Hill.R, "Mathematical theory of plasticity", Oxford Publishers 1998.

200 0000 201

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Illustrate the equilibrium and compatibility conditions in Cartesian and Polar	К3
	coordinate systems and Compute principal stresses in Cartesian system.	
CO2	Investigate the 2D stress system using Airy's stress function in Cartesian and Polar	К3
	Coordinates	
CO3	Calculate the torsional capacity of non-circular sections both solid and tubular	K3
	sections	
CO4	To solve elastic problems using energy principles	К3
CO5	To apply the concepts of plasticity in plastic problems	К3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	2	3		1				
CO2	1	-	2	3	1	1				
CO3	1	-	2	3	1	1				
CO4	1	-	2	3	1	1				
CO5	1	-	2	3	1	1				
23SEPC03	1	-	2	3	1	1				
1 - Slight, 2 - Moo	derate, 3 – Subst	tantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	30	30	40	2	-	-	100			
CAT2	30	30	40	STREET.	_	-	100			
Individual	-	40	40	20	-	-	100			
Assessment 1 /		122								
Case Study 1/										
Seminar 1 /										
Project1				泉 //						
Individual	-	40	40	20	-	-	100			
Assessment 2 /			SWAN	1 11						
Case Study 2/				. 11						
Seminar 2 /		1 8								
Project 2			~							
ESE	30	30	40	- 12	-	-	100			
	·	201 100				•	•			

23SEPC04	23SEPC04 EXPERIMENTAL TECHNIQUES LABORATORY		SEMESTER II						
PREREQUIS	SITES	CATEGORY	L	Т	Р	С			
	NIL PC								
Course	To have exposure on instruments and to conduc	t experiments or	ı vari	ous s	truct	ural			
Objectives	elements to identify its behaviour.								
	IMENITS / DDOOD AMS								
LAD EAFER	INTEN IS / PROGRAMS	ulia ia alt. Strain	~~!!~~	~)					
1. Introd	uction to instrumentation (LVDI, Load cell, Hydra	ulic jack, Strain	gauge	es)					
2. Castir	ig and Testing of Reinforced Concrete beams for de	effection							
3. Castir	g and Testing of Reinforced Concrete beams for fle	exure							
4. Castir	g and Testing of Reinforced Concrete beams for sh	ear							
5. Castir	g and Testing of Reinforced Concrete columns								
6. Casti	ng and Testing of Reinforced Concrete columns bea	um – column join	t and	Fram	es				
7. Fabric	ation and testing of elements for steel structures	5							
8 Use of	f Non destructive testing (NDT) equipment - Rebo	und hammer							
$\begin{array}{c} 0. \text{Use } 0 \\ 0 \text{Use } 0 \end{array}$	f Non destructive testing (NDT) equipment – Rece			matan					
9. Use 0	(NDT) equipment – Offra			ineter					
10. Use o	t Non destructive testing (ND1) equipment – Corr	osion Analyzer a	nd R	ebar					
locator.									
Contact Periods:									
Lecture: 0 Pe	riods Tutorial: 0 Periods Practical: 60 H	Periods To	tal: 6	60 Per	iods				
		1							

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Familiarize with the various instruments used for testing structural	K3
	elements.	
CO2	Execute the test on reinforced concrete beams.	K3
CO3	Conduct the experiments on reinforced concrete columns, joints and	K3
	frames.	
CO4	Fabricate and conduct test on various steel elements.	К3
CO5	Employ Non destructive testing equipments for testing of structures.	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	2	2	2	1				
CO2	3	-	2	2	2	2				
CO3	3	-	2	2	2	2				
CO4	3	-	3	2	2	1				
CO5	3	-	2	3	2	3				
23SEPC04	3	-	3	3	2	3				
1-Slight, $2-$	1 – Slight, 2 – Moderate, 3 – Substantial									

23SEPC05	FINITE ELEMENT ANALYSIS FOR STRU ENGINEERS	CTURAL	SEMESTER II						
PREREQUI	SITES	CATEGORY	L	Т	P	С			
	NIL	РС	3	0	0	3			
Course	To learn the fundamental concepts of finite element an	To learn the fundamental concepts of finite element analysis, familiarize with the							
Objectives	properties and isoparametric elements, and get exposur	e to axisymmetr	ic stres	s ana	lysis	and			
	non linear analysis.								
UNIT – I	INTRODUCTION				9 Per	iods			
Engineering	Problems – Numerical Methods – Brief History of	the Finite Elem	ent Me	thod	– Ba	asics			
steps in the	Finite Element Method - Minimum Total Potential	l Energy Formu	lation	s -	Weig	hted			
Residual For	mulations - Direct method - Element stiffness ma	atrix – Global	stiffn	ess	matri	х –			
Boundary con	nditions- Problems on bars, simple beams, Trusses and t	frames.							
UNIT – II	ELEMENT PROPERTIES				9 Per	iods			
Discretization	n – Displacement model – Element properties – conver	gence and comp	atibilit	y req	uirem	ents			
– Node Nu	mbering procedure - Natural coordinate system	- Generalized (Coordi	nates	- SI	hape			
function – I	agrange elements - stiffness matrix - Nodal load vecto	r - elements in j	olane s	tress	and p	lane			
strain-Static	condensation – Simple problems only,	<i>(</i>)							
UNIT – III	ISOPARAMETRIC ELEMENTS				9 Per	iods			
Basic princip	les of Shape Functions - Mapping - Uniqueness of map	oping - Sub – Is	o – Su	per p	aram	etric			
elements –	Numerical integration using Gaussian Quadrature -	• Examples in or	e dim	ensio	n and	two			
dimension.		1							
UNIT – IV	AXISYMMETRIC STRESS ANALYSIS				9 Per	iods			
Analysis of s	olids of revolution under axisymmetric loading – Form	ulation of axisyn	nmetri	e soli	d eler	nent			
– Simple exa	mples.	<u>\</u>							
UNIT – V	UNIT – V NONLINEAR ANALYSIS 9 Periods								
Types of no	onlinearities – Geometric nonlinearity – Material nor	nlinearity – Intro	oductio	on to	nonli	near			
solution techniques - Newton Raphson and Modified Newton Raphson methods									
Contact Periods:									
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Perio	ds						
REFE	REFERENCES:								

1	Krishnamurthy C.S, "Finite Element Analysis – Theory and programming", Second edition, Tata
	McGraw Hill Publishing Co. 2004
2	Reddy J. N., "Introduction to Finite Element Method", Tata McGraw Hill Publishing Co. 2020.
3	Rajasekaran S., "Finite Element Analysis in Engineering Design", Wheeler publishing, 2008
4	Chandrapatla Tirupathi.R and Belegundu, Ashok. D., "Introduction to Finite Elements in
	Engineering", Second edition, Prentice Hall of India, 2014
5	S.S.Rao, "The Finite Element Method in Engineering", Buttersworth - Heinemann publishing,
	2010.

COUR	COURSE OUTCOMES:				
		Taxonomy			
Upon completion of the course, the students will be able to:					
CO1	Practice the basics FEM for the solution of bars, beams, trusses and frame problems.	K4			
CO2	Solve the structural mechanics problems using FEM element approach.	K4			
CO3	Identify solutions for problems involving isoparametric elements.	K4			
CO4	Analyze axisymmetric solid elements.	K4			

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	2	2	-	1			
CO2	1	-	3	2	-	1			
CO3	2	-	3	3	1	2			
CO4	1	-	2	3	1	2			
CO5	2	-	3	3	-	1			
23SEPC05	2	-	3	3	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		6.6.3	JUL				
CAT1	20	20	60		-	-	100
CAT2	20	20	60	>	-	-	100
Individual	25	25	50	ž - //	-	-	100
Assessment 1 /							
Case Study 1/			STUD				
Seminar 1 /			SING 1				
Project1		// ell	200	11			
Individual	25	25	50	- 1	-	-	100
Assessment 2 /			-				
Case Study 2/		X IA		3			
Seminar 2 /		848					
Project 2		2	~ ~				
ESE	20	- 20	60	01:00	-	-	100

23SEPC06 STRUCTURAL DYNAMICS					SEMESTER II				
PREREQUISITES		CATEGO	RY	L	Т	Р	С		
	NIL	РС		3	0	0	3		
Course Objective	s To impart knowledge on analysis of SDOF, MD	OF, Continu	ous s	ystem	subj	ected	1 to		
dynamic loading and also solve by numerical methods and give					expo	sure	on		
advance topics of structural dynamics.									
UNIT – I	SINGLE DEGREE OF FREEDOM SYSTEMS				9	Peri	ods		
Formulation of equa	tion of motion, Free and forced vibrations, Effect of da	mping, Resp	onse	to per	iodic	load	ling		
- Fourier series and	analysis, Response to impulse loading – Duhamel's inte	gral							
UNIT – II	MULTI DEGREE OF FREEDOM SYSTEMS			9 Periods					
Free and forced vibr	ation of undamped and damped MDOF systems. Equat	ion of motio	ns, Ev	valuat	ion o	f nat	ural		
frequencies and mod	le shapes – Eigen value problem, Modal analysis – mod	e superpositi	on me	ethod.					
UNIT – III	CONTINUOUS SYSTEMS			9 Periods			ods		
Dynamics of distri	outed parameter systems, Free and forced vibration of	of flexural b	eams,	, shea	r bea	ams	and		
columns, Modal ana	lysis.								
UNIT – IV	NUMERICAL METHODS IN STRUCTURAL	DYNAMIC	S		9	Peri	ods		
MDOF system - Ma	trix Iteration method - Rayleigh Method - Holzer Meth	od – Dunke	rleys 1	metho	d-S	Stodo	la		
method.									
UNIT – V	SPECIAL TOPICS IN STRUCTURAL	DYNAN	AICS		9	Peri	ods		
Response spectrum analysis - Time history analysis. Dynamic Effects of Wind Loading, Vibrations caused by									
Traffic, Blasting and Pile Driving, machine foundation, Dynamic analysis of water tank.									
Vibration isolation - Tuned mass damper - vibration absorber									
Contact Periods:									
Lecture: 45 Period	Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Pe	eriods	1					

R	EFERENCES:
1	Anil K. Chopra, "Dynamics of Structures", fifth Edition, pearson publishers, 2017
2	Mario Paz, "Structural Dynamics – Theory and Computations", Third Edition, CBS publishers, 2012.
3	Clough R.W, and Penzien J, "Dynamics of Structures", Second Edition, CBS publishers, 2015
4	Manickaselvam, V.K., "Elementary Structural Dynamics", Dhanpat Rai & Sons, 2001
5	Madhujit Mukhopadhyay, "Structural Dynamics: Vibrations & Systems", Ane Books Pvt. Ltd, 2010.

COURSE	E OUTCOMES:	Bloom's
		Taxonomy
Upon con	npletion of the course, the students will be able to:	Mapped
CO1	Analyze and evaluate the response of SDOF systems under dynamic loading	K3
CO2	Analyze and evaluate the response of MDOF systems under dynamic loading.	K3
CO3	Analyze and evaluate the response of continuous systems under dynamic loading.	K3
CO4	Apply the concepts of numerical methods to solve structural dynamics problems.	K3
CO5	Analyze and apply advance techniques to the structures subjected to dynamic	K2
	loading.	

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	3	2	1	2				
CO2	3	2	3	2	1	2				
CO3	3	2	3	2	1	2				
CO4	3	2	3	2	1	2				
CO5	3	2	3	3	1	2				
23SEPC06	3	2	3	3	1	2				
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40	0	-	-	100
CAT2	20	40	40	Par -	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-		50	50	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-		50	50	-	-	100
ESE	20	40	40		-	-	100

23SEPC07	ADVANCED STEEL STRUCTURES SEMES				STE	RII		
PREREQUIS	PREREQUISITES CATEGORY L							
	NIL	PC		3	0	0	3	
Course	To gain knowledge on design philosophies, special require	ments on	design	and	const	ructio	ons	
Objectives	nd understand the design of industrial buildings, connections and cold formed steel structures.							
UNIT – I	REVIEW OF DESIGN PHILOSOPHIES				9	Peri	ods	
Philosophies	of Limits State Design, WSD and LRFD Concepts of Plast	ic design -	– Loca	l Buc	kling	g of t	hin	
plate element	s - Section Classification - Limit State Design - Comparis	son of BIS	S and o	other	Inter	natio	nal	
codes– Behav	iour and Limit state design of beam-columns.							
UNIT – II	BEHAVIOUR AND DESIGN OF CONNECTIONS				9	Peri	ods	
Connection b	ehavior - Bolted and welded connections - unstiffened and	stiffened s	seat con	nnect	ions -	-fran	ned	
connections-	Connections for force and moment transmission-tee stub a	and End pl	late co	nnect	ions-	Colu	mn	
stiffeners and	other reinforcement-principles of semi rigid connections	226						
UNIT – III	ANALYSIS AND DESIGN OF INDUSTRIAL BUILDIN	IGS			9	Peri	ods	
Review of los	ads on structures-Dead, Live, wind and Seismic loads as pe	er Nationa	l stand	ards-	Analy	ysis a	and	
Design of Ind	ustrial buildings and bents-Sway and non-sway frames- Des	ign of Pur	lins-Ar	nalysi	s and	Des	ign	
of Gable fram	es.	<u></u>						
UNIT – IV	ANALYSIS AND DESIGN OF COLD-FORMED STEE	L STRUC	TURE	S	9	Perio	ods	
Types of cros	s sections-concepts of local buckling, and Effective width-I	Design of	compre	essior	n and	tens	ion	
members-con	cepts of lateral buckling-Design of Beams, deflections of	beams and	d desig	gn of	bean	n we	bs-	
Combined str	esses and connections-Empirical design of Z-purlins with lips	and wall	studs.					
UNIT – V	SPECIAL REQUIREMENTS OF DESIGN AND CONS	TRUCTIO	ON		9	Peri	ods	
Fire resisting	properties of steel - Principles of Fire-resistant Design - F	atigue fail	ures of	stee	l stru	cture	s –	
Principle of Fatigue-resistant Design As per IS code- Seismic Behaviour and ad vantages of steel – Principles								
of Earthquake	of Earthquake resistant design of Steel Structures.							
Contact Peri	ods:	99						
Lecture: 45	Periods Tutorial: 0Periods Practical: 0 Periods T	otal: 45 P	eriods					
REFERE	NCES	1						

Salmon.C.G. and Johnson.J.E. "Steel Structure-Design and Behaviour", Harper and Row, 1980. Wie-WenYu., "Cold-formed Steel Structures", McGraw Hill Book Company, 1973. William McGuire, "Steel Structures", Prentice Hall,Inc., Englewood Cliffs, N.J.1986. Subramanian.N, "Design of Steel Structures", Oxford University press, 2008 DuggalS.K, "Limit State Design of Steel Structures", Tata McGraw Hill, 2010. GregoryJ. Hancock, Thomas Murray, DuaneS. Ellifrit, "Cold-Formed Steel Structures to the AISI Specification", CRC Press, 2001.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the various design philosophies as per various international codes.	K3
CO2	Design different types of eccentric bolted and welded connections.	K3
CO3	Analyse and design the components of industrial buildings.	K3
CO4	Perform design of cold formed steel structures.	K3

CO5 Design of steel structures for fire, fatigue and understand the principles of earthquake resistant design.

K3	

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	-	2	1	-	-		
CO2	1	-	-	1	1	-		
CO3	2	-	1	3	2	1		
CO4	2	-	-	2	1	2		
CO5	2	-	2	2	2	3		
23SEPC07	2	-	2	3	2	3		
1 - Slight, 2 - 1	Moderate, 3 -	- Substantial						

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	20	30	50	90. V	-	-	100		
CAT2	20	30	50		-	-	100		
Individual	20	30	50	>	-	-	100		
Assessment 1 /				¥ //					
Case Study 1/				Λ $($					
Seminar 1 /			STUD						
Project1			SW21						
Individual	20	30	50	- //	-	-	100		
Assessment 2 /		1 8							
Case Study 2/			-						
Seminar 2 /		X JA	1	3					
Project 2		896	9						
ESE	20	30	50		-	-	100		

23SEPC08

FINITE ELEMENT ANALYSIS AND APPLICATIONS LABORATORY

SEMESTER II

PREREQUISITES CATEGORY Т Р С L PC 0 NIL 0 4 2 To provide exposure on commercial software package to solve problems in mechanics of Course materials and in structural engineering. **Objectives** LAB EXPERIMENTS / PROGRAMS 1. Introduction to ANSYS/ABAQUS 2. Finite element analysis of simple beams 3. Finite element analysis of trusses 4. Finite element analysis of frames 5. Finite element analysis of element subjected to combined axial load and bending. 6. Finite element analysis of complex elements. 7. Introduction to MATLAB 8. Structural analysis of beams using MATLAB 9. Structural analysis of Frames and Trusses using MATLAB 10. Finite element programming using MATLAB **Contact Periods**: **Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods COURSE OUTCOMES:** Bloom's Taxonomy Upon completion of the course, the students will be able to: Mapped CO1 Perform finite element formulations for simple en TZ 1

COI	Perform finite element formulations for simple engineering problems.	KI
CO2	Develop the various structural models using commercially available software.	K3
CO3	Use MATLAB and commercial finite element software for analyzing the structural	K3
	elements.	
CO4	Use finite element method to solve engineering problems.	K3
CO5	Develop and validate the numerical model of structural elements.	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	2	2	-	1				
CO2	1	-	3	2	-	1				
CO3	2	-	3	3	1	2				
CO4	1	-	2	3	1	2				
CO5	2	-	3	3	-	1				
23SEPC08	2	-	3	3	1	2				
1 - Slight, 2 - N	1 – Slight, 2 – Moderate, 3 – Substantial									

23SEEE01	23SEEE01 MINI PROJECT			SEMESTER II				
PREREQUISI	TES	CATEGORY	L	Т	P	С		
	NIL	EEC	0	0	4	2		
Objectives	Course To develop skill competencies in design and detailing of structures. Objectives Image: Course of the structure of the structu							
MODULE								
1. Design presenta the struc	Project will have mid semester prese tion will include identification of the ctural system using various techniques	entation and end semester prese design problem based on the re- s.	entati cent t	on. N trends	Aid se s and a	emester analyse		
2. End competer response to be about the dama along with the report on identification of tani						for the		

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted, analysis, design and detailing of the entire structural system.
 * Continuous assessment of Design Project will be monitored by the departmental committee.

Son ant up at 19 1/1

7

Contact Periods :			
Lecture: 0 Periods	Tutorial: 0 Periods Practical: 60 Periods	Total: 60 Periods	

States a

~~~~		
	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify structural engineering problems based on the current scenario.	K3
CO2	Familiarize with the various loads and load combinations as per IS codes.	K3
CO3	Apply different techniques to analyze complex structural systems.	K3
<b>CO4</b>	Acquire hands on experience in the analysis and design of entire structure.	K4
CO5	Prepare the structural drawings for concrete/steel structures.	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	U.S.	40 180	2U	2	2			
CO2	1	2		1	-	-			
CO3	3	1	2	2	3	3			
CO4	-	-	1	-	-	-			
CO5	-	2	3	3	2	2			
<b>23SEEE01</b>	3	3	3	3	3	3			
1 – Slight, 2 –	- Moderate, 3	– Substantial		•	·				

	RY L	Т	_	-							
rkekequisites CATEGOR			P	C							
NIL EEC	-	-	-	-							
Course Objectives• To acquire entrepreneurship skills in the field of Structur • To develop communication, interpersonal and critical work experience.	<ul> <li>To acquire entrepreneurship skills in the field of Structural Engineering.</li> <li>To develop communication, interpersonal and critical skills and a record of work experience.</li> </ul>										

#### MODULE

End semester presentation should be done along with the report on internship training. •

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
CO1	Relate theoretical knowledge and skills to real world situation.	K4			
CO2	Integrate knowledge from diverse disciplines in Construction Industry.	K3			
CO3	Apply higher order thinking skills in making decisions in complex situations.	K3			
CO4	Express ideas clearly with clients and in the preparation of technical documents.	K3			
CO5	Conduct collaborative research and preparation of technical document.	K4			
COURSE ARTICULATION MATRIX					

COs/POs	PO1	PO2	РОЗ	PO4	PO5	PO6				
CO1	2	19	2	3	3	2				
CO2	2	65 1	2	3	2	3				
CO3	3	1.1	3	1	2	2				
CO4	- 44	3	2	100		2				
CO5	2	3	1		3	2				
23SEEE02	3	3	3	2 3 )	3	3				
1 – Slight, 2 – Moderate, 3 – Substantial										
23SEEE03	PROJECT - I		SEMESTER III				П			
-----------------------------------------------------------------------------------------------------------------------------	-------------	--------	--------------	---	-------	----	----			
PREREQUISIT	S	CATEGO	DRY	L	T	Р	С			
NIL EI				0	0	24	12			
<b>Course Objectives</b> To carry out the independent research work on the chosen topic and submit a thesis for evaluation.					s for					
MODILLE										

- 1. The project work is defined based on the interest of the students to specialize in a particular Structural Engineering area. Students are expected to carry out independent research work on the chosen topic and submit a thesis for evaluation.
- 2. The work at this stage may involve extensive review of literature in the chosen area of interest. Based on the literature review, the project may be carried out by numerical simulation using software packages and/or experimental work.
- 3. The students will give three periodical review seminars.
- 4. After completion of the thesis work, the student shall prepare and submit a report. The work will be evaluated by the panel of examiners.

<b>Contact Periods</b> :				
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 360 Periods	<b>Total: 360 Periods</b>	
	1100			

COUI	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Collect the literatures relevant to their area of research.	K2
CO2	Identify the research problems based on current scenario.	K4
CO3	Perform analytical investigation.	K3
CO4	Conduct experimental work.	K3
CO5	Interpret the results and prepare the report.	K4

COURSE ART	COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	-	1	-	-	-	-	
CO2	3	2	2	1	2	3	
CO3	3	1	2	3	2	2	
CO4	3	1	1	2	1	1	
CO5	3	2	2	1	-	1	
23SEEE03	3	2	2	3	2	3	
1-Slight, $2-$ M	1 – Slight, 2 – Moderate, 3 – Substantial						

23SEEE0	4	PROJECT - II	SEMESTER IV				
PREREQUIS	CATEGORY	L	Т	P	C		
	EEC	0	0	48	24		
Course	<b>Course</b> To develop the skills to formulate the methodology for the chosen topic, carry out the						
<b>Objectives</b> extensive research work and submit a thesis for evaluation.							
MODULE							

1. Students are expected to carry out research work on the chosen topic and submit a thesis for evaluation. The work at this stage may involve review of literature, extensive experimental work and/or Numerical simulation using software packages, development of analytical model, case study, field data collection and analysis etc. The students will give a periodical review seminar on each stage.

2. Student shall prepare a report on the project work outlining a review of literature published in the relevant area, need, objective and scope of work, methodology, and discusses about the results and come out with appropriate conclusions.

3. After completion of the thesis, the student shall prepare and publish a paper related to the thesis work in a Journal/Conference. The student shall have to appear for a Viva-voce examination for the thesis.

#### **Contact Periods**:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 720 Periods Total: 720 Periods

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Collect the literatures relevant to their area of research.	K2
CO2	Identify the research problems based on current scenario.	K3
CO3	Perform analytical investigation.	K3
CO4	Conduct experimental work. Critically assess and propose solutions to	K4
	Structural Engineering problems.	
C05	Demonstrate the research findings and present the solutions of the thesis work.	K4

COURSE AF	COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	1	2	-	-	-		
CO2	3	2	2	-	2	2		
CO3	3	2	2	2	3	2		
CO4	3	1	3	3	2	1		
CO5	3	2	2	2	3	3		
23SEEE04	3	2	3	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

23SEPE01	STABILITY OF STRUCTURES						
PREREQUISITE	S	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
Course To learn the concepts of stability, beam-columns, inelastic and torsion						g	
Objectives	characteristics of various members and buckling behav	ior of plates.					
UNIT – I CONCEPT OF STABILITY						ds	
Concept of stabilit	y - states of equilibrium – Euler column – Linear colu	mn theory, an eigen	valu	e pro	blem	for	
various end condit	ions – Large deformation theory – Imperfect columns.						
UNIT – II	INELASTIC BUCKLING AND METHODS OF AN	NALYSIS		9 F	Perio	ds	
Inelastic buckling,	double modulus and tangent modulus theory-Approxi	mate Methods- cons	ervati	on o	f Ene	rgy	
principle, principle	e of stationery and potential energy, Rayleigh Ritz m	ethod, Finite Differ	ence	meth	ods	and	
Matrix methods.	19 HERE C	9					
UNIT – III	BEAM-COLUMNS			9 Periods			
Beam-Column sub	jected to concentrated lateral loads, distributed lateral lo	oads – Effect of Axia	ıl Loa	d on	Bend	ling	
Stiffness - Failure	of beam columns- Buckling of frames - Modes of buch	kling– Calculation of	f criti	cal lo	ading	g in	
frames– Stability o	f a frame.						
UNIT – IV	TORSIONAL BUCKLING			9 F	Perio	ds	
Torsional Load-D	eformation characteristics of Structural members-S	train energy of To	orsion	n– C	ombi	ned	
torsional and flex	ural buckling - Lateral buckling of beams - Pure be	ending of simply su	pport	ed b	eam	and	
cantilever beam–D	esign simplifications for lateral buckling.	11					
UNIT – V BUCKLING OF PLATES					Perio	ds	
Governing differential equation – Buckling of thin plates with various edge conditions – Strain energy of bending							
in a plate - Calculation of critical load of plates - Inelastic buckling - Post buckling behavior of axially							
compressed plates – Ultimate strength of axially compressed plates.							
Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

#### REFERENCES

1	Chajes.A, "Principles of Structural Stability Theory", Prentice Hall, 1974.
2	AshwiniKumar, "Stability Theory of Structures", Tata McGraw Hill Publishing, Company Ltd, N.Delhi,
	1998.
3	Iyengar NGR, "Elastic Stability of Structural Elements", Macmillan, 2007.
4	Allen H.G and Bulson.P.S, "Background to buckling", McGraw Hill Publishing Company Ltd, 1980.
5	Smites, "Elastic Stability of Structures", Prentice Hall, 1974.
6	Timoshenko.S, and Gere, "Theory of Elastic Stability", McGraw Hill Publishing Company Ltd,
	2012.

COURSE OUTCOMES:	Bloom's
	Taxonomy
Upon completion of the course, the students will be able to:	Mapped

CO1	Apply basic concepts and various approaches of stability of columns	K3
CO2	Execute and workout the inelastic buckling using various methodologies	К3
CO3	Examine the buckling behavior of beam columns and frames.	К3
CO4	Examine the lateral buckling, torsional buckling and flexural torsional buckling of	K3
	various beams.	
CO5	Do stability analysis of buckling of thin plates.	K3

COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	2	1	1	1
CO2	1	-	2	2	1	1
CO3	1	-	3	1	2	1
CO4	1	-	2	1	1	1
CO5	1	-	2	1	2	1
23SEPE01	1	- 0	210	2	2	1
1 – Slight, 2 -	- Moderate, 3 -	- Substantial				

	······································		500 (UL 1100)	ave)					
ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	30	40	30		-	-	100		
CAT2	30	40	30	-	-	-	100		
Individual	30	40	30	-11	-	-	100		
Assessment 1 /		1 8							
Case Study 1/		00							
Seminar 1 /	2								
Project1	5	SA IN		A VARA					
Individual	30	40	30	200	-	-	100		
Assessment 2 /		Contraction of the second		2-1					
Case Study 2/	8	190	200	BL UB					
Seminar 2 /		Contraction of the second	1. 20 20 20	e se la companya de l					
Project 2				en 2017 (C. C. C					
ESE	30	40	30	-	-	-	100		

23	SEPE02		THEORY AND APPI	3SEPE02 THEORY AND APPLICATIONS OF CEMENT COMPOSITES											
PRE	REQUISIT	ES			CATEGORY	L	Т	Р	С						
			NIL		PE	3	0	0	3						
Cou	rse	To enha	nce the knowledge in the	behaviour of com	posite materials a	nd to	inves	tigate	e the						
Obje	ectives	failure an	nd fracture characteristics.												
UNI	T – I	INTRO	DUCTION				9	Perio	ds						
Intro	duction to C	Composite	s, Classifying composite	materials, Types	of Cement Comp	osites	, Teri	ninol	ogy,						
Cons	stituent Mate	erials and	their Properties - Com	monly used fiber	and matrix cons	tituen	ts -E	ngine	ered						
Cem	entitious con	nposites -	Advantages.												
UNI	T – II	PROPE	RTIES OF COMPOSIT	ES			9	Perio	ds						
Stres	s-Strain Rel	lations -	Orthotropic and Anisotro	opic Materials, E	ngineering Consta	ants f	or O	rthotr	opic						
Mate	rials, Restri	ctions or	Elastic Constants, Plar	ne Stress Problem	n, Biaxial Streng	th, T	heorie	es fo	r an						
Orth	otropic Lami	na.													
UNI	T – III	BEHAV	IOUR OF COMPOSITI	ES			9	Perio	ds						
Mec	hanics of M	laterials A	Approach to Stiffness - I	Determination of	Relations betwee	n Ela	stic (	Const	ants,						
Elast	icity Approa	ach to Stif	ffness - Bounding Technic	ques of Elasticity,	Exact Solutions -	Elas	ticity	Solut	ions						
with	Continuity, I	Halpin, Ts	sai Equations, Comparisor	n of approaches to	Stiffness-Behavio	r of F	erroce	ement	and						
Fiber	r Reinforced	Concrete	e in Tension, Compressio	n, Flexure, Shear	, Fatigue and Imp	act -	Dura	bility	and						
Corr	osion of cem	ent comp	osites.												
UNI	T – IV	CONST	<b>RUCTION TECHNIQU</b>	ES	37		9	Perio	ds						
Cons	struction Te	chniques	- Fibre Reinforced C	oncrete, Ferrocer	nent, SIFCON,	Polyn	ner (	Concr	etes,						
Prep	aration of Re	einforceme	ent, Casting and Curing- C	Composite Constru	ction.		1								
UNI	$\Gamma - V$	STRUC	<b>FURAL AND NON-STR</b>	RUCTURAL APP	LICATIONS		9	Perio	ds						
FRC	and Ferrocer	ment - Ho	ousing, Water Storage, Boa	ats and miscellane	ous applications -	Comp	osite	Mate	rials						
- Intr	oduction to A	Analysis a	and Design of Cement Co	mposite Structural	Elements - Ferroc	emen	t, SIF	CON	and						
Fibre	e Reinforced	Concrete.													
Cont	tact Periods:	:	W						_						
Lect	ure: 45 Peri	ods	Tutorial: 0 Periods	Practical: 0	Periods	l'otal	: 45 P	erioc	ls						
			82		33										
h	KEFERENC	ES:	Mind "Film Princh		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	מי	20	1 4							
1	A D			COAL OW OWTITIANS	( '										
1	Arnon Benti	ur, Sidney	Minaess, "Fibre Reinford	viala" CDC D	Composites", CRC	? Pres	ss, 20	14							
1 2 2	Arnon Bentu Kaw, Autar	ur, Sidney K <b>"Mech</b> Pugn dt "	mindess, "Fibre Reinford nanics of composite mater	ials", CRC Press,	Composites", CRC 2006. abaniazi Provesti	Pres	55, 20.	Correct							
1 2 3	Arnon Bentu Kaw, Autar Andrzej M.	ur, Sidney • K <b>"Meck</b> Brandt, <b>"</b> tion CPC	Mindess, "Fibre Keinfor nanics of composite mater Cement-Based Composite Press, 2005	rials", CRC Press, es: Materials, Med	Composites", CRC 2006. chanical Propertio	es and	ss, 20. <b>i Perj</b>	forma	nce",						
1 2 3	Arnon Bentu Kaw, Autar Andrzej M. Second Edit	ur, Sidney K <b>"Mech</b> Brandt, " tion, CRC	Mindess, "Fibre Reinfor anics of composite mater Cement-Based Composite Press, 2005.	tials", CRC Press, es: Materials, Med	Composites", CRO 2006. chanical Propertie	es and	<i>l Perf</i>	forma	nce",						
1 2 3 4 5	Arnon Bentu Kaw, Autar Andrzej M. Second Edit Robert M Jo Mallick P.	ur, Sidney K " <b>Mech</b> Brandt, " tion, CRC ones, " <b>Ma</b> K Eihar	Mindess, "Fibre Keinfor panics of composite mater Cement-Based Composite Press, 2005. echanics of Composite Ma Reinforced Composite Ma	ials", CRC Press, es: Materials, Med aterials", Taylor a	Composites", CRO 2006. chanical Propertion and Francis/BSP B	es and	ss, 20 <b>1 Perf</b> 1998.	forma	nce",						
1 2 3 4 5 6	Arnon Bentu Kaw, Autar Andrzej M. Second Edit Robert M J. Mallick P. K	ur, Sidney K <b>"Mech</b> Brandt, " tion, CRC ones, " <b>M</b> K Fiber	Mindess, "Fibre Keinfor aanics of composite mater Cement-Based Composite Press, 2005. echanics of Composite Ma Reinforced Composite Ma	tials", CRC Press, es: Materials, Med aterials", Taylor a aterials Manufactu	Composites", CRC 2006. chanical Propertion and Francis/BSP B ring and Design (2	ooks,	<i>I Perf</i> 1998.	forma	nce",						

7 Chris L. Page, M M Page, "Durability of Concrete and Cement Composites", Elsevier, 2007.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon cor	npletion of the course, the students will be able to:	Mapped
CO1	Detect the type of composite materials and its applications	K3
CO2	Estimate properties of composite materials.	K3
CO3	Formulate constitutive behaviour of composite materials for different loading	K4
	conditions by using various theories.	

CO4	Recognize           and propert	Recognize the techniques for appropriate composite material based on its behaviour and properties Implement composites as an alternative to traditional materials							
CO	5 Implement	cement com	posites as an	alternative	to traditional	materials.		K3	
	COURSE AR	OURSE ARTICULATION MATRIX							
	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
	CO1	2	2	1	1	2	2		
	CO2	3	2	2	2	1	2		
	CO3	3	1	2	3	2	2		
	CO4	2	2	2	3	2	1		
	CO5	3	1	2	2	2	1		
	23SEPE02	3	2	2	3	2	2		
	1 - Slight, 2 -	Moderate, 3	– Substantia	il i		•			

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	40	40	かまって	-	-	100
CAT2	20	40	40		-	-	100
Individual							
Assessment 1 /			100	<b>a</b> 77			
Case Study 1/	-		50	50	-	-	100
Seminar 1 /							
Project1			SUM				
Individual		1 .1					
Assessment 2 /		// 9/					
Case Study 2/	-	- 8	50	50	-	-	100
Seminar 2 /		I U			1		
Project 2		A la					
ESE	20	40	40		50 -	-	100
	•		S			•	•

23SEPE03

#### STRUCTURAL HEALTH MONITORING

			1					
PREREQUI	SITES	CATEGORY	L	T	Р	С		
	NIL	PE	3	0	0	3		
Course	To impart knowledge on structural health monitoring,	remote structural	heal	lth m	onito	ring		
Objectives	and to have an exposure on the various repair and rehabi	litation techniques	5.					
UNIT – I	STRUCTURAL HEALTH			9 Periods				
Factors affecting Health of Structures, Causes of Distress, Regular Maintenance. Structural Health								
Monitoring (	SHM): Definition of SHM – Classification, Types and Co	mponents of SHN	1 – A	dvan	tages	and		
Benefits of S	HM.							
UNIT – II STATIC FIELD TESTING					Perio	ds		
Static field te	esting -Types of Static Tests, Simulation and Loading M	ethods, sensor sys	stems	and	hardv	vare		
requirements	, Static Response Measurement.							
UNIT – III	DYNAMIC FIELD TESTING			91	Perio	ds		
Dynamic Fie	ld Testing -Types of Dynamic Field Test, Stress History	/ Data, Dynamic	Resp	onse	Meth	ods,		
Data Acquisi	tion Systems.	N (9)						
UNIT – IV	<b>REMOTE STRUCTURAL HEALTH MONITORIN</b>	G		91	Perio	ds		
Remote Strue	ctural Health Monitoring - Importance and Advantages -	- Methodology -	IoT a	applic	ation	is in		
SHM – Appli	cations of Machine learning Techniques in SHM.							
UNIT – V	<b>REPAIRS AND REHABILITATION TECHNIQUES</b>	5		91	Perio	ds		
Repair and F	Rehabilitation of structures - Case Studies, piezoelectric	materials and oth	er sr	nart 1	nater	ials,		
electro-mech	anical impedance (EMI) technique, adaptations of EMI te	chnique.						
<b>Contact Peri</b>	ods:							
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Perio	ods					
		//						
REFE	RENCES							

i messanaro i egoretti, Structura incanti n	Ionitoring : Current State and Future Irends", SAE
International, 2018.	S.
2 D. Hutson, "Structural Sensing, Health M	onitoring, and Performance Evaluation", CRC Press,
2019.	
3 Filippo Ubertini, Simon Laflamme, Jian Li,	"Smart Sensors for Structural Health Monitoring",
MDPI Books, 2019.	
4 Maguid H.M. Hassan "Advances in Structur	ral Health Monitoring", IntechOpen, 2019.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Diagnosis the distress in the structure by understanding the causes and factors.	K3
CO2	Assess the health of the structure using static field testing.	K3
CO3	Analyse the condition of structures using dynamic field-testing methods.	K3
CO4	Perform the process of remote health monitoring of structures.	K3
CO5	Suggest repairs and rehabilitation measures of the structure.	K3

COURSE AR	COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	3	2	2				
CO2	3	2	3	3	2	2				
CO3	3	2	3	3	2	2				
CO4	1	2	3	3	2	3				
CO5	2	2	3	3	2	3				
23SEPE03	3	2	3	3	2	3				
1 – Slight, 2 –	Moderate, 3 -	- Substantial								

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	e40	20	a cogon la	-	-	100
CAT2	40	40	20	Sal Y	-	-	100
Individual	40	40	20		-	-	100
Assessment 1 /							
Case Study 1/			-	<b>T</b> 77			
Seminar 1 /				夏 //			
Project1							
Individual	40	40	20	- <u>- 1</u>	-	-	100
Assessment 2 /		11 .16		11			
Case Study 2/		// 8/	1100				
Seminar 2 /		8					
Project 2		11 0					
ESE	40	40	20		-	-	100



2351	EPE04	04 DESIGN OF FORMWORK										
PREI	REQUIS	ITES			CATEGORY	L	Т	Р	С			
			NIL		PE	3	0	0	3			
Co	ırse	To impart	knowledge on design	of formwork and spe	cial structures cor	nsider	ing f	ormw	vork			
Obje	ctives	failure con	ditions and safety measu	ires.								
UNIT	' – I	INTRODU	UCTION				9 P	eriod	ls			
Introd Form and V	luction t work. Fo ertical F	o Formwo ormwork M ormwork S	rk, Requirements and S laterials: Timber, Plywo upports.	Site Constraints, Selectood, Steel, Aluminum,	ction of Formworl , Plastic, and Acco	k, Cla essori	assifi es. H	cation orizo	n of ontal			
UNIT	' – II	FORMW	ORK DESIGN FOR ST	<b>TRUCTURAL ELEM</b>	IENTS		9 P	eriod	ls			
Form	work des	sign concep	ots, Formwork System I	Design for Foundation	s, Walls, Columns	, Slat	os and	l Bea	ams.			
Desig	n of De	cks and Fa	lse works, Effects of va	arious loads. Loading	and Moment of H	Formv	vork,	IS C	Code			
provis	sions.		_	mann								
UNIT	INIT – III         FORMWORK DESIGN FOR SPECIAL STRUCTURES								s			
Shells	, Dome	s, Folded	Plates, Overhead Wate	r Tanks, Bridges, Na	itural Draft Coolin	ng To	ower,	Nuc	elear			
React	or, Tunn	el and Lift	Shaft.	CHURCH COLV								
UNIT	- IV	FLYING	FORMWORK				9 P	eriod	ls			
Flying Shori	g Formw 1g Svstei	vork Acces m. Gang Fo	sories and Construction orm, Slip Form, and Forr	n Sequence, Table Fo nwork for Precast Con	orm, Tunnel Form, acrete, Applications	, Colı 5.	ımn	Mou	nted			
UNIT	$\mathbf{\tilde{-V}}$	FORMW	ORK FAILURE AND M	MANAGEMENT	, 11		9 P	eriod	ls			
Form	work Fa	ilure, Caus	ses for Formwork Failu	ure, Case studies in	Formwork Failure	. Saf	ety i	n use	e of			
Form	work and	l False wor	k. Formwork Manageme	ent Issues – Pre and Po	ost Award, Formw	ork Is	sues	in M	ulti-			
Story	Building	g Construct	ion.		//							
Conta	act Perio	ods:										
Lectu	re: 45 1	Periods	Tutorial: 0 Periods	Practical: 0 Perio	ods Total:	45 Pe	riods	5				
R	EFERE	NCES:										
1	Jha, K.	N., <b>"Form</b> w	vork For Concrete Struc	ctures", First Edition,	McGraw Hill. 201.	2.						
2	Michae	l P. Hurst,	"Formwork", Construct	tion Press, London and	d New York, 2003.							

- 4 Austin, C.K., "Formwork For Concrete, Cleaver", Hume Press Ltd., London, 2006.
- 5 Tudor Dinescu and Constantin Radulescu, **"Slip Form Techniques"**, Abacus Press, Turn Bridge Wells, Kent, 2004.
- 6 Indian Concrete Institute, "Technical Monograph For Formwork", 2002.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Identify the suitable type of formwork for construction activities.	K2
CO2	Carry out design of formwork system for various structural elements.	K3
CO3	Perform formwork design for special structures.	K3
CO4	Select a suitable type of flying formwork.	K3

COURSE A	COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	-	3	2	1	-		
CO2	-	-	3	2	1	-		
CO3	-	-	3	2	1	-		
CO4	-	-	3	2	1	-		
CO5	-	1	3	2	1	1		
23SEPE04	-	1	3	2	1	1		
1 – Slight, 2 -	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	35	40	201	-	-	100
CAT2	25	35	40		-	-	100
Individual	15	35	50	-	-	-	100
Assessment 1/							
Case Study 1/				泉 //			
Seminar 1/							
Project1			SWAN Y				
Individual	15	35	50	- 11	-	-	100
Assessment 2/		V 2 V					
Case Study 2/		0 00	North				
Seminar 2/		A Q		h			
Project 2		A LA	s (* 19		1		
ESE	20	40	40		· -	-	100
			~/		)		



**23SEPE05** 

#### ANALYSIS OF LAMINATED COMPOSITE PLATES

PREREQUIS	SITES	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course	To impart the knowledge on governing equations,	analysis and var	ious	meth	ods c	of
<b>Objectives</b> composite plates.						
UNIT – I	UNIT - IINTRODUCTION9 Periods					ds
Displacement	Field Approximations for Classical Laminated Plate T	heory (CLPT) and	l Firs	t Ord	er Sh	ear
Deformation 7	Theory (FSDT), Analytical Solutions for Bending of I	Rectangular Lami	nated	Plate	es us	ing
CLPT.						
UNIT – II	GOVERNING EQUATIONS			9 F	Perio	ds
Navier Soluti	ons of Cross-Ply and Angle-Ply Laminated Simply S	Supported Plates,	Dete	rmin	ation	of
Stresses. Levy	Solutions for Plates with Other Boundary Conditions,	Analytical Solution	ons fo	or Bei	nding	of
Rectangular L	aminated Plates using FSDT.					
UNIT – III	CLASSICAL LAMINATED PLATE THEORY			9 F	Perio	ds
Finite Elemen	t Solutions for Bending of Rectangular Laminated Plat	es using CLPT .In	trodu	ction	to Fi	nite
Element Met	nod, Rectangular Elements, Formation of Stiffness	Matrix, Formation	n of	Load	l Veo	ctor,
Numerical Int	egration, Post Computation of Stresses.	50				
UNIT – IV	FIRST ORDER SHEAR DEFORMATION THEO	RY		9 F	Perio	ds
Finite Elemer	t Solutions for Bending of Rectangular Laminated	Plates using FSD	T. Fi	nite 1	Elem	ent
Model, C0 Ele	ement Formulation, Post Computation of Stresses.	1				
UNIT – V	ANALYTICAL METHODS	11		9 F	Perio	ds
Analysis of Rectangular Composite Plates using Analytical Methods.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
REFERENCES						

#### REFERENCES

1	J.N. Reddy, "Mechanics of Laminated Composite Plates: Theory and Analysis", CRC-Press,
	1996.
2	G.J. Turvey, "Buckling and Post buckling of Composite Plates", I.H. Marshall Springer Science
	& Business Media, 1994.
3	Jianqiao Y, "Laminated Composite Plates and Shells", Springer-Verlag, London, 2003.
4	Yi-Ming Fu, "Nonlinear Analyses of Laminated Plates and Shells with Damage", WIT Press,
	2013.
5	O.O. Ochoa, J.N. Reddy, "Finite Element Analysis of Composite Laminates", Springer Science
	& Business Media, 2013.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Know the various theories behind the analysis of laminated composite plates.	K3
CO2	Apply the governing equations for laminated composite plates.	К3
CO3	Apply the Classical Laminated Plate Theory on laminated plates using FEM.	K3
CO4	Execute the FEM analysis of laminated plates using First Order Shear Deformation	K3
	Theory	
CO5	Analyse the rectangular laminated composite plate using the analytical method.	К3

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1		2	1	1	1
CO2	1		2	2	1	1
CO3	1		3	3	2	1
CO4	1		3	3	2	1
CO5	1		2	1	2	1
23SEPE05	1	-	3	3	2	1
1 – Slight, 2 – Moderate, 3 – Substantial						

Category* (I CAT1 CAT2 Individual	K1) %       30       30       30       30	(K2) % 40 40 40	(K3) % 30 30	(K4) %	(K5) %	(K6) %	<b>%</b> 100
CAT1 CAT2 Individual	30 30 30	40 40	30 30		-	-	100
CAT2 Individual	30 30	40	30				
Individual	30	10			-	-	100
Assagement 1/		40	30	->>	-	-	100
Case Study 1/				E //			
Seminar 1/							
Project1			SWAN.				
Individual	30	40	30	- //	-	-	100
Assessment 2 /		// 9/1					
Case Study 2/		1 8					
Seminar 2/		I U					
Project 2		A 12					
ESE	30	40	30		-	-	100

#### **DESIGN OF CONCRETE BRIDGES**

			,		-	
PREREQUISIT	TES	CATEGORY	L	Т	P	С
	NIL	PE	3	0	0	3
Course	To possess knowledge on the analysis and design of sho	rt span, long span	bridge	es, fo	unda	tion
Objectives	and bearing.					
UNIT – I INTRODUCTION					Perio	ds
Classification, investigations and planning, choice of type, I.R.C. Specifications for road bridges, standard					rd	
live loads, other forces acting on bridges, general design considerations.						
UNIT – II	SHORT SPAN BRIDGES			9	Perio	ds
Load distribution	n theories - Design of box culverts - Design of slab decks,	tee beam and slab	bridg	ges.		
UNIT – III LONG SPAN BRIDGES			9	Perio	ds	
Design principl	es of continuous bridges, arch bridges, box girder l	oridges, bow strir	ng gir	der t	oridge	es,
cable stayed brid	lges, suspension bridges, balanced cantilever bridges					
UNIT – IV	DESIGN OF PRESTRESSED CONCRETE BRIDGE	ES		9	Perio	ods
Courbon's theor	y - Distribution co-efficient by exact analysis - Design	of girder section	— ma	nximu	ım aı	nd
minimum prestre	essing forces – Eccentricity – Cable Zone in girder – Stres	ses at various sect	ions a	ind d	iagon	al
tension – Diaphr	agms – End block – short term and long term deflections	23				
UNIT – V	<b>BEARINGS, CONSTRUCTION AND MAINTENAN</b>	CE OF BRIDGE	S	9	Perio	ds
Bearings – Stee	l rocker and roller bearings - Reinforced concrete rocke	er and roller bearing	ngs –	Elas	stome	ric
bearings - Expansions joints- Design of abutments and piers - Bridge Construction and Maintenance. Types of						
bridge foundations – Design of foundations						
<b>Contact Period</b>	s:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
REFEREN	CES:					

#### **REFERENCES:**

1	Raina V.K. "Concrete Bridge Practice", Tata McGraw Hill Publishing Company, New Delhi, 2014.
2	Jagadeesh T.R and Jayaram M.A, "Design Of Bridge Structures", PHI Learning Private Limited, 2020
3	Krishnaraju, N., "Design of Bridges" Oxford and IBH Publishing Co., Bombay, Calcutta, New Delhi, 2019.
4	Bakht, B. and Jaegar, L.G., "Bridge Analysis simplified", McGraw Hill, 1985.
5	Ponnuswamy, S., "Bridge Engineering", Tata McGraw Hill, 2017
6	Derrick Beckett, "An introduction to Structural Design of Concrete Bridges", Surrey University Press, Henley Thomes, Oxford Shire, 1973.

COURSE OUTCOMES:				
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped		
CO1	Classify the different types of bridges and calculate the loads on bridges	K2		
CO2	Analyse and design short span bridges using different theories	К3		
CO3	Illustrates the design principles of various long span bridges	K2		
CO4	Analyse and design the Prestressed Concrete bridges	K3		
CO5	Design the foundation and bearings of the bridges	K3		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	1	3	1	1	2			
CO2	3	2	3	3	2	3			
CO3	3	2	3	1	2	3			
CO4	3	2	3	1	2	3			
CO5	3	2	3	1	2	3			
23SEPE06	3	2	3	3	2	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY										
Test /	Rememberin	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	g (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*		G		2						
CAT1	20	20 0 0	60	1 2 63 640 m	9 -	-	100			
CAT2	20	20	60	and M	-	-	100			
Individual	25	25	50		-	-	100			
Assessment 1 /										
Case Study 1/			1	GT 7/						
Seminar 1 /				夏 //						
Project1										
Individual	25	25	50	- L	-	-	100			
Assessment 2 /			24							
Case Study 2/		// 9\								
Seminar 2 /		1 8								
Project 2		1 0			2					
ESE	20	20	60	- 7/3		-	100			

#### PRESTRESSED CONCRETE STRUCTURES

PREBEUII	SITES			CATECORV	T	т	р	C
INENEQUI	NII DE 3							
NIL PE						U	U	3
Course	To impart	t knowledge on the basic	principles, analyz	e and design of	prest	ress	conc	rete
Objectives	members.							
UNIT – I	ANALYS	IS OF BEAMS AND LO	SSES IN PRESTR	ESS		9 Pe	eriod	S
Principles of	prestressing	g – Different systems of pr	restressing – Mater	ials and Allowabl	e stre	esses	–Ela	stic
Design of pr	rismatic bea	ams – Simple cable profi	ile Design of bear	ns for shear. Los	ses i	in pr	estre	ss -
Deflections –	Short Term	and Long Term deflection	1.					
UNIT – II	DESIGN	OF TENSION AND COM	MPRESSION ME	MBERS		9 Pe	eriod	S
Design of co	ompression	and tension members - ]	Design of Compre	ssion members v	vith 1	bendi	ing. ]	End
Block- Introd	luction- Stre	ess Distribution in End Blo	ock – Anchorage Z	one Stresses -Des	ign o	f end	l bloc	ek –
Guyon's met	hod, Magne	el's method – I.S 1343 reco	ommendations.					
UNIT – III	CONTIN	UOUS BEAMS AND CO	MPOSITE CONS	TRUCTION		9 Pe	eriod	S
Concept of c	oncordancy	and Linear Transformation	n – Elastic analysis	of continuous bea	ams–	Sket	tching	g of
pressure lines	s for contin	uous beams and single spa	n single storey rigio	d frames – Load b	aland	cing 1	metho	od -
Design of co	ntinuous be	eams. Composite construc	tion – Types and I	behavior – Analy	sis a	nd de	esign	for
flexure and s	hear – Diffe	erential shrinkage.					e	
UNIT – IV	SPECIAI	TOPICS		57		9 Pe	eriod	S
0	1. т. т.			//		A		
One way sia	DS - 1WO	way slabs – Circular pres	stressing – Prestres	sed concrete pipe	ès –	Anai	ysis	and
UNIT V		g tanks – Design of prestres	ssed concrete steeps	ers and poles.		0 D/	mind	6
$\frac{\mathbf{UNII} - \mathbf{V}}{\mathbf{Cofetry} - \mathbf{V}}$		TATE DESIGN	Car Carton I in	it state Design of	1	9 Fe	flou	5
Salety and S	I imit stat	y requirements – Partial sa	arely factors – Liff	in state Design of		ms ir		tial
and shear –	Limit state	e Design of Compression	members. Non p	restressed reinfor	ceme	ints -	– pai	ruai
prestressing.	1	1 60	- A - A					
Lecture: 45	reriods	i utorial: U Periods	Practical: 0 Pei	ious Iotal:	45 P	er100	15	
REFEREN	NCES:	Carde		3				
		the second se	A TO ALC: AN A CONTRACTOR OF A DAMAGE					

1	Lin.1.1. and Wea.11. Durns, <b>Design of Frestressed concrete structures</b> (5.1 Version), John Wiley
	& Sons Inc., New York, 2015.
2	Sinha.N.C. and Roy.S.K. "Fundamentals of prestressed Concrete", S.Chand and Co., 2011
3	Krishnaraju N., "Prestressed Concrete", Tata McGraw Hill publishing Co.Ltd. New Delhi, 2018.
4	Leonhardt.F. "Prestressed Concrete Design and Construction", Wiley Ernst and Sons, 1964.
5	N.Rajagopalan, "Prestressed Concrete", Narosana Publications, 2006.

COURSE OUTCOMES:					
Upon	completion of the course, the students will be able to:	Taxonomy Mapped			
CO1	Analyze and design the prestressed concrete beam sections.	K3			
CO2	Design the prestressed concrete tension, compression members and end block.	K3			
CO3	Analyse the statically indeterminate structure and design the continuous beams and composite beams.	К3			

<b>CO4</b>	Design the prestressed concrete pipes, sleepers, tanks, poles and slabs.								
CO5	Design the PSC beam and compression member by limit state method								
CO	COURSE ARTICULATION MATRIX								
	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
	CO1	3	2	2	3	1	2		
	CO2	2	2	1	2	2	2		
	CO3	2	2	2	1	2	1		
	CO4	3	2	2	3	3	2		
	CO5	2	2	1	2	1	2		
	23SEPE07	3	2	2	3	3	2		
1 –	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	40	40	Sav	-	-	100		
CAT2	20	40	40		-	-	100		
Individual	-		50	50	-	-	100		
Assessment 1/			. · · · ·	\ \ \					
Case Study 1/				X //					
Seminar 1/			1 ATTA						
Project1			AWE Y	N. 11					
Individual	-	1 - 6	50	50	-	-	100		
Assessment 2/		I B							
Case Study 2/		0							
Seminar 2/		A B							
Project 2		100	*		18				
ESE	20	40	40	20	R -	-	100		



23SEPE08 EXPERIMENTAL TECHNIQUES AND INSTRUMENTAT						ΓΙΟΝ	-	
PREREQUIS	SITES			CATEGORY	L	Т	P	С
	-	NIL		PE	3	0	0	3
Course	To lear	n various experimental techniques	and ins	trumentation proce	dure	for tes	ting s	structural
Objectives	elemen	ts.						
UNIT – I	FORC	E AND STRAIN MEASUREMEN	T				9 Pe	eriods
Strain Gauges	s, princi	ble, types, performance and uses -	Photo e	elasticity, principle	and	applic	ations	- Moiré
fringes hydra	ulic jacl	s and pressure gauges - Electrical	l load c	ells - proving ring	gs - 0	alibra	tion o	of testing
machines.								
UNIT – II	VIBRA	TION MEASUREMENTS					9 Pe	eriods
Characteristic	s of str	ctural vibration - linear variable	differen	tial transformer (I	LVD	T) - T	ransd	ucers for
Velocity and	acceler	ation measurements- vibration me	terseisn	nographs - vibration	on ar	nalyzer	- di	splay of
recording of s	ignals -	cathode ray oscilloscope - XY plotte	r - char	plotters - Digital d	ata ao	equisiti	ion sy	stems.
UNIT – III	ACO	<b>USTICS AND WIND FLOW MEA</b>	SURE				9 Pe	eriods
Principles of p	pressure	and flow measurements- pressure tr	ansduce	er- sound level meter	er - v	enturir	neter	and flow
meters - Wind	l tunnel a	and its use in structural analysis- stru	uctural r	nodeling- direct and	d indi	rect m	odel a	inalysis.
UNIT – IV	DIST	RESS MEASUREMENTS	6				9 Pe	eriods
Diagnosis of	distress	in structures- crack observation	and me	easurement- Corro	sion	of rei	nforce	ement in
concrete- Half	f cell, co	nstruction and use- damage assessme	ent - co	ntrolled blasting for	r dem	olition		
UNIT – V	NON	DESTRUCTIVE TESTING MET	HODS	11			9 Pe	eriods
Load testing	on struc	ures, buildings, bridges and towers	s - Rebo	ound hammer Acou	ıstic	emissi	on- U	Itrasonic
testing, Princi	ples and	applications - Holography - Use of I	laser for	structural testing-	Brittl	e coati	ngs.	
Contact Perio	ods:	al 8	1					
Lecture: 45 P	Periods	Tutorial: 0 Periods Practical: 0	) Period	ls Total: 45 Perio	ods			
			1					
REFERE	ENCES	Carrier	100	arvie				
1 Sad	lhu Sing	n, "Experimental Stress Analysis", 1	Khanna	publishers, New D	elhi,	1996.		
2 Dal 199	lley and P1.	Riley, "Experimental Stress Analy	vsis"- N	AcGraw Hill Book	Com	pany, .	New	York
3 L.S. Nev	3 L.S.Srinath. "Experimental Stress Analysis", Tata McGraw Hill company Book Ltd., NewDelhi. 1984							
4 Bra	iy and St	anley, "Non Destructive Evaluation	<b>ı"</b> , McG	raw Hill Publishing	g co.,	New Y	′ork, l	989

COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Apply concepts of measurements and related instruments in the real time	K2
	application areas.	
CO2	Use the various vibration measuring instruments and analyze the structures	K2
	using digital display units.	

CO3	Perform model analysis for wind flow measurements.						
CO4	Diagnose the distressed structures using advanced damage assessing techniques	K2					
CO5	Perform NDT methods on the existing structures.	K3					

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	2	3	2	3		
CO2	3	-	-	2	-	-		
CO3	3	-	2	1	1	2		
CO4	3	-	1	2	1	2		
CO5	3	-	1	3	1	2		
<b>23SEPE08</b>	3		2	3	2	3		
1 – Slight, 2 – Moderate, 3 – Substantial								



ASSESSMENT P	ATTERN – TH	EORY		-			
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	40	10				100
CAT2	50	40	10				100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	30	50	20				100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	50	20				100
ESE	50	40	10				100



23SEPE09			S	<b>FRUCTURAL O</b>	PTIMIZATI	ON				
PREREQUI	SITES				CAT	EGORY	L	Т	Р	С
		N	IIL			PE	3	0	0	3
Course	To learn	the optimiz	zation technique	ues in structural en	igineering.					
Objectives										
UNIT – I	OPTIM	IZATION	FUNDAME	NTALS				9	Per	iods
Optimization	methods	- Introdu	ction, Proble	em formulation,	Mathematica	l principles	in o	optim	izatio	on -
Mathematica	l models -	Activity –	Design metho	dology- Civil engi	ineering case	study - Unc	onstra	ined	funct	ions
– single varia	able - sever	ral variable	e - equality co	nstraints – inequal	lity constrain	ts- optimiza	tion -	desig	n spa	ice -
Feasible and	Infeasible	- Convex	and concave	- Active constrai	nts - Local a	and Global o	optima	ı – di	ffere	ntial
Calculus - Op	otimality c	riteria - Lag	grange multip	lier method - Kuhr	n- tucker Crit	eria.				
UNIT – II	LINEA	R PROGR	AMMING					9	Per	iods
Linear Progr	amming –	Formulation	on of problem	ns - graphical solu	tion - plastic	e design of	frames	s - an	alyti	cal
methods- Sir	nplex met	hod – Bas	ic ideas and	steps- Duality ser	nsitivity anal	ysis – simp	le LP	proł	olems	; —
Transportatio	n Problem	ı – Assignn	nent Method.	I . R						
UNIT – III	NON-LI	NEAR PR	OGRAMMI	NG	and the second			9	Per	iods
Introduction	to non -	linear prol	blems - One	dimensional min	imization me	ethods – un	imoda	al fur	nctior	1 -
Exhaustive a	nd unrestr	ricted searc	ch – Dichotor	nous search – Fil	oonacci meth	nod- Golden	secti	on m	etho	- t
Interpolation	methods.									
Unconstraine	ed multiva	riable func	tion - univari	ate method - Cau	chy's steepe	st descent n	nethod	l - cc	njug	ate
gradient met	hod (Fletc	cher Reeve	es) – Variable	e metric methods	(Davison-F	letcher-Pow	ell) -	Dir	ect a	nd
indirect meth	ods - cutti	ng plane m	ethod - Metho	ods of feasible dire	ction - Interi	or Penality f	function	on – I	Extern	nal
Penalty funct	ion metho	d.			N 10					
UNIT – IV	GEOME	ETRIC PR	OGRAMMIN	NG AND DYNAM	IIC PROGR	RAMMING		9	Per	iods
Geometric P	rogrammir	ng- Polyno	omial – Degro	ee of difficulty- I	Reducing G.	P.P. to a se	et of s	simul	tanec	ous
equations – C	Concepts of	f solving pr	roblems with z	zero difficulty and	one degree o	of difficulty.				
Dynamic Pro	ogramming	g - Bellma	an's principle	of optimality -	Representati	on of a mu	ılti sta	age o	lecisi	on
problem - Co	ncept of su	ıb - Optimi	isation problem	ns – Truss optimiz	zation.					
UNIT – V	NON-TF	RADITION	NAL METHO	ODS (concepts	only)			9	Per	iods
Genetic Algo	orithm – T	erminology	y – Natural L	aw of Evolutions	- Genetic op	perators – st	eps fo	r solı	ution	of
problems. Sir	nulated A1	nnealing –	Algorithm – E	Boltzman's equation	n. 🤍					
ANT Colony	optimizati	ion – Algor	rithm -Travell	ing salesman prob	lem.					
Introduction	to TABU	search – s	sample proble	m. Artificial Neur	ral Network	- Basic con	cepts	– Bi	ologi	cal
systems – App	plication cl	haracteristi	cs – overview	of learning metho	ods.					
Contact Peri	iods:	-								
Lecture: 45	Periods	Tutoria	al: 0 Periods	Practical: 0 Per	riods Total:	: 45 Periods	5			
REFE	RENCES	:								

1	Kirsch.U, "Structural Optimisation: Fundamentals and Applications", Springer-Verlog, 2012.
2	K.Deb, "Optimisation for Engineering Design : Algorithms and examples", Prentice Hall, New Delhi,
	2012
3	J.S.Arora, "Introduction to Optimum Design", McGraw –Hill Book Compan, 2011.
4	Belegundu, A.D.and Chandrapatla, T.R., "Optimisation Concepts and Applications in Engineering",
	Pearson Education, 2011.
5	Rao.S.S, "Optimisation Theory and Applications", New Age International Private Limited Publisher, New
	Delhi, 2002



COURS Upon co	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply fundamental concepts and principles in Optimization.	K2
CO2	Implement the linear programming technique for simple problems.	K3
CO3	Utilize various non-linear programming methods in structural engineering.	K3
CO4	Analyze the Optimization methods by using Geometric and Dynamic programming.	К3
CO5	Attain basic concepts of Non-traditional methods.	K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3	2	2
CO2	2	2	10 10 BY	2	2	2
CO3	2	5 - 2 m	2		2	1
CO4	3	2	2	3	3	2
CO5	2	2	1	2	1	2
<b>23SEPE09</b>	3	2	2	3	3	2
1 - Slight, 2 - Mod	erate, 3 – Sub	stantial	<b>X</b>			

N

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	40	40		-	-	100
CAT2	20	40	40		-	-	100
Individual		82					
Assessment 1 /			~				
Case Study 1/	-	and a start	50	50	-	-	100
Seminar 1/		TO STATE	in some	207			
Project1		-02					
Individual							
Assessment 2 /							
Case Study 2/	-	-	50	50	-	-	100
Seminar 2/							
Project 2							
ESE	20	40	40	-	-	-	100

23SEPE10	)	AD	VANCE	ED CON	CRETE	TECH	NOLOGY				
PREREQU	ISITE	S				CA	TEGORY	L	Т	Р	С
		NIL					PE	3	0	0	3
Course	To a	equire knowledge on t	he prope	erties of	concrete a	and get	exposed to s	pecia	al cor	ncrete	es in
Objectives	orde	to impart the concept	ts of susta	tainabili	y in the fi	eld of c	oncrete				
UNIT – I	INT	RODUCTION							9 Pe	eriod	S
Concrete - U	Inders	anding the quassi-bri	ttle natu	ure of co	oncrete - 1	Failure	of concrete	unde	er lov	w str	ess -
Micro-cracki	ng, cr	ack propagation - stre	ess conc	centratio	n at open	ings –E	Destructive,	semi	-dest	ructiv	ve &
Non-destruct	tive tes	ting methodology - F	Rebound	l hamme	r test - U	ltrasoni	c Pulse Vel	ocity	(UP	V) T	est -
Penetration r	resistar	ce test - Pull-out Test	t - Pull-o	off Meth	od - Breal	k-off te	st - Cover N	leasu	ireme	ent - (	Core
Sampling and	d Testi	ng - Half-cell electric	al potent	tial meth	od - Resis	stivity N	Mapping Pro	blem	ns fac	ed dı	ıring
Non-destruct	ive ev	aluation - Microscopic	: Analysi	sis - XR	D, SEM, 7	ΓEM A	nalysis.				
UNIT – II	ADN	<b>1IXTURES AND PO</b>	LYME	RS					9 Pe	eriod	S
Chemical Ad	lmixtu	res- Mechanism of che	emical ac	ıdmixtur	e – Test fo	or detern	mining optir	num	dosag	ge -E	ffect
on concrete p	propert	y in fresh and hardene	ed state,	Mineral	Admixtu	re- Effe	ct on concre	te pr	opert	y in f	fresh
state and har	rdened	state. Polymers in C	Civil Eng	gineerin	g-Structur	al Plast	tics And Co	mpo	sites-	Poly	ymer
Membranes C	Coatin	gs.			22						
UNIT – III	DUF	ABILITY PROPER	TIES			>>			9 Pe	eriod	S
Permeability	- che	nical attack – Sulphat	te attack	a – Carb	onation - (	Quality	of water – 1	narin	ne con	nditic	ons –
Thermal prop	perties	of concrete – fire resis	stance – 1	method	s of makin	ig durab	ole concrete				
UNIT – IV	SPE	CIAL CONCRETE		STIL.	$\sqrt{N}$				9 Pe	eriod	S
Light weigh	ht co	ncrete, Fiber and H	ybrid Fil	iber re	nforced	concret	e, Polyme	r Co	oncre	te, S	uper
plasticized c	concre	e, Epoxy resins and	d screed	ds for	rehabilitat	tion Fl	y ash and I	High	volu	me fl	yash
concrete, -Hi	igh pe	rformance concrete -	· Self co	ompacti	ng concre	te - Se	lf curing co	oncre	te –	Recy	vcled
aggregate con	ncrete	<ul> <li>Bacterial concrete –</li> </ul>	Nanoco	oncrete							
UNIT – V	SUS	ΓAINABILITY	1			Na			9 Pe	eriod	S
Introduction	- Nee	d for sustainability - (	Concept	t of sust	ainability	- social	l, environme	ental	and	econo	omic
sustainability	v conce	epts. Sustainable devel	lopment	t - Engin	eering for	sustain	able develo	pmer	nt - T	hreat	s for
sustainability	v - Lov	v Impact developmen	t technic	ques-Gr	een materi	ials -Ma	aterial selec	tion	for su	ıstair	able
design			02	200	18 Pm	A					
Contact Peri	iods:	C	S	TE ASIA	62	2					
Lecture: 45	Perio	ls Tutorial: 0 Perio	ods	Pract	ical: 0 Per	riods	Total: 4	4 <u>5 P</u> e	eriod	5	

#### **REFERENCES:**

1	Neville, A.M., "Properties of Concrete", Pitman Publishing Limited, London, 2012.
2	Shetty M.S., "Concrete Technology", S.Chand and Company Ltd. Delhi, 2019.
3	Gambhir.M.L., "Concrete Technology", Tata McGraw Hill, Publishing Co. Ltd New Delhi, 2013.
4	Santhakumar .A.R., "Concrete Technology", Oxford University Press, NewDelhi, 2018
5	Metha P.K. and Montreio P.J.M., "Concrete Structure Properties and Materials", 2 nd edition, Prentice Hall, 203
6	A. M. Neville & J. J. Brooks, "Concrete Technology", 4th Impression, Pearsons Education Ltd, 2010

COUR Upon c	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply the various testing methods of concrete to assess its properties	K2
CO2	Identify and explain the role of admixture and polymers of concrete and their effects on concrete properties	K2
CO3	Produce durable concrete	K2
<b>CO4</b>	Identify a suitable concrete for different structures considering the prevailing conditions	K2
CO5	Implement the concepts and need for sustainability	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	a 2 3	3	2	2
CO2	3 8	3	2.0	3	2	3
CO3	3	3	-2-2	3	2	2
CO4	3	3	3	3	2	3
CO5	3	3	3	3	3	3
23SEPE10	3	3	3	3	3	3
1-Slight, 2-Mod	lerate, 3 – Su	bstantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	-		-	-	100
CAT2	50	50	S - 5	-78	8 -	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1/ Project1	50			C S S S S S S S S S S S S S S S S S S S	<u>}</u>	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	50	50	-	-	-	-	100
ESE	50	50	-	-	-	-	100



<b>41000011</b>
/ <b>SEPELI</b>

#### PLATES AND SHELLS

PREREQUI	SITES	CATEGORY	L	Т	P	С	
	NIL	PE	3	0	0	3	
Course	To impart knowledge on structural behaviour of plate	s under different	boun	dary	cor	nditions	
Objectives	and the membrane theory concept for the analysis of shells.						
UNIT – I LATERALLY LOADED PLATES						riods	
Thin Plates	with Small Defection - Laterally Loaded Thin Plates ·	- Governing Diff	erenti	al E	Iqua	tion -	
Boundary Co	nditions. Rectangular Plates- Simply Supported Rect	angular Plates -	Nav	vier	So	lution	
and Levy's	Method - Plates with Various Edge Conditions. Symm	netrical Bending of	of Ci	rcula	ır Pl	ates -	
Plates on Ela	stic Foundation.						
UNIT – II	NUMERICAL METHODS			Ģ	) Pe	riods	
Finite Differ	ence Method – Isotropic Rectangular plates – Bound	ary Conditions –	All	rour	ıd s	imply	
supported sq	uare plate, clamped square plate and fixed square plate	e subjected to un	iform	nly c	listri	ibuted	
load.	- NOTTY YM						
UNIT – III	ANISOTROPIC PLATES AND THICK PLATES	N 494		9	) Pe	riods	
Orthotropic F	Plates and Grids, Moderately Thick Plates						
UNIT – IV	MEMBRANE THEORY OF SHELLS			9	) Pe	riods	
Classification	of Shells - Types of Shells - Structural Action - Mem	brane Theory - S	hells	of R	levo	lution	
and Shells of	Translation - Examples - Limitations of Membrane Theorem	ory.					
UNIT – V	FOLDED PLATES	1		9	) Pe	riods	
Folded Plate	structures - structural behavior and analysis - Type	s - Design by A	ACI -	AS	SCE	Task	
Committee method.							
<b>Contact Peri</b>	ods:						
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Period	ls Total: 45 Per	iods				
REFERE	NCES:						

#### **REFERENCES:**

1	Szilard, R., "Theories and Applications of Plate Analysis", Wiley India Pvt. Ltd., 2014.
2	Timoshenko, S. and Krieger S.W. "Theory of Plates and Shells", McGraw Hill Book Company, 1990.
3	Wilhelm Fluegge, <b>"Stresses in shells"</b> , Springer – Verlag, 1988.
4	Ramasamy, G.S., "Design and Construction of Concrete Shells Roofs", CBS Publishers, 2005.

COUF Upon o	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyse the plates subjected to lateral load.	K2
CO2	Carry out numerical analysis on plates with various boundary conditions.	K2
CO3	Evaluate the behaviour of the anisotropic plates and thick plates.	K2
CO4	Perform analysis of shells using membrane theory.	K2
CO5	Carry out analysis and design of folded plates.	K2

COURSE A	COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	-	2	3	1	1		
CO2	2	-	2	3	1	1		
CO3	2	-	2	3	1	1		
CO4	2	-	2	3	1	1		
CO5	2	-	2	3	1	1		
23SEPE11	2	-	2	3	1	1		
1 - Slight, 2 -	– Moderate, 3	- Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	States and	_	-	100
CAT2	40	40	20	201-1	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	40	40	20	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	40	40	20	-	-	100
ESE	40	40	20		-	-	100



23SEPE12

#### FRACTURE MECHANICS

PREREQUISITES     CATEGORY     L							
		NIL	PE	3	0	0	3
Cour	rse 🗍	To learn about the development of fatigue crack and	crack growth und	ler e	lastic	& el	asto
Object	tives   p	plastic conditions and to familiarize the principle of cr	ack arrest along v	vith 1	the m	ethod	ls to
	Ċ	letermine fracture parameters.					
UNIT	-I I	NTRODUCTION TO FRACTURE MECHANICS			9 P	'eriod	ls
Modes	of fract	ure failure, The Griffith energy Balance Approach – Cra	ck tip Plasticity –	Fract	ture to	oughn	iess
UNIT ·	-II	LINEAR ELASTIC FRACTURE MECHANICS			9 P	eriod	ls
Elastic	crack t	ip stress field - Stress and displacement fields in isotro	opic elastic materi	als –	West	ergaa	ırd's
approa	ch– Pla	ne Strain Fracture toughness (KIC) testing - Fedderser	n approach, R cur	ve, E	nergy	/ relea	ased
rate of	DCB sp	becimen – An elastic deformation at crack tip – $K_{1c}$ Tes	st technique, Vario	ous te	st spe	cime	ns –
critical	energy	rate					
UNIT	UNIT – III ELASTIC PLASTIC FRACTURE MECHANICS						
Limitat	tion of I	K approach- Approximate shape and size of plastic zo	one- Effective crac	ck lei	ngth-	Effec	et of
plate th	nickness	- Elastic plastic fracture concept - Crack tip opening	g displacement – I	Dugd	ale ap	proa	ch –
Path in	depend	ence, critical J integral - Evaluation of CTOD- relatio	nship between CT	OD,	$K_1$ at	nd G	1 for
small s	cale yie	lding	e la compañía de la compa				
UNIT	- IV	FATIGUE CRACK GROWTH			9 P	eriod	ls
Fatigue	e crack	growth, SN Curve -J _{1c} Mechanism of Fatigue, Fatigue	crack propagation	ı- Pai	ris La	w- C	rack
closure	mecha	nism- Residual stresses at crack tip - Retardation ef	fect fatigue crack	grov	wth te	est, st	tress
intensi	ty factor	, factors affecting stress intensity factor	11				
UNIT	- V	CRACK ARREST & NUMERICAL METHODS			9 P	eriod	ls
Princip	les of c	rack arrest, crack arrest in practice-R curves, Crack rea	sistance curve, Nu	merio	cal M	ethoc	ls in
fracture	e Mech	anics, Direct methods to determine fracture paramet	ers - Indirect me	thods	s to o	deterr	nine
fracture	e param	eters 0					
Conta	ct Perio	ds:	V.a.				
Lectur	re: 45 P	eriods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Perio	ods			
RE	FEREN	(CES:					
Stanle	ey T. Ro	Ife and John M. Barsom & "Fracture and Fatigue C	ontrol in Structu	res: 1	Appli	cation	ns of
Fract	ure Mee	chanics", Prentice Hall Inc, USA, 1987.	D 11:1	011			
Davia	l Broek,	"Elementary Engineering Fracture Mechanics", Sprin	iger Publishers, 20	$\frac{107}{107}$			
Knott	J.F., <b>"I</b>	fundamental of Fracture Mechanics", Butterworth & (	o Publishers Ltd,	1976.			
Sures	n S., <b>"F</b>	atigue of materials", Cambridge India, 2015.		1.1. 1		005	
B, Ka	rinaloo,	"Fracture Mechanics and Structural Concrete", Long	man Scientific Pul	plishe	ers, 1	993.	T / 1
Simha	IK.K.Y.	, "Fracture Mechanics for Modern Engineering da	esign", University	, Pre	ess (II	iaia)	Ltd,
Hyder	rabad, 2	001.					

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Identify the modes of fracture and suitable theories of failures for structural materials	K2
	with pre existing cracks	
CO2	Measure crack tip stress and displacement fields using the principles of Linear Elastic	K3
	Fracture Mechanics	
CO3	Implement the Elastic Plastic Fracture Mechanics approach to determine the parameters	K3
	of crack development	
CO4	Predict the rate of Fatigue Crack Growth and influencing factors in crack propagation.	K3

CO5 Choose the methods to Crack Arrest and Numerical methods to determine fracture parameters

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	2	1	2	1			
CO2	3	-	2	1	2	1			
CO3	3	-	2	1	2	1			
CO4	3	-	2	1	2	1			
CO5	3	-	2	1	2	1			
23SEPE12	3	-	2	1	2	1			
1 - Slight, 2 - Mod	1 - Slight, 2 – Moderate, 3 – Substantial								

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*		N Jack		22111				
CAT1	30	40	30		-	-	100	
CAT2	30	40	30	-	-	-	100	
Individual	-	30	30	40	-	-	100	
Assessment 1 /				宋 //				
Case Study 1/								
Seminar 1 /			SWAN	1 1 1				
Project1								
Individual	-	30	30	40	-	-	100	
Assessment 2 /		0 8						
Case Study 2/				N S				
Seminar 2 /		AL IN						
Project 2		X AL			5			
ESE	30	40	30	22	-	-	100	

#### DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURES

PREREQUI	SITES	CATEGORY	L	Т	Р	C	
	NIL	PE	3	0	0	3	
Course	To impart the knowledge on the design principles	and steps of compo	osite l	beam	s, flo	oors,	
Objectives	columns, truss and its connections and to learn the	concept of compos	site a	ction	betw	veen	
	structural steel and concrete in composite structures.						
UNIT – I	INTRODUCTION			9	Perio	ods	
Theory of C	Theory of Composite Structures - Modular Ratio and Transformed section - Composite Action - No						
interaction &	2 Partial Interaction - Full interaction - Effect of Slip of	on stress & deflectio	n– St	ress 1	Block	<u> </u>	
Ultimate mor	ment Capacity.						
Codal Provis	ions for Steel Concrete Composite Design						
UNIT – II	COMPOSITE BEAMS			9	Peric	ods	
Introduction	to Composite beams - Ultimate Moment behaviour - She	ar connectors types a	and lo	ad tra	nsfer	ring	
mechanism -	- Profiled decking – Design consideration for simply sup	ported and continuor	us cor	nposi	te be	ams	
with and with	nout profile deck – Design examples	200					
UNIT – III	COMPOSITE FLOORS	101		9	Perio	ods	
Introduction	to composite floors – Shear transferring mechanism in pro	ofile deck system – B	endin	g resi	stanc	e of	
Composite fl	oor slabs Design consideration of composite floors -	Design examples					
UNIT – IV	COMPOSITE COLUMNS	77		9	Perio	ods	
Introduction	to composite columns- Resistance to axial compressio	n of encased compo	site c	olum	n cro	oss	
section and	infilled composite column cross section- Design consi	deration of both en	cased	and	infill	ed	
composite co	lumn under axial compression, uniaxial bending and biax	ial bending- Design e	examp	les.			
UNIT – V	COMPOSITE TRUSSES AND CONNECTIONS			9	Perio	ods	
Introduction	of Composite Truss -Design consideration - Stud Speci	fications – Load Cale	culatio	ons –	Desi	gn	
of composit	e truss. Composite connections- Complexities of Co	mposite Connection	is and	d its	desi	gn	
Philosophies	- Force flow in the joint. Case studies on steel concrete c	omposite construction	ns.				
Contact Per	iods:	V.G.					
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0	Periods Tot	al: 45	5 Peri	iods		
REF	ERENCES:						
1 Johnson	R.P., "Composite Structures of Steel and Concrete: Bed	ims, Slabs, Columns	s, and	l Fra	mes f	for	
Buildings	s", Wiley-Blackwell Publishers, 2004.						

2 Deric Oehlers, Mark A. Bradford., "Elementary Behaviour of Composite Steel and Concrete Structural Members", CRC Publishers, 1999.

3 Workshop on "Steel –Concrete Composite Structures", conducted at Anna University, Chennai, 2000

4 IS 11384 -1985, "Code of Practice for Composite Construction in Structural Steel and Concrete".

5 *Euro Code 4, "Design of composite steel and concrete structures"* 

6 BS 5950-3.1, "Structural use of steelwork in building - Part 3: Design in composite construction".

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon con	npletion of the course, the students will be able to:	Mapped
CO1	Determine the ultimate load carrying capacity of composite structures	K2
CO2	Perform analysis and design a composite beams with or without profile decking sheet	K3
CO3	Design a composite slab with the provision of profile decking	K3
CO4	Assess the load carrying capacity and perform design of composite columns	K3
	subjected to axial compression and bending	
CO5	Carry out design of composite truss and its connections	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	-	3	1	2	1				
CO2	2	7	3	1	2	1				
CO3	2		3	PUR I	2	1				
CO4	2	1000	6m 03-1100		2	1				
CO5	2	のない	103-4		2	1				
23SEPE13	2		3	1	2	1				
1 - Slight, 2 – Moderate, 3 - Substantial										

1

	-		AW/2				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	40	40		-	-	100
CAT2	20	40	40	-	-	-	100
Individual	-	A - 12	50	50	-	-	100
Assessment 1 /		484		80			
Case Study 1/		(Elle					
Seminar 1 /		94757	10 m	alive			
Project1		1.15×21	10 0000	ATT A			
Individual	-	-0-	50	50	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	40	40	-	-	-	100

23SEPE14	SEPE14 MAINTENANCE AND REHABILITATION OF STRUCTURES								
PREREQUIS	ITF	ES	CATEGORY	L	Т	P	С		
		NIL	PE	3	0	0	3		
Course	T	o induce an exposure on repair, rehabilitation and stren	ngthening techniqu	les fo	r dam	naged	and		
Objectives	ex	isting structures.							
UNIT – I	M	AINTENANCE AND REPAIR STRATEGIES			9	Perio	ds		
Maintenance –	Re	pair and Rehabilitation - Retrofit and Strengthening -	<ul> <li>Facets of Mainte</li> </ul>	enance	e – In	nporta	ance		
of Maintenanc	e –	Various aspects Inspection - Assessment procedure	for evaluating a	lamaş	ged st	tructu	re –		
Structural Audit – Causes of deterioration – Diagnosis of Causes and Preventive measures.									
UNIT – II         SERVICEABILITY AND DURABILITY OF CONCRETE         9 Periods									
Quality assura	nce	for concrete construction - Factors affecting concret	te properties – Str	ength	, peri	neabi	lity,		
thermal prope	rtie	s - Effects due to climate, temperature, chemicals	s, aggressive env	ronm	ent,	wear	and		
erosion – Typ	es o	of cracks – Causes and effects of cracks – Corrosion	n mechanism – C	auses	and	effect	is of		
corrosion – Co	ver	thickness requirements.							
UNIT – III	R	EPAIR MATERIALS AND SPECIAL CONCRET	Ъ.		9	Perio	ds		
Repair materia	ls –	- Strategy and Selection - Special Mortars and Concr	etes – Polymer Co	ncret	e and	Mort	tar –		
Concrete Chen	nica	lls – Quick setting compounds – Grouting Materials –	Bonding Agents -	- Prot	ective	e coat	ings		
– FRP Sheets.			<u></u>						
UNIT – IV	R	EPAIR TECHNIQUES AND DEMOLITION	//		9	Perio	ds		
Rust eliminato	ors -	- Methods of corrosion protection: Corrosion inhibi	tors and cathodic	prote	ection	1 - C	rack		
repair techniq	ues	- Vacuum concreting - Guniting and Shotcretin	g – Epoxy injec	tion -	- Sho	oring	and		
underpinning -	- Er	igineered demolition techniques for dilapidated struct	ures – Case studie	3.					
UNIT – V	R	EHABILITATION AND STRENGTHENING TEC	CHNIQUES		9	Perio	ds		
Repairs to ov	erc	ome deflection, cracking, chemical disruption, wea	athering, wear, fi	re, le	akage	e, ma	rine		
exposure – Str	eng	thening of Super Structures - Jacketing - Reinforce	ment addition, Pla	ating,	Conv	versio	n to		
composite con	stru	ction - Post stressing - Strengthening of substructure	es – Case studies.						
Contact Perio	ds:	8881 NW	2938						
Lecture: 45 P	Peri	ods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Perio	ds					

**REFERENCES:** 

1	Bhattacharjee J "Concrete Structures Repair, Rehabilitation and Retrofitting", CBS Publishers and
	Distributors, 2020.
2	CPWD "Handbook on Repair and Rehabilitation of RCC Buildings", CPWD, Govt. of India, New Delhi,
	2014.
3	Peter H. Emmons "Concrete Repair And Maintenance Illustrated", RS Means, 1994.
4	R.T.Allen and S.C.Edwards, "Repair Of Concrete Structures", CRC Press, 2019.
5	P.C Varghese "Maintenance, Repair & Rehabilitation & Minor Works of Buildings", PHI Learning
	Private Limited, Delhi, 2014.
6	Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance And Repair",
	Longman Scientific and Technical UK, 1991.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Inspect the condition of the damages structures to perform structural audit.	K2
CO2	Identify issues addressed in structures due to lack of durability.	K2
CO3	Select a suitable repair material & retrofit technique for damaged structures.	K3
CO4	Apply the appropriate demolition technique for damaged structure.	K3
CO5	Choose an appropriate strengthening technique for deteriorated structures.	K3

CO /DO	DOI	DOA	DOA	DO 4		DO
COs/POs	POI	PO2	PO3	PO4	P05	PO6
CO1	2	1	3	1	-	1
CO2	2	1000	3	2	-	1
CO3	2		3	2	-	1
CO4	2	and Panes	3	2	-	1
CO5	2	555	3 0	2	-	1
23SEPE14	2		3	2	-	1
1 - Slight, 2 - Mode	erate, 3 – Subs	stantial				

August 1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	40		-	-	100
CAT2	20	40	40	-	-	-	100
Individual	10	40	50	N/a	-	-	100
Assessment 1 /	8	B AN		2008			
Case Study 1/	2			100			
Seminar 1 /	1	Quant		10000			
Project1		The second	Ser. B.				
Individual	10	40	50		-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	40	40	-	-	-	100

23SEPE15 PREFABRICATED STRUCTURES											
PREREQU	ISITE	S				CATE	GORY	L	Т	Р	С
			NIL			P	E	3	0	0	3
Course	To in	npart kno	wledge on eleme	ents of pr	efabricated structu	res and its	s constru	ction			
Objectives		-	-	-							
UNIT – I	INTF	RODUC	TION AND DES	SIGN PF	RINCIPLES				9	) Peri	iods
Comparison	with r	monolith	ic construction –	Types of	of prefabrication –	site and	plant pre	efabri	icatio	on - s	pecific
requirements	s for p	lanning	and layout of pre	efabricati	on plant-IS Code	specificati	ions. Mo	dula	r co-o	ordin	ation –
Components	- Pr	efabrica	tion systems and	d struct	ural schemes - ]	Design co	onsiderat	ions	- E	cono	my of
prefabricatio	n- asse	essment	of handling and e	rection s	paces.						
UNIT – II	PRE	EECAST	CONCRETE F	LOOR	AND BEAMS				9	Peri	iods
Types of con	nposite	es - non	composite - reinf	orced be	am - pre stressed b	beam - des	sign-deta	iling.	Prec	cast f	looring
options-floor	ring ar	rangeme	nts-design of indi	ividual u	nits-design of com	posite floo	ors - Roo	f par	nels.		
UNIT – III	PRE	ECAST	CONCRETE CO	DLUMN	AND WALLS				9	) Peri	iods
Precast colu	mn des	sign, Tyj	pes of wall panels	s - Block	s and large panels-	- Curtain-	Partition	-loa	d bea	aring	walls -
precast shear	r walls	- footin	gs.	- 0.0	Sen BULLIND	<u> </u>					
UNIT - IV	JOI	NTS AN	D CONNECTIC	DNS	JURIA CA				9	P Peri	iods
Basic mech	anısm-	-compres	sion joint-shear	joint -	tension joint. Pir	1 jointed	connect	on-n	nome	ent re	esisting
connections-	· beam	to colu	mn- column to fo	oundatio	n connections- wa	ill to wall	panel c	onne	ction	· - Et	fective
sealing of jo	oints fo	or water	proofing – Provi	isions fo	r non-structural fa	stenings -	- Expans	sion j	oints	s in p	ore-cast
construction				TDICT							• •
$\frac{\mathbf{UNII} - \mathbf{V}}{\mathbf{Chains of } \mathbf{r}}$	PRO		ION AND HOIS	TING 1	ECHNOLOGY	ind much	:1		9	Per	iods
choice of p	otur	Storage	p – Manufacturi	ing metr	ious – Stationary	and mod	arction of		n — .	Plant	ling of
Equipments	for ho	Storage	of precast element	abniques	for graction of d	lifferent t	mas of r	n coi		e naro lika 1	Booms
Slabe Wall	non no nonels	and Col	10  election = 10	ifting pa	de	interent ty	pes of f	пени			Deams,
Contact Per	vinds.			nung pa	us.						
Lecture: 45	Perio	de	Tutorial: A Perio	ada	Practical: 0 Per	iods	Total· 4	5 Pe	rinde	8	
Letture. 45	1 (110)	us	Tutoriai. O Terre	Jus	Tractical. 01 cl	Ious	10tai	510	Tious	3	
REFER	RENCI	ES:									
	. Mokk	k. <b>"Prefa</b>	bricated Concret	te for Inc	dustrial and Publi	c Structur	res". Pul	lishi	ng H	ouse	7
0	f the H	Jungaria	n Academv of Scie	ences, Bi	udapest, 2007.	74	,		8		
$\frac{3}{2}$ K	M EL	liott "P	recast concrete st	ructures	" Butterworth He	inmann 2	002				_
	tructur	ral Desi	m Manual " <b>Proc</b>	rast Con	crete Connection	Dotails"	Society	for th	o Sti	idies	-
	the us	se of Pra	ecast Concrete N	etherlan	d Retor Verlag 21	Denuis , 109	Society j	01 11		iaics	
	anosa	n and L	atha <b>"Profabrica</b>	tad stru	ctures" Sree Kam	alamani i	Publicati	one	Char	nnai	_
	014	n unu Li	<i>ипа, <b>Пејио</b>пси</i>	ucu sii u	ciures, sree Rum	инитит 1	uoncun	ons,	Cher	mai,	
	<i>.</i>										
COU	RSE (		MES:						Bloo	m's	7
								Т	9300	in s Iomv	
Unon	compl	letion of	the course. the st	udents w	vill be able to:				Man	ped	
	Annl	ly the pr	inciple of fabricat	tion in th	e design of structu	res		+	K'	2	-
$CO^2$	Plan	. analyze	and design the n	refabrica	ted floor and bean	n element		+	K	3	-
CO3	Plan	, analvze	and design the p	refabrica	ated concrete colum	nn and wa	11.	+	K	3	-

K3

K2

Design the joints of prefabricated structures..

Perform the production and erection process in the design of prefabricated

CO4

CO5

elements.

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	1	2	3	2	2					
CO2	3	2	1	2	2	2					
CO3	3	2	2	1	2	1					
CO4	3	2	2	3	3	2					
CO5	3	2	1	2	1	2					
23SEPE15	3	2	2	3	3	2					
1 – Slight, 2 – Mode	erate, 3 – Subst	tantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	20	40	40		-	-	100
CAT2	20	40	40	- 35	-	-	100
Individual Assessment 1 /	-		50	50	-	-	100
Case Study 1/							
Seminar 1 /			$\mathbb{W}$	11			
Project1		1 010					
Individual	-	8 - 1	50	50	-	-	100
Assessment 2 /		1 69	-				
Case Study 2/		A A		A			
Seminar 2 /		846		1008			
Project 2				200			
ESE	20	40	40		-	-	100

	23SEPE16	5		C	ORROSIO	N IN RE	EINFORC	CED CO	ONCRETE ELE	'MEN	TS		
PF	REREQUIS	SITE	ES						CATEGORY	L	Τ	Р	С
				N	IL				PE	3	0	0	3
•	Course	То	underst	and the l	basics of co	orrosion	mechanis	m, cor	rosion losses du	e to v	ariou	s exte	ernal
0	bjectives	fact	ors, the	testing m	nethods of c	orrosion	in concre	te and	the methods of co	orrosic	on pre	ventio	on in
		rein	forced	concrete									
U	NIT – I	CO	RROSI	ION FUN	DAMENT	TALS					9 P	eriod	s
Ge	eneral, Cor	rosic	on Meel	hanisms	in concrete	e, Types	– Carbo	nation,	Chlorination, st	ray c	urrent	indu	iced,
Hy	drogen em	britt	lement,	Stress co	orrosion, Ox	xidation,	Electroch	nemical	aspects, corrosio	on kin	etics,	corre	osion
inc	luced degra	adatio	on in co	oncrete, E	nvironmenta	al Expos	sures.						
U	II – TIN	CO	RROSI	ION PRO	DCESS						9 P	eriod	S
D	iffusion, Pe	erme	ation, N	Aigration	and Porosit	ty, Conc	rete Resis	tivity,	Corrosion Therm	odyna	mics,	Initia	ation
an	d Propagat	ion c	of Corro	osion, Pas	ssivation an	id Re-pa	ssivation	of Stee	el, Electrochemic	al Pol	arizat	ion, 7	Fafel
Ex	trapolation	, EM	IF series	s, Corrosi	on Products	5	ma						
U	NIT – III	CO	RROSI	ION DIA	GNOSIS &	& TEST	ING 💫	_			9 P	eriod	S
Im	portance,	Insp	ection	and Con	ndition As	sessmen	t, Classif	ication	materials and	spec	imens	s, sur	rface
pre	eparation, e	expo	sure tec	hniques,	duration, p	lanned	interval te	sts, El	ectrochemical In	specti	on Te	:chnic	ques,
Ha	alf Cell Pot	entia	I Mappi	ing, Resi	stivity Meas	surement	ts, Corrosi	ion Mo	nitoring Techniq	ues, N	ACE	Meth	10ds,
Se	rvice Life I	Predi	ction, N	DTs.		LEOD	CONCRE		<u></u>		<u> </u>		
	$\frac{\mathbf{N}\mathbf{\Gamma} - \mathbf{I}\mathbf{V}}{\mathbf{V} + \mathbf{I} + \mathbf{I}}$	<u> </u>	RROSI	ION PRO		N FOR C		TE	1.0		<u>9 P</u>	eriod	1.
	aterial sele	ctior	i, concr	rete man	ufacturing,	design	and curin	ig, Spe	cial Concretes,	cathoo	11c ai	nd an	lodic
pro	otection, C	oatin	gs (met	tallic, ino	rganic, non	-metallic	c and orga	anic), S	urface treatment	s, Cor	rosioi	n resis	stant
rei	niorcemen	t, Ad	mixture	es.				ITO			<u> </u>	<u> </u>	
	NII – V		RRUSI	Correction			RONMEN	NIS Steel	in Comenta (	7	9 P	eriod	lS Votor
	mospheric iarabialagi	Cor	Tosion,	d Corrosi	on in Soli	is, Corr	osion of	Steel	in Concrete, C	JOITOS	10n 1	n w	ater,
	ntaat Dari		mauced	u Corrosi	on - Case si	uules.		-					
	onturo: 45	OUS. Dori	iode	Tutoria	I. A Poriod	la Dra	atical: 0 I	Dorioda	Total: 15 Por	iode			
	ecture. 43	I CI	lous	Tutoria		15 114		cilous	5 10tai. 45 i ci	lous			
	REFERE	INCI	ES:	2									
1	Mars G. I	Fonte	ana. "(	Corrosion	Engineeri	ing". Th	hird Editi	on. Th	irteenth Reprint	. Tata	ı Mc-	Grau	v Hill
	Education	Prive	ate Limi	ited, New	Delhi, 2012	2.	ALC R	57	A I				
2	Amir Pour	saee	, "Corr	osion of	Steel in Co	oncrete	Structures	s", Wo	odHead Publishi	ng sei	ries in	n Civi	il and
	Structural .	Engi	neering	, 2016.						C			
3	Jones, D.A	. "Pı	rinciples	s and Pre	evention of	Corrosia	on", 2nd E	Edition,	Macmillan Publi	ishing	Со.,	1995.	
4	Balasubrai	mani	an, M.I	R., Krisk	hnamoorthy,	, S. an	d Muruge	esan,	V., <b>"Engineerin</b>	g Ch	emist	ry", .	Allied
	Publisher I	Limit	ed., Che	ennai, 19	93.		0			-			
5	Sadasivam	, V.	"Mode	ern Engi	ineering Cl	hemistry	, - A Sin	nplified	ł Approach", K	amak	va Pi	ublica	itions,
	Chennai, 1	999		5	-								

6 *Kuriakose, J.C. and Rajaram J.* "Chemistry in Engineering and Technology", Vol. I and II, Tata McGraw-Hill Publications Co. Ltd., New Delhi, 1996.

COURSE OUTCOMES:		Bloom's
		Taxonomy
Upon completion of the course, the students will be able to:		Mapped
CO1	Apply the fundamental science involved in the corrosion process	K2
CO2	Identify the causes and mechanism of corrosion in concrete	K2
CO3	Diagnose the extent of deterioration due to corrosion	K2
CO4	Implement the prevention techniques available for reinforcement corrosion	K2
-----	---------------------------------------------------------------------------	----
CO5	Examine the influence of environment on corrosion process	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	3	3	3	2			
CO2	3	3	3	3	3	2			
CO3	3	3	3	3	3	2			
CO4	3	3	3	3	3	3			
CO5	3	3	3	3	3	2			
23SEPE16	3	3	3	3	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	50	50	ALL 10 8	SHEPT N			100		
CAT2	50	50		al VI			100		
Individual	50	50		X			100		
Assessment 1 /									
Case Study 1/			G	r //					
Seminar 1 /		12 2							
Project1									
Individual	50	50	W2V				100		
Assessment 2 /				11					
Case Study 2/		1 8 1							
Seminar 2 /		8							
Project 2		1 9		N.					
ESE	50	50					100		
ESE	50	50					100		

23SEPE17		OFFSHORE STRUCTURES						
PREREQUISITES CATEGORY L								С
		NIL		PE	3	0	0	3
Course	To impar	To impart knowledge on analysis and design of offshore structures under						•
Objectives	environm	ental conditions.						
UNIT – I	WAVE 7	THEORIES				9	Peri	ods
Wave generati	ion proces	s, small and finite amplit	ude wave theor	ries.				
UNIT – II	FORCE	S OF OFFSHORE ST	RUCTURES			9	Peri	ods
Wind forces,	wave for	ces on vertical, inclined	l cylinders, str	uctures - current	force	es an	d use	e of
Morison equat	tion							
UNIT – III	OFFSH	ORE SOIL AND STRU	UCTURE MO	DELING		9	Peri	ods
Different type	s of offshc	ore structures, foundation	n modeling, stru	ctural modeling.				
UNIT – IV	ANALY	SIS OF OFFSHORE S	STRUCTURE	S		9	Peri	ods
Static method	of analysi	s, foundation analysis an	d dynamics of	offshore structures				
UNIT – V DESIGN OF OFFSHORE STRUCTURES					9	Peri	ods	
Design of platforms, helipads, Jacket tower and mooring cables and pipe lines.								
Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								
REFERENCES :								

# **REFERENCES**:

1	Chakrabarti, S.K. "Hydrodynamics of Offshore Structures", Computational Mechanics						
	Publications, 1987.						
2	Thomas H. Dawson, "Offshore Structural Engineering", Prentice Hall Inc Englewood Cliffs,						
	N.J. 1983						
3	API, Recommended Practice for Planning, "Designing And Constructing Fixed Offshore Plat-						
	Forms", American Petroleum Institute Publication, RP2A, Dalls, Tex.						
4	Reddy, D.V. and Arockiasamy, M., "Offshore Structures", Vol.1, Krieger Publishing Com-						
	pany, Malabar, Florida, 1991.						
5	Brebia, C.A.Walker, S., "Dynamic Analysis Of Offshore Structures", Newnes Butterworths,						
	U.K. 1979.						
	100 BBC 201						

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon c	ompletion of the course, the students will be able to:	Mapped		
C01	Choose appropriate wave theory for small and finite amplitude waves	K2		
CO2	Calculate member forces acting on off shore structures.	К3		
CO3	Formulate the structural and foundation modeling of offshore structures.	К3		
CO4	Perform different analysis of Offshore platform.	K3		
CO5	Design various components of offshore structures.	K3		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	2	2	2	3			
CO2	2	-	-	2	-	2			
CO3	2	-	2	3	1	2			
CO4	2	-	1	2	2	3			
CO5	2	-	1	3	2	3			
23SEPE17	2	-	2	3	2	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

Test / Bloom's	Remembering	Understanding				ASSESSMENT PATTERN – THEORY									
		Understanding	Applying	Analyzing	Evaluating	Creating	Total								
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%								
CAT1	40	40	20				100								
CAT2	30	50	20				100								
Individual	20	40	40	Sur V			100								
Assessment 1 /		WERE													
Case Study 1/		( and	ALVE												
Seminar 1 /															
Project1	1.0		- C.S.	• 77											
Individual	20	40	40				100								
Assessment 2 /															
Case Study 2/															
Seminar 2 /		1 18		11											
Project 2		1 8 2													
ESE	40	40	20				100								
	á	XX													



23SEPE18	E18 EARTHQUAKE RESISTANT DESIGN OF STRUCTURES							
PREREQUI	SITES	CATEGORY	L	Т	P	С		
	NIL	PE	3	0	0	3		
Course	Course To get exposure in to effect of earthquakes, analysis and design of earthquake resistant							
Objectives	Structures							
UNIT – I	INTRODUCTION				9 Pe	riods		
Elements of	engineering seismology – causes of earthquakes,	seismic waves, ma	gnitu	de, i	ntens	ity and		
energy releas	e – Indian seismology –Earthquake history – Seisn	nic zone Map of li	1d1a ·	- seis	smog	raphs –		
seismogram -	- accelerograph – strong motion characteristics- init	lation into vibration	OI SI	ructu	ires.			
UNIT – II	METHODS OF SEISMIC ANALYSIS				9 Pe	riods		
Introduction	to methods of seismic analysis – Equivalent stati	c analysis IS 1893	pro	V1S10	ns –	Design		
norizontal se	ismic coefficient – design base shear – distribution	on – idealization	DI DU	111din	g fra	mes -		
	sis and modeling – determination of lateral forces	er analysis math	emat	ical i	ce mo	ling of		
multistorev R	C Building	ci allarysis - illatii	cinat		moue	ing of		
	IS CODE PROVISIONS	1977			0 Do	miada		
Model respo	as contribution model participation factor	response history	c <b>n</b>	actrol	916	lucio		
approximate	methods for lateral load analysis $=$ IS 1893 provis	response instory	– sp zisior	s – ł	r ana rehav	ior and		
design of m	asonry structures – discussion of codes IS 1	3827 and 13828.	Duc	tile	detail	ing of		
reinforcemen	t in RC Buildings as per IS 13920		2					
UNIT – IV	SEISMIC DESIGN CONCEPTS				9 Pe	riods		
Concept of e	arthquake resistant design – concept of ductility -	- lateral force resis	ting	svste	$\frac{1}{ms}$ –	strong		
column weak	beam concept - guidelines for seismic resistant cor	struction - beam co	olumi	ı join	its –e	ffect of		
structural irre	gularities – cyclic load behavior of RC, steel and pr	estressed concrete of	eleme	ents -	- Eart	hquake		
Resistant Des	ign for multi storey RC frames, shear wall, braced f	rames– capacity ba	sed d	esigr	ı.	-		
UNIT – V	SPECIAL PROBLEMS AND MODERN CONC	CEPTS			9 Pe	riods		
Soil perform	ance - Liquefaction -Modern concepts - base	isolation – adapti	ve s	ysten	n – s	seismic		
evaluation- re	evaluation- retrofitting and strengthening of structures – seismic retrofitting strategies.							
Computer Aided Analysis and Design: (For internal assessment only - not for theory examination)								
computer aided analysis and design of building systems for earthquake loads - response spectrum - time								
history analysis – capacity based design – hands on session using computer software.								
Contact Peri	Contact Periods:							
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 Per	riods					
DFFF	DENCES.							
KEFE	NENCES:							

1	ChopraAK, "Dynamics of Structure s-Theory and Applications to Earthquake
	Engineering", Prentice-Hall of India Pvt. Ltd., NewDelhi, 2007.
2	Pankaj Agarwal and ManishShrikhande, "Earthquake Resistant Design of Structures",
	Prentice–Hall of India Pvt.Ltd., NewDelhi–110 001,2006.
3	CloughRW and Penzien J, "Dynamics of Structures", McGraw Hill, INC, 1993.
4	TaranathBS, "Wind and Earthquake Resistant Buildings –structural Analysis &
	Design", Marcell Decker, NewYork, 2005.
5	Chen WF& Scawthorn, "Earthquake Engineering Handbook", CRC Press, 2003.

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	pletion of the course, the students will be able to:	Mapped
CO1	Value the causes of earthquake and its measurement.	K3
CO2	Analyze the structure for lateral loads.	K2
CO3	Implement the codal provisions for earthquake resistant design & detailing	К3
CO4	Apply the concepts of earthquake resistant design.	K3
CO5	Utilize the modern concepts on strengthening and retrofitting of structures	K3
	affected due to earthquake.	

### COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	2	1	1	2		
CO2	2	2	2	3	2	2		
CO3	2	3	2	2	3	2		
CO4	3	2	2	3	2	2		
CO5	2	デー2 ビリ	2	3	3	3		
23SEPE18	3	3	2	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

# ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40		-	-	100
CAT2	20	40	40	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-		50	50	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-		50	50	-	-	100
ESE	20	40	40	-	-	-	100

23SEPE19	SUBSTRUCTURE DESIGN							
PREREQUISI	TE	8	CATEGORY	L	T	Р	C	
NIL			РЕ	3	0	0	3	
Course	Te	o discuss and evaluate the feasibility of foundation so	lutions to differe	ent typ	pes c	of so	oil	
Objectives	cc	conditions considering the time effect on soil behavior.						
UNIT – I	I	INTRODUCTION 9 Periods						
Design of soil in	nve	stigation report for design of foundation structure –Typ	es – Selection of	found	ation	–Ba	isic	
requirement of	fou	ndation-Computation of loads-General principle of des	ign of reinforced	concr	ete s	hall	ow	
and deep found	atic	n.						
UNIT – II	D	ESIGN OF SHALLOW FOUNDATION			9 Pe	riod	S	
Shallow founda	itio	n - bearing capacity of footings - floating raft - Capa	city of footing –	Beams	s on	Ela	stic	
foundation – De	esig	n of raft and buoyancy-Rafts and basement design.						
UNIT – III	D	ESIGN OF DEEP FOUNDATION		9	9 Pe	riod	S	
Deep foundatio	n—l	Load carrying capacity of different types of piles	and detailing	of rei	nfor	cem	ent	
according to IS	29	1- Design of pile caps- Uplift capacity of piles-Latera	pile load test.					
UNIT – IV	F	OUNDATION FOR BRIDGES AND MACHINES	/	9	9 Pe	riod	S	
Foundation for	bı	idges- Well and caisson foundation- Design of pie	er cap - Design	of p	ier–(	Gene	eral	
principles, plan	nin	g and design of machine foundation.	>					
UNIT – V	T	OWER FOUNDATIONS		9	9 Pe	riod	S	
Introduction-De	esig	n of foundation for towers-forces on tower foun	dation –General	desig	gn c	riter	ria-	
Structural desig	n o	f supports for foundation excavation-Design of ground	anchors.					
<b>Contact Period</b>	ls :							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								
			2					
REFEREN	CE	s AN K. N.	<u>.</u>					
1 Swami	Car	an "Analysis and Design of Substructures" Orfore	& IBH Publish	ina (	omn	ann	٦	

	Swami Saran, "Analysis and Design of Substructures", Oxford & IBH Publishing Company
	Private Limited, 2009.
2	Bowels J. E, "Foundation Analysis and Design", McGraw-Hill International Book Co, 2007.
3	Thomlinson, M.J. and Boorman. R., "Foundation Design and Construction", ELBS Longman VI
	edition, 2005.
4	Nayak, N.V., "Foundation Design manual for Practicing Engineers", Dhanpat Rai and Sons,
	2009.
5	Winterkorn H.F., and Fang H.Y., "Foundation Engineering Hand Book", Van Nostrard-
	Reinhold -2004.
6	BrajaM. Das, "Principles of Foundations Engineering", Thomson Asia(P) Ltd-2009.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Interpret subsurface information and to identify a suitable foundation system	K3
	for a structure.	
CO2	Design shallow foundations for various types of structures.	K3
CO3	Calculate capacity of piles and Design deep foundation.	K3
<b>CO4</b>	Analyse and design foundations for bridges and machines.	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	2	1	1	1			
CO2	2	-	2	2	1	1			
CO3	2	-	3	2	2	1			
CO4	2	-	3	2	2	1			
CO5	2	-	3	2	2	1			
23SEPE19	2	-	3	2	2	1			
1 - Slight, 2 - Mode	erate, 3 – Sub	stantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
	$(\mathbf{RI}) / 0$	20	(IKS) 70 50	(11) /0	(13) 70	(110) /0	100
CATT	20	30	30		-	-	100
CAT2	20	30	50		-	-	100
Individual	20	30	50	-77	-	-	100
Assessment 1 /			4				
Case Study 1/							
Seminar 1 /			SUL				
Project1			》"全下				
Individual	20	30	50	-	-	-	100
Assessment 2 /							
Case Study 2/		11 12					
Seminar 2 /		X IA		3			
Project 2		ARE INT					
ESE	20	30	50		-	-	100

d GUISI

ALL CONTRACT

### DESIGN OF STRUCTURES FOR DYNAMIC LOADS

		1			,	
PREREQUISIT	TES	CATEGORY	L	T	P	С
	NIL	PE	3	0	0	3
Course	To impart knowledge on behaviour, analy	yze and design	of stru	ctures	subjec	ted to
Objectives	dynamic loading					
UNIT – I	GENERAL				9 Peri	ods
Design philosop	hy to resist earthquake, cyclone, flood, blast a	and impact - Natio	nal and	Intern	ational	codes
of practice – Beł	navior of concrete, steel, masonry and soil und	er impact and cycl	ic loads	- Energ	gy absc	orption
capacity – Ducti	lity of material and the structure.					
Design Against	Cyclone And Flood- Effect of cyclones on l	buildings and spec	cial stru	ictures	- safe	ty and
precautionary ste	eps in design.					
UNIT – II	DESIGN AGAINST EARTH-QUAKES				9 Peri	ods
Earth-quake cha	racterisation - Response spectrum - seismic	coefficient and re	sponse	spectr	a meth	ods of
estimating loads	- Response of framed, braced frames and she	ear wall buildings	- Desig	gn as p	er BIS	codes
practice – Ductil	ity based design.					
UNIT – III	DESIGN AGAINST BLAST AND IMPAC	T			9 Peri	ods
Characteristics of	of internal and external blast - Impact and	impulse loads- Ex	xplosio	ns- Th	reats –	wave
scaling law – Fi	ire loading - restraints - Pressure distribution	n on buildings abo	ove gro	und du	ie to ex	xternal
blast – undergrou	und explosion - Design of buildings for blast,	fire and impact as	per BIS	code	of pract	tice.
UNIT – IV	DESIGN AGAINST WIND				9 Peri	ods
Characteristics o	f wind – Basic and design wind speeds Aeroe	lastic and Aerodyr	namic et	ffect - ]	Design	as per
BIS code of pra	ctice including Gust factor approach-along w	vind and across wi	ind resp	onse-	effect	on tall
buildings, tower	rs, chimneys, roofs, window glass, Cladding	and slender strue	ctures -	vibra	tion of	cable
supported bridge	es and power lines due to wind effects- tornado	effects.				
UNIT – V	SPECIAL CONSIDERATIONS	11			9 Peri	ods
Detailing for due	ctility - Passive and active control of vibratio	ns – New and favo	orable n	nateria	ls - Res	sponse
of dams, bridges	s, buildings- strengthening measures-safety an	alysis- methods of	strengt	hening	g for di	fferent
disasters - Maint	enance and modifications to improve hazard re-	esistance.	-	-		
<b>Contact Periods</b>	s: 66R //~	Zaa				
Lecture: 45 Per	iods Tutorial: 0 Periods Practical:	0 Periods Tota	al: 45 P	eriods		
ļ		7				

### **REFERENCES:**

1	Raiker.R.N. "Learning from failure Deficiencies in Design", Construction and Service, R & D
	Centre(SDCPL) Raiker Bhavan, Bombay, 1987
2	Bela Goschy, "Design of Buildings to withstand abnormal loading", Butterworhts, 1990.
3	Paulay. T and Priestly. M.N.J, "A seismic Design of Reinforced Concrete and Masonry Buildings", John
	Wiley and Sons, 1991
4	Dowling. C.H, "Blast Vibration – Monitoring and Control", Prentice Hall Inc, Englewoods Cliffs, 1985.
5	Alan G. Daven Port, "Wind Effects on Buildings and Structures", Proceedings of the Jubileum
	Conference on Wind effects on Structures", Port Alegne, Brazil, pp 25-29, May 1998, Balkema A.A.
	Publishers, 1998.

COUR	RSE OUTCOMES:	Bloom's
Upon c	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Analyze the effects of dynamic loads like earthquake, blast and impact on structures.	K2
CO2	Perform seismic resistant design as per IS	K2
CO3	Design the structures against blast and impact.	K3
CO4	Calculate effect of wind on structures and design against wind load.	К3

CO5 Implement detailing of structure considering ductility and apply different K2 strengthening techniques

COURSE ARTICU	COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
<u> </u>	2	1	2	2		2				
COI	3	1	2	3	2	2				
CO2	3	2	1	2	2	2				
CO3	3	2	2	1	2	1				
CO4	3	2	2	3	3	2				
CO5	3	2	1	2	1	2				
23SEPE20	3	2	2	3	3	2				
1 - Slight, 2 - Moder	rate, 3 – Substa	ntial								

ASSESSMENT F	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	20	40	40		-	-	100				
CAT2	20	40	40		-	-	100				
Individual	-	1	50	50	-	-	100				
Assessment 1 /		a n	1000	<b>T</b> 77							
Case Study 1/			I.I.I	E //							
Seminar 1 /											
Project1			SWA V								
Individual	-	1 - 18	50	50	-	-	100				
Assessment 2 /		// 8/									
Case Study 2/		1 8 Y									
Seminar 2 /		I U									
Project 2		A Ba			ria.						
ESE	20	40	40		-	-	100				
			~ /4			•	•				

23SEPE21	DESIGN OF TALL BUILDINGS								
PREREQUISI	TES	CATEGORY	L	Т	P	С			
	NIL	РЕ	3	0	0	3			
Course	To acquire knowledge in the behaviour, analysis and	l design of tall bu	ildin	gs.	İ				
Objectives									
UNIT – I	DESIGN CRITERIA				9 Pei	riods			
Design philoso	phy, Loading, Sequential loading, materials - Spe-	cial Concrete for	r Ta	ll b	uildiı	ngs -			
Design mixes.									
UNIT – II	LOADS AND MOVEMENT				9 Pei	riods			
Gravity Loadin	ng : Dead and live load, methods of live load r	eduction, Impact	t and	l co	nstru	ction			
loads. Wind	load : Static and dynamic approach, Analytica	and wind tun	nel	exp	berim	ental			
method. Seism	ic load: Equivalent lateral force, modal analysis, com	binations of load	ing.						
UNIT – III	BEHAVIOUR OF VARIOUS STRUCTURAL SY	YSTEMS			9 Pei	riods			
Factors affectir	ng growth, Height and Structural form. High rise	behaviour, Rigi	d f	rame	es, bi	raced			
frames, Infilled	d frames, shear walls, coupled shear walls, wall-	frames, tubulars,	, cor	es, c	outrig	ger -			
braced and hyb	rid mega system.	2			_	-			
UNIT – IV	ANALYSIS AND DESIGN	I and the second			9 Pei	iods			
Modeling for a	pproximate analysis, Accurate analysis and reduction	n techniques, An	nalys	is o	f bui	lding			
as total stru	ctural system considering overall integrity a	nd major subs	syste	m ir	nterac	ction,			
Analysis for	member forces, drift and twist, computer	rized general	thre	e di	mens	ional			
analysis. Struc	tural elements: Sectional shapes, properties and resis	ting capacity, d	esigi	n, c	leflea	ction,			
cracking, pres	stressing, shear flow. Design for differential r	novement, creep,	shri	nkaş	ge ef	fects,			
temperature eff	ects, fire resistance.	//							
UNIT – V	STABILITY OF TALL BUILDINGS	1			9 Pei	riods			
Overall buckli	ng analysis of frames, wall -frames, Approximate	e methods, secon	d o	rder	effec	ets of			
gravity loading	g, P-Delta analysis, simultaneous first-order and	P -Delta analys	sis,	Trai	nslati	onal,			
Torsional instal	pility, out of plum effects, stiffness of member in stabi	ility, effect of fou	ndat	ion	rotati	on.			
<b>Contact Period</b>	ls:								
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Per	iods Total:	45 P	erio	ds				
REFERENC	ES:	S A							
1 Bungale S.	Taranath ., "Structural Analysis and Design of Tall .	Buildings", McG	raw	Hill	, 201	1			
2 Taranath B	S, "Tall Building Design: Steel, Concrete, and Com	posite Systems",	McC	Fraw	, Hill	, 2016			
3 Bryan staffe	3 Bryan stafford Smith, Alexcoull, "Tall Building Structures", Analysis and Design", John Wiley and								

- Sons, Inc., 1991
- 4 Wolfgang Schueller, "High Rise Building Structures", John Wiley and Sons, 1977.
- 5 Lynn S.Beedle, "Advances in Tall Buildings", CBS Publishers and Distributors, Delhi, 1986

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Classify different types of loads acting on tall buildings.	К3
CO2	Recognize various structural loads and movements in tall structures	K4
CO3	Differentiate the behaviour of different types of tall structures and its components.	K4
CO4	Analyze and design structural elements of tall buildings	К3
CO5	Evaluate stability analysis of frames for various secondary effects such as creep,	K4
	shrinkage and temperature	

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	2	1	2	2	1	2					
CO2	2	2	3	3	2	2					
CO3	2	1	2	2	2	1					
CO4	3	2	3	2	3	2					
CO5	3	2	2	3	2	3					
23SEPE21	3	2	3	3	3	3					
1 – Slight, 2 – Moderate, 3 – Substantial											

# ASSESSMENT PATTERN – THEORY

- NOTIFICIAL												
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %					
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %						
CAT1	20	40	40		-	-	100					
CAT2	20	40	40		-	-	100					
Individual												
Assessment 1 /			The second se	<b>r</b> 77								
Case Study 1/	-		50	50	-	-	100					
Seminar 1 /												
Project1			WAX!									
Individual				11								
Assessment 2 /		1 9		11								
Case Study 2/	-	-8	50	50	-	-	100					
Seminar 2 /		L U										
Project 2	6	AN 1st		VA.								
ESE	20	40	40		-	-	100					
	(		1	J Banna I			•					

23SEPE22 COLD FORMED STEEL STRUCTURES							
PREREQUISITES	S		CATEGORY	L	Т	Р	С
		0	0	3			
Course	To impa	rt knowledge on design of various cold for	med steel structur	al ele	ment	s and	its
Objectives	connecti	ions.					
UNIT – I	INTRO	DUCTION				9 Pe	eriods
General – Types of	Cold For	med Steel Sections and their applications -	- Methods of Form	ning -	- Mat	erial	s used in
Cold Formed Steel	Construct	tion - Yield Point - Tensile Strength - Str	ress Strain Curve -	– Mo	dulus	s of E	Elasticity
and Tangent Modu	ılus – Du	ctility – Weldability – Fatigue Strength a	and Toughness. C	onne	ction	s – 7	Types of
Connections – Wele	ded Conn	ections – Bolted Connections – Other Faste	eners.				
UNIT – II	STREN	GTH OF THIN ELEMENTS AND DES	IGN CRITERIA			9 Pe	eriods
General – Definitio	ons of Ge	eneral Terms – Basic Design Stress – W	ind, Earthquake a	ind C	omb	ined	forces –
Structural Behavior	r of Com	pression Elements and Design Criteria -	Stiffeners for Co	ompro	essio	n Ele	ments –
Structural Behavior	r of Perfo	rated Elements - Plate buckling of Colu	mns – Behavior o	of W	ebs o	f Be	ams and
Cylindrical Tubular	r Elements	S. Collection and the second	200				
UNIT – III	DESIG	N OF FLEXURAL MEMBERS	121			9 Pe	eriods
General – Beam St	trength an	d Deflection - Design of Webs of beams	– Lateral Bucklin	ng of	Bear	ms –	Bracing
Requirements of Be	eams – Ur	usually Wide Beam Flanges and Unusuall	y Short Span bean	ıs.			
UNIT – IV	DESIG	N OF COMPRESSION MEMBERS	77			9 Pe	eriods
General – Yielding	– Flexura	al Column Buckling – Effect of Cold Wor	k on Column Buc	kling	g – Et	ffect	of Local
Buckling on Colur	nn Streng	th - AISI Design Formula for Flexural	Buckling – Effect	tive 1	Lengt	h fac	tor K –
Torsional Buckling	g and T	orsional-Flexural Buckling – Bracing a	and Secondary M	Memb	bers	– M	aximum
Slenderness Ratio -	- Wall Stu	ds – Testing of Wall Material for Lateral E	Bracing Value.				
UNIT – V	DESIG	N OF BEAM COLUMNS	1			9 Pe	eriods
General – doubly s	symmetric	shapes and shapes not subjected to torsi	onal or torsional-f	lexur	al bu	ıcklin	g – thin
walled open Section	ns which	may be subjected to Torsional-Flexural Bu	ickling – Singly S	ymm	etric	Oper	1 Shapes
– Unsymmetrical S	Shapes. Li	ght Gauge Steel Shear Diaphragms and s	shell Roof Structu	res -	light	Gau	ge Steel
Shear Diaphragms -	– Column	s and Beams braced by Steel Diaphragms -	- Shell Roof Struc	tures.			
<b>Contact Periods</b> :			in the second se				
Lecture: 45 Period	ls Tu	utorial: 0 Periods Practical: 0 Periods	Total: 45 Perio	ds			
		The season of the season of the	7				
REFERENCI	ES						

### REFERENCES

1	Wie-Wen Yu, "Cold Formed Steel Structures", Mcgraw Hill Book Company, 1973.
2	Horne M.R. and Morris L.J., "Plastic Design Of Low Rise Frames", Granada Publishing Ltd., 1981.
3	Salmon C.G. and Johnson J.E., "Steel Structures-Design And Behaviour", Harper and Row, 1980. Dayaratnam P. "Design of Steel Structures", A.H. Wheeler, 1980. L T P C 3 0 0 3 89
4	Kuzamanovic B.O. and Willems N., "Steel Design For Structural Engineers", Prentice Hall, 1977.
5	William McGuire, "Steel Structures", Prentice Hall Inc., Englewood Cliffs, N.J., 1986.

COUR	Bloom's	
Upon o	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Indicate the properties of Cold formed steel structures.	K2
CO2	Apply the knowledge of thin elements in the design of cold formed steel.	K3
CO3	Perform design of cold formed steel flexural members as per codal provisions.	K3

CO4	Design the compression members as per codal provisions.									
CO5	CO5 Check the adequacy of cold formed steel beam columns as per codal provisions									
COURSE ARTICULATION MATRIX										
C	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6			
	CO1	2	-	2	1	1	1			
	CO2	2	-	1	2	2	1			
	CO3	2	-	2	3	2	2			
	CO4	2	-	1	2	2	2			
	CO5	2	-	1	3	2	2			
23	SEPE22	2	-	2	3	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT	PATTERN – THE	CORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	8-16 Jan			100
CAT2	30	50	20	all all			100
Individual	20	40	40	Ser la construction de la constr			100
Assessment 1 /							
Case Study 1/			- C.	F 7/			
Seminar 1 /							
Project1							
Individual	20	40	40				100
Assessment 2 /				//			
Case Study 2/		1 8					
Seminar 2 /		8					
Project 2		1 U					
ESE	40	40	20	N AR			100
		EL.				·	
		Curren of	200	acus			
		NET IN	IN AROUTE	877			

23SEPE23	3SEPE23 SMART MATERIALS AND SMART STRUCTURES							
PREREQUISITES CATEGORY L						P	С	
	NIL PE 3						3	
Course	<b>Course</b> To give an exposure of various smart materials for measuring techniques, signal processing and							
Objectives	con	trol systems and structural health monitor	ing systems.					
UNIT – I	IN'	FRODUCTION				9 Pe	riods	
Properties of sm	art 1	naterials - mechanisms - instrumented st	ructures functions and	l respor	nse se	nsing	system –	
self-diagnosis -	signa	al processing consideration – actuation sys	stems and effectors					
UNIT – II	MF	CASURING TECHNIQUES				9 Pe	riods	
Strain measuring	g tec	hniques using electrical strain gauges, ty	ypes – resistance-capa	icitance	-ind	uctan	ce- wheat	
stone bridges-pre	essui	e transducers-load cells- temperature com	pensation – strain rose	ettes				
UNIT – III	SE	NSORS AND ACTUATORS				9 Pe	riods	
Sensing technol	ogy	- types of sensors - physical measured	ment using piezo ele	ctric st	rain 1	neasu	irement –	
inductively read	trar	nsducers – LVDT – fiber techniques - fi	iber optic strain sense	ors - A	ctuate	or tec	hniques –	
Actuator and Ac		or materials - piezo electric and electro	resistive material – n	nagneto	struc	ture 1	material –	
shape memory a	lloy	s – electro ortheological fluids– electro m	nagnetic actuation – ro	ole of a	ctuato	rs an	d actuator	
materials	~~	En seo gr			1			
UNIT – IV	SIC	GNAL PROCESSING AND CONTROL	SYSTEMS			9 Pe	riods	
DataAcquisition	andp	rocessing-signalprocessingandcontrolfors	martstructures-sensor	S	as	ge	eometrical	
processors-sign	al pr	ocessing–control system– linear and nonli	near.					
UNIT – V	IN' (SF	TRODUCTION TO STRUCTURAL HE IM)	EALTH MONITORI	NG		9 Pe	riods	
Definition & mo analog between Passive and Act bridge – applicat	tiva the 1 tive tions	tion for SHM, SHM – a way for smart m nervous system of a man and a structure v SHM, NDE, SHM and NDECS –basic c for external post tensioned cables, monito	naterials and structures with SHM,SHM as a p components of SHM - pring historical buildin	s – SHN part of – Appli gs.	M and syster catior	bio 1 n mai ns – S	mimetic – nagement, SHM of a	
Lecture: 45 Per	iods	Tutorial: 0 Periods Practical:	0 Periods Total:	45 Per	iods			
REFEREN	NCE	s						
1 Brain Culsh	haw,	"Smart structures and materials Artech-	Borton", London.					
2 L.S.Srinath,	, "Ez	xperimental stress analysis", Tata McGra	w Hill, 1998.					
$3 \qquad J.W.Dally d$	& W.	F. "Riley, Experimental stress analysis", I	Tata McGrawHill,1998	8.				
4 Daniel Bala ISTE Ltd., U	agea U.K.	s, Claus-Peter FritzenamI Alfredo Gue 2006	mes, <b>"Structural He</b> d	alth Mo	onitor	ing",	Published	
5 Hand book of India, 20	on ' 02.	Repair and Rehabilitation of RCC Build	dings", Published by	Directo	r Gen	eral,	CPWD, Go	
6 Hand Boo	k on	seismic Retro fitting of Buildings, Pa	ublished by CPWD d	& India	n Bu	ilding	g Congress	
Association	with	h IIT, Madras, Narosa Publishing House,2	2008.				-	
I								

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Gain knowledge on smart materials, function and response sensing systems	K1
CO2	Apply the various strain measuring techniques	K2
CO3	Know the working mechanism of sensors and actuators.	K2
CO4	Use data acquisition signal processing and control systems effectively.	K3

CO5 Familiarize about Structural Health Monitoring system and its application in civil Engineering field.

COURSE ARTICULATION MATRIX												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6						
CO1	1	-	2	1	1	-						
CO2	2	-	2	1	1	-						
CO3	2	-	2	3	2	1						
CO4	2	-	3	3	3	2						
CO5	3	-	3	3	3	3						
23SEPE23	3	-	3	3	3	3						
1 – Slight, 2 – Moderate, 3 – Substantial												

ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30	40	30	X	-	-	100
CAT2	30	40	30	~~	-	-	100
Individual	30	40	30	-//	-	-	100
Assessment 1 /		10 0	. 9				
Case Study 1/							
Seminar 1 /							
Project1				11			
Individual	30	40	30	-11	-	-	100
Assessment 2 /							
Case Study 2/		1 9					
Seminar 2 /	5	AN IA					
Project 2	3						
ESE	30	40	30	2	-	-	100
		1200	20	( States	•		•

K3

225EDE24		SOIL STRUCTURE INTERACTION									
238EPE24		(Common with M.E. Geotechnical Engineering)									
PREREQUISITE	ES		CATEGORY	L	Τ	Р	С				
		NIL	PE	3	0	0	3				
Course	To i	nculcate the knowledge on soil foundation interacti	on, soil models a	nd el	astic	anal	ysis				
Objectives	of piles and piled raft.										
UNIT – I	SOI	L - FOUNDATION INTERACTION			9 Pe	riods					
Introduction to so	-1	Foundation interaction problems – Soil behaviour	- Foundation bel	havio	ur –	Inter	face				
behaviour – Scope	e of s	oil-foundation interaction analysis - Soil response n	nodels – Winkler,	Elast	ic co	ntinu	um,				
Two parameter ela	astic r	nodels, Elastic – Plastic behaviour – Time dependent	behaviour.								
UNIT – II	BEA	MS ON ELASTIC FOUNDATION - SOIL MOD	ELS		9 Pe	riods					
Infinite beam –	Two	parameters - Isotropic elastic half space - Ana	alysis of beams	of fi	nite	lengt	h –				
Classification of fi	inite b	beams in relation to their stiffness – Analysis through	application pack	ages							
UNIT – III	PLA	TE ON ELASTIC MEDIUM		9 Periods							
Infinite plate – W	inkle	r, Two parameters, Isotropic elastic medium, Thin	and thick plates -	– Ana	lysis	of fi	nite				
plates - Rectangu	lar ar	nd circular plates - Numerical analysis of finite plat	tes – Simple solu	tions	– Ar	nalysi	s of				
braced cuts – App	licatio	on packages.	1								
UNIT – IV	ELA	STIC ANALYSIS OF PILE	)		9 Pe	riods					
Elastic analysis of	singl	e pile - Theoretical solutions for settlement and load	distribution – An	alysis	s of p	ile gr	oup				
- Interaction analysis - Load distribution in groups with rigid cap - Pile raft - Application packages.											
UNIT – V LATERALLY LOADED PILE 9 Periods											
Load deflection p	Load deflection prediction for laterally loaded piles - Subgrade reaction and elastic analysis - Interaction										
analysis – Pile raft	t syste	em – Solutions through influence charts –Application	packages								
Contact Periods:											
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods											
REFERENC	REFERENCES										

1	Saran, S., "Analysis and design of substructures", Taylor & Francis Publishers, 2006.
2	Hemsley, J.A., "Elastic Analysis of Raft Foundations", Thomas Telford, 1998
3	Poulos, H.G., and Davis, E.H., "Pile Foundation Analysis and Design", John Wiley, 2008
4	Murthy, V.N.S., "Advanced Foundation Engineering", CBS Publishers, New Delhi, 2007
5	McCarthy, R.N., "Essentials of Soil Mechanics and Foundations: Basic Geotechnics", Sixth Edition,
	Prentice Hall, 2002

6 Selvadurai, A.P.S., "Elastic Analysis of Soil Foundation Interaction", Elsevier, 1979.
7 Scott, R.F., "Foundation Analysis", Prentice Hall, 1981

8 Structure Soil Interaction – State of Art Report, Institution of structural Engineers, 1978.ACI 336, Suggested Analysis and Design Procedures for Combined Footings and Mats, American Concrete Institute, Delhi, 1988

COUR	SE OUTCOMES:	Bloom's		
		Taxonomy		
Upon completion of the course, the students will be able to:				
CO1	Understand various soil response models applicable to soil-foundation interaction	K2		
	analysis.			
CO2	Come up with elastic solutions for problems of pile, pile-raft system	K3		
CO3	Use software packages to analyze soil-foundation system including laterally loaded piles.	K3		
CO4	Acquire knowledge on elastic analysis of pile and pile group	K3		
CO5	Acquire knowledge on analysis of laterally loaded piles	K3		

COURSE ARTICULATION MATRIX							
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	-	2	1	2	1	
CO2	3	-	2	1	2	1	
CO3	3	-	2	1	2	1	
CO4	3	-	2	1	2	1	
CO5	3	-	2	1	2	1	
22SEPE24	3	-	2	1	2	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

# ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30	40	30				100
CAT2	30	40	30	REAL PROPERTY AND			100
Individual		50	50	The star			100
Assessment 1 /		N D D D	TRUCK				
Case Study 1/		77-22					
Seminar 1 /			-	- 77			
Project1							
Individual		50	50				100
Assessment 2 /				N 11			
Case Study 2/			N/2 V	//			
Seminar 2 /		1 ALE					
Project 2							
ESE	30	40	30				100



23SEPE25	SEPE25 FUNDAMENTALS OF CONCRETE 3D PRINTING						
PREREQUIS	ITES CATEGORY	L	Т	Р	С		
	NIL PE	3	0	0	3		
Course	<b>Course</b> To possess knowledge on materials, mix design approaches, testing, equipments, stages,						
Objectives	various printing technologies, applications and impact of concrete 3	D pr	inting	•			
UNIT – I	INTRODUCTION			9 P	eriods		
General consid	erations for 3D printing and additive fabrication - main concepts o	f 3D	printi	ng- To	wards		
the 3D printin	g of cement-based materials - Classification of 3D printing n	netho	ds fo	r conc	crete -		
Advantages – I - Polar printer -	imitations - Gantry printers - Delta Printers - Robotic arm printers - Optimal selection of printers.	Cra	wler b	oom p	rinters		
UNIT – II	MATERIALS, TESTING AND EQUIPMENTS			9 P	eriods		
Raw materials – supplementary cementitious materials, admixtures, cement and aggregates, mix design approaches – performance requirement of 3DPC - Pumping - Extrusion - Bulidability - Printability - Other problems occurring during concrete extrusion printing - Shrinkage and cracking during drying - Components - Concrete pump and mixing unit - Production Unit - Control Unit - Types of extruder - Ram Extruder - Pneumatic Extruder - Types of nozzle - Effect of nozzle shape, size, and orientation.							
UNIT – III	MECHANICAL BEHAVIOR OF 3D PRINTED MATERIAL			9 P	eriods		
Mechanical performance of the cement material printing using extrusion - Mechanical behaviour of 3D printed cement materials - Effect of extrusion on the mechanical characteristics of cement-based composites - Effects of the additive fabrication method on the mechanical behaviour of cement-based materials - anisotropic stratified materials: possible causes - Effects of the time intervals between successive deposits							
UNIT – IV	UNIT – IV EXTRUSION AND CASTING 9 Periods						
Stages of 3D printing process - criteria for pumping material in a fresh state - effect of time intervals between successive deposits and effect of water content - change of rheology: physico- chemical activity over time – pumping – extrusion - other problems occurring during concrete extrusion printing – effect of bond between layers - shrinkage and cracking during drying of concrete.							
UNIT - V         APPLICATIONS AND IMPACT OF CONCRETE 3D PRINTING         9 Periods							
Application of 3D printing in construction industry and concrete product development – Industrial adoption of 3D printing - Impact of 3D printing on the construction and economy - Impact of emerging printing technology on society - cost benefits of 3D printing in construction – recent advancements - Future of concrete 3D printing.							
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 F	erio	ds				

### **REFERENCES :**

1	Jay G. Sanjayan, Ali Nazari, and BehzadNematollahi, "3D Concrete Printing Technology", Elsevier;
	2019 (ISBN - 9/8-0-12-815481-6).
2	Arnaud Perrot, "3D Printing of Concrete: State of the Art and Challenges of the Digital Construction
	<b>Revolution"</b> , Wiley; 2019, (ISBN: 978-1-786-30341-7)
3	Bakker R, "Smart Buildings: Technology and the design of the Built Environment", RIBA Publications,
	2020.
4	Wangler R and R.J Flatt, "Concrete and Digital fabrication: Digital Concrete 2018", Conference
	Proceedings RILEM Book series, 2019.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Illustrate the genereal considerations, concepts and classifications of concrete 3D	K2
	printing	
CO2	Identify materials, testing and equipments for concrete 3D printing	K2
CO3	Evaluate the Mechanical behaviour of 3D printed material	K2
<b>CO4</b>	To analyse the extrusion and casting process involved in 3D printing process	K2
CO5	Utilize 3D printing technologies based on its applications and impact	K2

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	100 (M31100	3	3	3
CO2	3	<u>9</u> 2 d	3	3	3	3
CO3	3	2	3	3	3	3
CO4	3	2	3	3	3	3
CO5	3	2	3	3	3	3
23SEPE25	3	2	3	3	3	3
1 - Slight, 2 - Mod	erate, 3 – Sul	ostantial	STIP.			

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %		
CAT1	40	50	10		-	-	100	
CAT2	40	50	10	2000	_	-	100	
Individual	30	50	20	Distant .	-	-	100	
Assessment 1 /		60		62				
Case Study 1/								
Seminar 1 /								
Project1								
Individual	30	50	20	-	-	-	100	
Assessment 2 /								
Case Study 2/								
Seminar 2 /								
Project 2								
ESE	40	50	10	-	-	-	100	

23SEPE2	6

### NANO TECHNOLOGY

		1					
PREREQUIS	ITES	CATEGORY		Т	P	С	
	NIL	PE	3	0	0	3	
Course	To know the fundamentals of Nanomaterials and	applications of Na	note	chno	logy ir	1	
objectives	Civil Engineering.						
UNIT – I	INTRODUCTION TO NANOMATERIALS	INTRODUCTION TO NANOMATERIALS 9 Periods					
Fundamentals	of materials science and Structure: Introduction	n - microstructure	e, an	d na	nostru	cture;	
Importance an	d examples for Nanomaterials, ceramic and	glass materials,	com	oosite	e mate	erials,	
polymeric mat	erials, metals and alloys- rheological fluids, r	netallic glasses, a	advai	nced	ceran	nics -	
Applications of	f modern engineering materials.						
UNIT – II	NANOTECHNOLOGY IN CEMENT AND C	ONCRETE			9 Pe	riods	
Introduction to	Nanomaterials in Cement and Concrete, diffe	erent Nanomateria	ıls u	sed i	in con	crete,	
Development of	of Nano concrete, Application of Nanomaterials	in UHPC, Nano s	ilica,	dens	sificati	on of	
cement using N	Nano silica, Nano alumina, Carbon Nanotube (CN	NT), the Effect of S	Singl	e wa	lled C	arbon	
Nanotube (SW	CNT) and Other Nanomaterials on Cement Hydrat	tion and Reinforce	ment	•			
UNIT – III	<b>APPLICATIONS OF NANOMATERIALS IN</b>	SMART AND			9 Pe	riods	
	GREEN BUILDINGS	540X					
Nanomaterials-	based self-healing concrete and its Sustainability	<ul> <li>Application ar</li> </ul>	eas o	of Na	nomat	erials	
for green build	ings -safety and security- indoor quality-material s	surface advanceme	nt- e	nergy	y gener	ration	
and storage- en	vironmental impact control -Sustainable building a	assessment system	s.				
UNIT – IV	NANOTECHNOLOGY IN STRUCTURAL S	TEEL			9 Pe	riods	
Nanotechnolog	y and Steel- Applications in steel structures for st	rength and corro	sion	resist	tance,	effect	
of copper Nan	oparticles on strength of steel- Applications in v	welds and joints,	weld	abil	ity, de	layed	
fracture, streng	gthening of steel bolts, vanadium and molybden	um Nanoparticles	to	impro	ove de	layed	
fracture.		11					
UNIT – V	ADVANCES IN NANO TECHNOLOGY				9 Pe	riods	
Next-Generatio	on Nano -based Concrete and Steel Construction	ion Products: Op	timiz	zatior	n of l	Nano-	
modified Ceme	modified Cement Materials- Functional Nanomaterials and their applications.						
<b>Contact Perio</b>	ds:						
Lecture:45 Pe	riods Tutorial: 0 Periods Practical: 0 I	Periods Tota	l: 45	Peri	iods		

### **REFERENCES:**

1	Dinesh C Agrawal, "Introduction to Nanoscience And Nanomaterials" World Scientific
	Publishing Company; 1st edition, 2013.
2	Fernando Pacheco-Torgal, Maria Vittoria Diamanti, Ali Nazari, Claes Goran Granqvist, Alina
	Pruna, Serji Amirkhanian, "Nanotechnology in eco-efficient construction", Woodhead Publishing, second edition, 2019
3	Kaushik Pal <b>"Green Nanomaterials: Sustainable Technologies and Applications"</b> Apple Academic Press, 1st edition ,2022.
4	Małgorzata Krystek, Leszek Szojda, Marcin Górski "Nanomaterials in Structural Engineering"
	Intech Open, 2018.
5	M.S. Ramachandra Rao, Shubra Singh, "Nanoscience and Nanotechnology: fundamentals to
	Frontiers", Wiley, 2013

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Acquire the knowledge on Nanomaterials and its properties.	K2
CO2	Utilize the Nano materials in Concrete construction.	K3
CO3	Implement the Nanomaterials in Smart and Green Buildings.	K3
CO4	Utilize the nanoparticles in Structural Steel.	K3
CO5	Implement the advancement in Nanotechnology.	K3

### **COURSE ARTICULATION MATRIX**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	2	2	1	2
CO2	2	1 port	2	2	2	2
CO3	3	2	2	2	3	3
CO4	3	2	2	2	3	2
CO5	2	2	-2	V3	3	3
<b>23SEPE26</b>	3	2	2	3	3	3
1 - Slight, $2 - Mod$	erate, 3 – Subs	tantial		-		

# ASSESSMENT PATTERN – THEORY

		10 0		- //			
ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	- 11	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	-	40	40	20	-	-	100
Assessment 1 /		AN /A					
Case Study 1/				200			
Seminar 1 /				2			
Project1		100	00-0	OL UN			
Individual	-	40	40	20	-	-	100
Assessment 2 /			~~~	C			
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

		BI	JILDING BYI	E-LAWS ANI	CODES OF PR	АСТ	ICE		
23SEOE01			(	Common to al	Branches)	-	-		
PREREQUIS	ITES				CATEGORY	L	Т	Р	С
		NIL			OE	3	0	0	3
Course	To impart knowledge on the building bye -laws and to emphasize the sig						nifica	nce of	codes
Objectives	of p	actice in constru	ction sector.						
UNIT – I	INT	<b>RODUCTION</b>	TO BUILDIN	G BYE-LAW	S		9	) Perio	ods
Introduction to	Buil	ling Bye Laws	and regulation	, their need an	nd relevance, Gen	eral	defini	tions s	uch as
building heigh	t, bu	ding line, FAR	, Ground Cov	verage, set bac	ek line. Introducti	on to	) Mas	ter Pla	an and
understanding	vario	s land uses like	institutional, re	esidential etc	Terminologies of	Build	ling b	ye-law	s.
UNIT – II	RO	E OF STATU	FORY BODIE	CS			9	) Perio	ods
Role of vario	us st	tutory bodies	governing bui	lding works	like development	autł	noritie	s, mu	nicipal
corporations et	tc. Lo	cal Planning Au	thority, Town	and Country	planning organisa	tion,	Mini	stry of	urban
development.									
UNIT – III	API	LICATION OF	F BUILDING	BYE-LAWS			ç	) Perio	ods
Interpretation of	of inf	rmation given i	in bye laws in	cluding ongoin	ng changes as sho	wn ii	n vari	ous an	nexure
and appendices	s. Ap	olication of Bye	e-laws like stru	uctural safety,	fire safety, earthout	quake	safet	ty, bas	ement,
electricity, wate	er, an	l communication	n lines in vario	us building typ	es.				
UNIT – IV	INT	<b>RODUCTION</b>	TO CODES O	<b>PRACTIC</b>			9	) Perio	ods
Introduction to	vario	us building code	es in profession	nal practice - C	Codes, regulations	to pr	otect j	public	health,
safety and welf	are -	Codes, regulation	ns to ensure co	mpliance with	the local authority				
UNIT – V	API	LICATION OF	F CODES OF	PRACTICE	. //		ç	) Perio	ods
Applications o	f var	ous codes as p	er various bui	ilding types. I	Bureau of Indian	Stan	dards,	Euro	code –
Introduction to	other	international co	des.						
<b>Contact Perio</b>	ds:	1							
Lecture: 45 Pe	eriod	Tutorial:	0 Periods	Practical:	0 Periods T	'otal:	45 P	eriods	
		11	N R						
REFER	ENC	ES:	60 >		. 11				

1	"National Building Code of India 2016 – SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization, Ministry of
	Housing and Urban Affairs, Government of India.
3	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the building bye-laws in planning, design and construction works.	К3
CO2	Familiarize with the role of various statutory bodies.	K2
CO3	Execute safety related work practices in the construction sector.	K3
CO4	Ensure compliance with the rules and regulations in design and construction	K3
	practices.	
CO5	Perform design and construction practices based on national and international	K3
	codal provisions.	

COURSE ARTICULAT	COURSE ARTICULATION MATRIX					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	3	1	1	2	3
CO2	1	3	1	1	2	3
CO3	1	3	1	1	2	3
CO4	2	3	1	1	2	3
CO5	2	3	1	1	2	3
23SEOE01	2	3	1	1	2	3
1 - Slight, $2 - $ Moderate, $3$	3 – Substantial			•		-

ASSESSMENT P	PATTERN – THI	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	R1010	-	-	100
CAT2	40	40	20	1077	-	-	100
Individual	40	40	20		-	-	100
Assessment 1 /		7.22		-			
Case Study 1/	191		-	- >>			
Seminar 1 /							
Project1			- 1				
Individual	40	40	20	N -	-	-	100
Assessment 2 /			11 SW				
Case Study 2/		1 ALE					
Seminar 2 /							
Project 2			-				
ESE	40	40	20	-VA	-	-	100

<b>125E0E0</b> 1	PLANNING OF SMART CITIES							
235EUEU2	(Common to all Branches)							
PREREQUISITE	S	CATEGORY	L	Τ	Р	С		
	NIL	NIL OE 3 0 0						
Course	To have an exposure on planning of smart cities	with consideration	of the r	ecen	t chall	enges		
Objectives	and to address the importance of sustainable deve	lopment of urban ar	ea.					
UNIT – I	SMART CITIES DEVELOPMENT	POTENTIALS	AND		9 Peri	ods		
	CHALLENGES					JUS		
Perspectives of Sm	nart Cities: Introduction and Overview - Implemen	tation Challenges -	Method	lolog	gical is	sues -		
Spatial distribution	n of startup cities – Re imagining postindustria	al cities - Impleme	entation	Ch	allenge	es for		
Establishing Smart	Urban Information and Knowledge Management S	System.						
UNIT – II	SUSTAINABLE URBAN PLANNING				9 Peri	ods		
Optimising Green	Spaces for Sustainable Urban Planning - 3D City N	Models for Extractin	ıg Urba	n En	vironn	nental		
Quality Indicators	- Assessing the Rainwater Harvesting Potential	- The Strategic R	lole of	Gre	en Spa	aces -		
Monitoring Urban	Expansion.							
UNIT – III	ENERGY MANAGEMENT AND SUSTAINA	BLE DEVELOPM	IENT		0 Pori	ode		
						JUS		
Alternatives for I	Energy Stressed Cities - Social Acceptability of	of Energy - Effici	ent Lig	ghtin	g - E	nergy		
Management - Url	ban Dynamics and Resource Consumption - Issue	s and Challenges of	f Sustai	nabl	e Tou	rism -		
Green Buildings: E	Eco-friendly Technique for Modern Cities.	1						
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SM	ART CITIES			9 Peri	ods		
Assessment of Do	mestic Water Use Practices - Issue of Governanc	e in Urban Water S	Supply	- As	sessme	ent of		
Water Consumption	on at Urban Household Level - Water Sustainal	oility - Socio-econo	omic D	eteri	ninant	s and		
Reproductive Healthcare System - Problems and Development of Slums.								
UNIT – V	INTELLIGENT TRANSPORT SYSTEM				9 Peri	ods		
Introduction to Int	elligent Transport Systems (ITS) - The Range of	ITS Applications -1	Network	с Ор	otimiza	tion -		
Sensing Traffic us	ing Virtual Detectors - Vehicle Routing and Pers	sonal route informa	tion - T	The	Smart	Car -		
Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment -								
Traffic Enforcement	nt. Urban Mobility and Economic Development.	A A						
<b>Contact Periods</b> :	888							
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Per	riods Total: 4	5 Perio	ds				
	200 00000	000						
REFER	ENCES	37						

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva", 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	K3
CO3	Choose appropriate energy conservation system for smart cities.	K3
<b>CO4</b>	Identify the proper method of water management system.	K3

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	1	-	2	3	1	1					
CO2	1	1	1	3	2	1					
CO3	1	1	-	2	2	1					
CO4	1	-	1	2	1	1					
CO5	1	-	1	3	1	-					
23SEOE02	1	1	2	3	2	1					
1 - Slight, $2 - $ Moder	1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	25	45	30		-	-	100		
CAT2	25	45	30	<u> </u>	-	-	100		
Individual	15	40	45	77	-	-	100		
Assessment 1 /	\ \	10 10	1						
Case Study 1/			$\sim \Lambda$						
Seminar 1 /									
Project1			121						
Individual	10	45	45	1-	-	-	100		
Assessment 2 /	1	8							
Case Study 2/		- HA ~							
Seminar 2 /	A	X.		N/a					
Project 2		2							
ESE	20	40	40		-	-	100		

GREEN BUILDING										
23SEUEU3	(Common to a	ll Branches)								
PREREQUISITI	ES	CATEGORY	L	Τ	Р	С				
	NIL         OE         3         0         0           Course         To introduce the different concerts of energy officient buildings indeer environm									
Course	To introduce the different concepts of energy	efficient buildings	s, indo	or e	nviron	mental				
Objectives	<b>Objectives</b> quality management, green buildings and its design.									
UNIT – I	INTRODUCTION				9 Peri	ods				
Life cycle impac	ts of materials and products - sustainable desig	n concepts – strat	egies	of de	esign 1	for the				
Environment -The	e sun-earth relationship and the energy balance on	the earth's surfac	e, clin	nate,	wind -	- Solar				
radiation and sola	r temperature - Sun shading and solar radiation on	surfaces-Energy	impac	t on t	he sha	pe and				
orientation of buil	dings – Thermal properties of building materials.									
UNIT – II	ENERGY EFFICIENT BUILDINGS				9 Peri	ods				
Passive cooling a	nd day lighting – Active solar and photovoltaic- E	Building energy and	lysis 1	netho	ods- B	uilding				
energy simulation	1- Building energy efficiency standards-Lighting	system design- I	Lightin	g ec	onomi	cs and				
aesthetics- Impact	s of lighting efficiency – Energy audit and energy	targeting- Technolo	ogical	optio	ns for	energy				
management.	Chummer of			1						
UNIT – III	INDOOR ENVIRONMENTAL QUALITY MA	NAGEMENT			9 Peri	ods				
Psychrometry- Co	omfort conditions- Thermal comfort- Ventilation ar	id air quality-Air co	onditio	ning	requir	ement-				
Visual perception	n- Illumination requirement- Auditory requirer	nent- Energy ma	nagem	ent	option	s- Air				
conditioning syste	ems- Energy conservation in pumps- Fans and blow	vers- Refrigerating	machir	ies- F	leat re	jection				
equipment- Energ	y efficient motors- insulation.				0 D!	]				
$\frac{\mathbf{U}\mathbf{N}\mathbf{I}\mathbf{I}-\mathbf{I}\mathbf{V}}{\mathbf{C}\mathbf{U}\mathbf{V}\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{I}I$	GREEN BUILDING CONCEPTS			1	9 Peri					
Green building co	Succept- Green building rating tools- Leeds and IC	BC codes. – Mate	erial se		on Em	bodied				
energy-Operating	genergy- Façade systems- ventilation systems-i ran	sportation- water t	reatme	ent sy	stems-	water				
UNIT V	CDEEN BUILDING DESIGN CASE STUDY				0 Dari	ode				
$\begin{array}{c} \mathbf{U}\mathbf{V}\mathbf{I}\mathbf{I} = \mathbf{V} \\ \mathbf{C}_{222}  \text{studies}  \mathbf{B}_{2} \\ \end{array}$	uilding form orientation and site considerations:	conservation mea	allrog.	ener		deling:				
heating system an	d fuel choices: renewable energy systems: material	choices - constructi	on bu	laet	gy mo	uening,				
Contact Pariods:										
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										
Lecture: 45 1 cm	Lecture, 45 remous rational, 0 remous rractical, 0 remous rotal, 45 remous									
REFEREN	REFERENCES :									
1 Sam Kubb	a "Handbook of Green Building Design and Cons	truction: LEED, B	REEA	M, a	nd Gre	en				
Globes", ,	Elsevier Science, 2012.	e la compañía de la								

2 Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010

3 Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and Delivery", 3rd Edition, 2012

4 R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Apply the concepts of sustainable design in building construction.	К3
CO2	Execute green building techniques including energy efficiency management in the	K3
	building design.	
CO3	Establish indoor environmental quality in green building.	К3
CO4	Perform the green building rating using various tools.	К3
CO5	Create drawings and models of green buildings.	K3

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	3	2	3	3	3					
CO2	3	3	2	3	3	3					
CO3	2	2	2	2	3	3					
CO4	2	3	1	3	3	3					
CO5	3	3	1	3	3	3					
23SEOE03	3	3	2	3	3	3					
1 – Slight, 2 – Moderate, 3 – Substantial											

ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	40	40	20	-	-	-	100				
CAT2	40	40	20	3070	-	-	100				
Individual	40	40	20	1	-	-	100				
Assessment 1 /		- Andrew	CONF. C								
Case Study 1/											
Seminar 1 /	1		-	77							
Project1	1		5								
Individual	40	40	20	- 11 -	-	-	100				
Assessment 2 /											
Case Study 2/			(四)	11							
Seminar 2 /		0 20									
Project 2											
ESE	40	40	20		-	-	100				



23FEOE04 ENVIRONMENT HEALTH AND SAFETY MANAGEMENT											
2JEEUEU4	(Common to al	(Common to all Branches)									
PREREQUIS	QUISITES CATEGORY L T P										
	NIL	OE	3 0 0								
Course	To impart knowledge on occupational health	hazards, safety n	neasure	easures at work pla							
Objectives	accident prevention, safety management and safe	ccident prevention, safety management and safety measures in industries.									
UNIT – I	OCCUPATIONAL HEALTH HAZARDS	OCCUPATIONAL HEALTH HAZARDS 9 Periods									
Occupation, H	Health and Hazards - Safety Health and Mar	nagement: Occupat	ional	Health	Haz	ards -					
Ergonomics -	Importance of Industrial Safety - Radiation and	nd Industrial Hazaı	ds: Ty	pes ar	nd ef	fects -					
Vibration - Ind	dustrial Hygiene - Different air pollutants in indu	ustries and their eff	ects - I	Electric	cal, fi	re and					
Other Hazards											
UNIT – II	SAFETY AT WORKPLACE			9 Pe	eriods	5					
Safety at Worl	kplace - Safe use of Machines and Tools: Safety	in use of different	types o	f unit	opera	tions -					
Ergonomics of	Machine guarding - working in different workpla	ices - Operation, Ins	spection	n and r	nainte	enance					
- Housekeepin	g, Industrial lighting, Vibration and Noise.	-	-								
UNIT – III	ACCIDENT PREVENTION			9 Pe	eriods	6					
Accident Prev	ention Techniques - Principles of accident prev	ention - Hazard ide	entifica	tion a	nd an	alysis,					
Event tree ana	lysis, Hazop studies, Job safety analysis - Theorie	s and Principles of	Accide	nt caus	ation	- First					
Aid: Body stru	cture and functions - Fracture and Dislocation, Inj	uries to various boo	ly parts								
UNIT – IV	SAFETY MANAGEMENT			9 Pe	eriode	5					
Safety Manag	ement System and Law - Legislative measures	in Industrial Safet	y - Oc	cupati	onal	safety,					
Health and En	vironment Management, Bureau of Indian Standar	rds on Health and S	afety, I	S 1448	39 sta	ndards					
- OSHA, Proce	ess safety management (PSM) and its principles - I	EPA standards									
UNIT – V	GENERAL SAFETY MEASURES			9 Pe	eriods	5					
Plant Layout f	or Safety - design and location, distance between l	nazardous units, ligł	nting, c	olour c	oding	g, pilot					
plant studies,	Housekeeping - Accidents Related with Mainter	nance of Machines	- Work	c Perm	it Sy	stem -					
Significance o	f Documentation - Case studies involving imple	mentation of health	n and s	afety 1	measi	ires in					
Industries.											
Contact Periods:											
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods											
REFEREN	ICES:	2-1									
1 <b>"Physic</b>	cal Hazards of the Workplace", Barry Spurlock, (	CRC Press, 2017.									

2 "Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019

3 "Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.

4 "Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao, PharmaMed Press, 1st edition, 2021.

COUR	Bloom's	
		Taxonomy
Upon c	Upon completion of the course, the students will be able to:	
CO1	Identify the occupational health hazards.	K3
CO2	Execute various safety measures at workplace.	K3
CO3	Analyze and execute accident prevention techniques.	K3
CO4	Implement safety management as per various standards.	K3
CO5	Develop awareness on safety measures in Industries.	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	2	2	2	3	2				
CO2	2	2	2	1	2	2				
CO3	2	3	2	1	2	2				
CO4	1	1	1	2	2	2				
CO5	1	1	1	1	1	2				
<b>23EEOE04</b>	1	2	2	1	2	2				
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	35	20	10	5	5	100		
CAT2	25	35	20	10	5	5	100		
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30		-	-	100		
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100		
ESE	25	35	20	10	5	5	100		
		A B							

**23EEOE05** 

### CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITE	PREREQUISITES CATEGORY						
	NIL	OE	3	0	0	3	
Course	To understand the Earth's climate system, changes	and their effects o	n the	earth,	iden	tifying	
Objectives	the impacts, adaptation, mitigation of climate cha	nge and for gainin	ig kno	wledg	ge on	clean	
	technology, carbon trading and alternate energy sour	ces.					
UNIT – I	EARTH'S CLIMATE SYSTEM			9 Pe	eriod	S	
Introduction-Climate in the spotlight - The Earth's Climate Machine - Climate Classification- Global Wind							
Systems – Trade V	Vinds and the Hadley Cell – The Westerlies – Cloud	Formation and Me	onsoo	n Rair	1s - s	Storms	
and Hurricanes - T	he Hydrological Cycle – Global Ocean Circulation –	El Nino and its Ef	fect -	Solar	Radi	ation –	
The Earth's Natura	l Green House Effect – Green House Gases and Globa	al Warming – Carbo	on Cy	cle.			
UNIT – II	<b>OBSERVED CHANGES AND ITS CAUSES</b>			9 Pe	eriod	S	
Observation of Cli	mate Change - Changes in patterns of temperature, p	precipitation and se	a leve	el rise	– Ob	served	
effects of Climate	e Changes – Patterns of Large-Scale Variability	-Drivers of Clima	ate C	hange	- C	limate	
Sensitivity and Fee	edbacks – The Montreal Protocol –UNFCCC – IPCC	C – Evidences of C	Change	es in (	Clima	ite and	
Environment – on	a Global Scale and in India – climate change modelin	g.					
UNIT – III	IMPACTS OF CLIMATE CHANGE			9 Pe	eriod	S	
Impacts of Climate	Change on various sectors - Agriculture, Forestry ar	nd Ecosystem – Wa	ter Re	esource	es – I	Human	
Health – Industry,	Settlement and Society - Methods and Scenarios -I	Projected Impacts f	for Di	fferen	t Reg	gions –	
Uncertainties in the	e Projected Impacts of Climate Change – Risk of Irrev	versible Changes.					
UNIT – IV	CLIMATE CHANGE ADAPTATION AND	<b>MITIGATION</b>		9 Pe	eriod	S	
	MEASURES						
Adaptation Strateg	y/Options in various sectors – Water – Agriculture	Infrastructure an	nd Set	tlemer	nt inc	luding	
coastal zones – Hu	uman Health – Tourism – Transport – Energy – Key	Mitigation Techno	ologie	es and	Prac	tices –	
Energy Supply –	Transport – Buildings – Industry –Agriculture – F	orestry - Carbon s	seques	stration	1 – C	Carbon	
capture and storage	e (CCS) – Waste (MSW & Bio waste, Biomedical, Ind	lustrial waste – Inte	ernatio	onal ar	nd Re	gional	
cooperation.							
UNIT - VCLEAN TECHNOLOGY AND ENERGY9 Periods							
Clean Developmen	nt Mechanism - Carbon Trading - examples of futur	e Clean Technolog	gy −Bi	odiese	l-l	Vatural	
Compost – Eco- Fr	iendly Plastic – Alternate Energy – Hydrogen – Biofu	els– Solar Energy -	– Win	$d - H_{2}$	ydroe	electric	
Power – Mitigation	efforts in India and Adaptation funding.	F					
<b>Contact Periods</b> :		3					
Lecture: 45 Perio	ds Tutorial: 0Periods Practical: 0 Perio	ods Total:4	5 Per	iods			

REFERENCES

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report – Working Group I Report, "The physical sciencebasis", 2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change,
	Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Classify the Earths climatic system and factors causing climate change and global	K2
	warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and	K2
	Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible changes.	К3
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	K3
CO5	Discover clean technologies and alternate energy source for sustainable growth.	К3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	2	3	2	3	1			
CO2	3	2	ML112	2	3	2			
CO3	2	2.00	10-2-0	2	3	2			
CO4	3	2	2	2	2	2			
CO5	3	3	2	3	3	3			
23EEOE05	3	3	3	3	3	3			
1 - Slight, 2 - Moderate	, 3 – Substanti	al	- 1	11					

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	25	30	35	10	-	-	100	
CAT2	25	30	35	10	-	-	100	
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100	
ESE	25	30	35	10	-	-	100	

## WASTE TO ENERGY

(Common	to a	ll Brar	iches)
---------	------	---------	--------

PREREQUISITES CATEGORY I				P	С	
	NIL	OE	3 0	0	3	
Course	To classify waste as fuel, introduce conversion dev	vices, gain knowled	lge abo	ut Bi	omass	
Objectives	Pyrolysis, demonstrate methods, factors for biomass gas	sification, and acquir	re know	ledge	about	
	biogas and its development in India.					
UNIT – I	INTRODUCTION		9	Perio	ds	
Introduction to Energy from Waste: Classification of waste as fuel - Agro based, Forest residue, Industrial						
waste - MSW – Conversion devices – Incinerators, Gasifiers, Digestors.						
UNIT – II		9	Perio	ds		
Biomass Pyroly	sis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis -	Manufacture of cha	arcoal –	Meth	ıods –	
Yields and App	lications - Manufacture of Pyrolytic oils and gases, Yield	ls and Applications.				
UNIT – III	<b>BIOMASS GASIFICATION</b>		9	Perio	ds	
Gasifiers – Fiz	ked bed system - Downdraft and updraft gasifiers	- Fluidized bed g	asifiers	– D	esign,	
Construction an	d Operation - Gasifier burner arrangement for thermal	heating – Gasifier E	Engine a	rrang	ement	
and electrical po	ower – Equilibrium and Kinetic Considerations in gasifie	r operation.				
UNIT – IV	BIOMASS COMBUSTION	76	9	Perio	ds	
Biomass Comb	ustion - Biomass Stoves - Improved Chullahs, typ	bes, some exotic d	lesigns,	Fixe	d bed	
combustors, typ	es - Inclined grate combustors - Fluidized bed combust	tors, design, constru	ction an	d ope	ration	
of all the above	biomass combustors.	S>				
UNIT – V	BIOENERGY SYSTEM	//	9	Perio	ds	
Biogas: Propert	ies of biogas (Calorific value and composition) - Bio	gas plant technolog	y and s	tatus	– Bio	
energy system	- Design and constructional features - Biomass resour	rces and their classi	fication	- Bi	omass	
conversion proc	esses - Thermo chemical conversion - Direct combust	tion – biomass gasif	fication	– pyr	olysis	
and liquefaction	n – biochemical conversion – anaerobic digestion – Ty	pes of biogas plant	s – App	olicati	ons –	
Alcohol produc	tion from biomass – Bio diesel production – Urban v	vaste to energy con	version	– Bi	omass	
energy program	me in India.					
<b>Contact Period</b>	s: A X	VB.				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Per	iods Total: 45	Periods			
REFEREN	ICES:					
I "Energy Re	covery from Municipal Solid Waste by Thermal Conve	rsion Technologies'	<b>",</b> <i>P Ja</i> y	varam	ı Reddy	
Taylor and	Francis Publications, 2016.					
"Wasta	to Engrow Tasky slaging and project Implan	autations" Mana	I Dog	A I	7	

2 *"Waste – to – Energy: Technologies and project Implementations",* Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019.

3 **"Biogas Technology and Principles"**, Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.

"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications, 2010.

COUR Upon c	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	К3
CO3	Demonstrate methods and factors considered for biomass gasification.	К3
CO4	Identify the features of different facilities available for biomass combustion.	K4

CO5 Analyze the potential of different Bioenergy systems with respect to Indian condition.

$\boldsymbol{v}$	0
ĸ	7

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	3	3	2	3	1		
CO2	3	2	2	2	3	1		
CO3	3	3	2	3	2	1		
CO4	3	2	2	3	3	1		
CO5	2	3	3	3	2	1		
<b>23EEOE06</b>	3	3	3	3	3	1		
1 – Slight, 2 – Moderate, 3 – Subs	stantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10	20	20	25	15	10	100	
CAT2	10	25	20	10	25	10	100	
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	35	50	-	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100	
ESE	10	25	25	20	10	10	100	

22CEOE07	ENERGY IN BUILT ENVIRONMENT							
23GEOEU/	(Common to all Branches)							
PREREQUISIT	ES	CATEGORY	L	Τ	P	С		
	NIL	OE	3	0	0	3		
Course	To understand constructional energy requirements	of buildings, ener	gy a	udi	me	hods		
Objective	<b>Objective</b> and conservation of energy.							
UNIT–I	INTRODUCTION 9 F				Perio	ds		
Indoor activities and environmental control - Internal and external factors on energy use -Characteristics o								
energy use and i	ts management -Macro aspect of energy use in dwel	lings and its impl	icati	ons	-Th	erma		
comfort-Ventilat	on and air quality-Air-conditioning requirem	ent-Visual perce	ptio	n-Ill	umiı	natior		
requirement-Aud	itory requirement.	-	-					
UNIT–II	LIGHTING REQUIREMENTS IN BUILDING			91	Perio	ds		
The sun-earth re	elationship - Climate, wind, solar radiation and ter	nperature - Sun	shad	ing	and	sola		
radiation on surf	aces-Energy impact on the shape and orientation of b	uildings-Lighting	and	dav	ligh	ting		
Characteristics a	d estimation, methods of day-lighting-Architectural c	considerations for a	lav-l	ight	ing.	0		
UNIT-III	ENERGY REOUIREMENTS IN BUILDING			91	Perio	ds		
building envelop energy requirement	e- Evaluation of the overall thermal transfer- Thern ents-Status of energy use in buildings-Estimation of en	nal gain and net l ergy use in a build	neat	gaiı	n-En	l-Use		
UNIT-IV	ENERGY AUDIT			91	Perio	_		
Energy audit an ventilation–Indo		v management-N			1 0	ds		
effect.	d energy targeting-Technological options for energ or environment and air quality-Air flow and air press	ure on buildings-I	atura Flow	al an due	nd to s	ods orced Stack		
effect.	d energy targeting-Technological options for energ or environment and air quality-Air flow and air press COOLING IN BUILT ENVIRONMENT	ure on buildings-I	atura Flow	al an due 91	$\frac{10}{2} \text{ to } \frac{1}{2}$	ods orced Stack		
effect. UNIT–V Passive building for ventilation-N building concept	d energy targeting-Technological options for energ or environment and air quality-Air flow and air press COOLING IN BUILT ENVIRONMENT architecture– Radiative cooling-Solar cooling techniqu atural and active cooling with adaptive comfort–E	ure on buildings-I	atura Flow t deh g –	dua dua 91 umi Zer	ro en	ods orced Stack ods ation nergy		
effect. UNIT–V Passive building for ventilation-N building concept Contact Periods	d energy targeting-Technological options for energ or environment and air quality-Air flow and air press COOLING IN BUILT ENVIRONMENT architecture– Radiative cooling-Solar cooling techniqu atural and active cooling with adaptive comfort–F	ure on buildings-H nes-Solar desiccant Evaporative coolin	atura Flow t deh g –	al an due 91 uumi Zen	re to se to	orced Stack ods ation nergy		
effect. UNIT–V Passive building for ventilation-N building concept Contact Periods Lecture: 45 Period	d energy targeting-Technological options for energ or environment and air quality-Air flow and air press COOLING IN BUILT ENVIRONMENT architecture– Radiative cooling-Solar cooling techniqu atural and active cooling with adaptive comfort–E : ods Tutorial: 0 Periods Practical: 0 Period	ure on buildings-H nes-Solar desiccant evaporative coolin s Total: 45 H	atura Flow t deh g –	al an duc 9 I numi Zer	e to series of the series of t	orced Stack ds ation hergy		

<ol> <li>S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.</li> <li>A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.</li> <li>ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.</li> <li>Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University California, and Blast, University of Illinoi, USA.</li> </ol>	1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill, 2000.
<ol> <li>A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.</li> <li>ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.</li> <li>Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University California, and Blast, University of Illinoi, USA.</li> </ol>	2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
<ul> <li>ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.</li> <li>Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University California, and Blast, University of Illinoi, USA.</li> </ul>	3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
5 Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University California, and Blast, University of Illinoi, USA.	4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
California, and Blast, University of Illinoi, USA,	5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
		California, and Blast, University of Illinoi, USA.

COUF	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand energy and its usage	K2
CO2	Know lighting to be given to a building	K1
CO3	Analyse the energy requirements in a building	К3
CO4	Apply the energy audit concepts.	К3
CO5	Study architectural specifications of a building	K1


COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	-	3	1	2	1				
CO2	2	-	3	1	2	1				
CO3	2	-	3	1	2	1				
CO4	2	-	3	1	2	1				
CO5	2	-	3	1	2	1				
23GEOE07	2	-	3	1	2	1				
1-Slight, 2-Moderate	e, 3–Substantia	al								

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Rememberin	Understanding	Applying	Analyzing	Evaluatin	Creating	Total			
Category*	g (K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%			
CAT 1	40	40	20		-	-	100			
CAT 2	40	40	20		-	-	100			
Individual		76	ماري روي روي روي (							
Assessment 1 /		10/2593	CHURCH L	201						
Case Study 1/	50	50			-	-	100			
Seminar 1 /				$\sum$						
Project1				E /						
Individual			2							
Assessment 2 /										
Case Study 2/	50	50	SWAN I	· -  ]	-	-	100			
Seminar 2 /			10000	11						
Project 2			CAR A							
ESE	40	40	-20		-	-	100			



23GEOE08		EARTH AND ITS ENVIRONMENT								
		(Common to all Branches)								
PREREQUISIT	ES	CATEGO	DRY	L	Т	P	С			
	NIL	OE		3	0	0	3			
Course	To kno	ow about the planet earth, the geosystems and the resource	es like	e gro	ound	l wa	ter and			
Objective	air and	l to learn about the Environmental Assessment and sustaina	ability	/.						
UNIT–I	EVOL	UTION OF EARTH			9	Peri	ods			
Evolution of ear	rth as h	abitable planet-Evolution of continents-oceans and land	form	s-ev	olut	ion	of life			
through geologic	cal time	s - Exploring the earth's interior - thermal and chemic	al str	uctu	ire -	- ori	gin of			
gravitational and	magnet	ic fields.								
UNIT-II		GEOSYSTEMS			9	Peri	ods			
Plate tectonics -	working	g and shaping the earth - Internal geosystems - earthquake	es – v	olca	anoe	es -c	limatic			
excursions throug	gh time	- Basic Geological processes - igneous, sedimentation - mo	etamo	orph	ic p	roce	sses.			
UNIT-III		GROUND WATER GEOLOGY			9 Periods					
Geology of groun	nd wate	r occurrence -recharge process-Ground water movement-	Grou	nd v	vate	r dis	charge			
and catchment hy	ydrology	y – Ground water as a resource - Natural ground water qua	ality a	nd	cont	amii	nation-			
Modelling and m	anaging	ground water systems.								
UNIT-IV		ENVIRONMENTAL ASSESMENT AND SUSTAINABI	LITY	Ζ	9	Peri	ods			
Engineering and resources - water assessment-expo	Engineering and sustainable development - population and urbanization - toxic chemicals and finite resources - water scarcity and conflict - Environmental risk - risk assessment and characterization –hazard assessment-exposure assessment.									
UNIT-V		AIR AND SOLIDWASTE			9	Peri	ods			
Air resources chemistry-Solid	Air resources engineering-introduction to atmospheric composition-behaviour-atmospheric photo chemistry-Solid waste management-characterization-management concepts.									
Lecture: 45 Pariods Tutorial: 0 Pariods Practical: 0 Pariods Total: 45 Pariods										
REFEREN	CES					1040	2010			

1	John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman, 2010.
2	Younger, P.L., "Ground water in the Environment: An introduction", Blackwell Publishing, 2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering: Fundamentals,
	Sustainability and Design", Wiley, NJ, 2010.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and the	K2
	Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground water	K3
	and the modeling systems.	
<b>CO4</b>	To assess the Environmental risks and the sustainability developments.	K3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	1	-	-	2	2	-					
CO2	3	-	3	3	-	3					
CO3	2	-	-	-	-	-					
CO4	-	2	-	-	1	-					
CO5	2	2	-	1	-	-					
23GEOE08	2	2	3	3	2	3					
1-Slight, 2-Moderat	1-Slight, 2-Moderate, 3-Substantial										

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT 1	40	40 00	20	S PHERE	-	-	100		
CAT 2	40	40	20	Dal V	-	-	100		
Individual		42							
Assessment 1 /									
Case Study 1/	-	50	50	<b>T</b> - //	-	-	100		
Seminar 1 /				泉 (/ )					
Project1									
Individual			SWAN I						
Assessment 2 /		1/ .16	2 S I						
Case Study 2/	-	50	50	- 11	-	-	100		
Seminar 2 /		8							
Project 2		A U		AV .					
ESE	40	40	20	J. JA	-	-	100		



23050500		NATURAL HAZARDS AND MITIGATION									
23GEUEU9		(Common to all Branches)									
PREREQUISITE	ES:		CATEGORY	L	Т	P	С				
	NII		OE	3	0	0	3				
Course	То	get idea on the causes, effects and mitigation measures of different types of hazards with									
Objective	cas	ase studies.									
UNIT-I	EA	RTH QUAKES			9 I	Period	5				
Definitions and ba	asic	concepts-different kinds of hazards-causes-C	Beologic Hazards	–Ear	thquak	es-cau	ses of				
earthquakes-effec	ts-pl	ate tectonics-seismic waves-measures of s	ize of earthqual	ces-ea	rthqua	ike res	sistant				
design concepts.											
UNIT-II	SL	OPE STABILITY			9 I	Period	5				
Slope stability and	d laı	ndslides-causes of landslides-principles of st	tability analysis-	reme	lial an	d corr	ective				
measures for slope	e stal	bilization.									
UNIT-III	FL	OODS			9 I	Period	8				
Climatic Hazards-	–Flo	ods-causes of flooding-regional flood frequ	ency analysis-f	lood	contro	ol mea	sures-				
flood routing-flood	d foi	ecasting-warning systems.	The state								
UNIT-IV	DR	OUGHTS COUGHTS	KOV -		9 I	9 Periods					
Droughts -causes	- typ	bes of droughts -effects of drought -hazard as	ssessment – decis	sion r	naking	-Use o	f GIS				
in natural hazard a	isses	sment-mitigation-management.	7								
UNIT–V	TS	UNAMI	77		9 I	Period	6				
Tsunami-causes-e	effec	ts-under sea earthquakes-landslides-volcar	nic eruptions-im	pact	of sea	1 mete	orite-				
remedial measures	s–pro	ecautions-case studies.									
<b>Contact Periods</b> :											
Lecture: 45 Perio	ods	Tutorial: 0 Periods Practical: 0 Perio	ods Total:	45 P	eriods						
REFEREN	CES										
	~										

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press, 2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon com	pletion of the course, the students will be able to:	Mapped
CO1	Learn the basic concepts of earthquakes and the design concepts of earthquake	K2
	Resistant buildings.	
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	K3
CO3	As certain the causes and control measures of flood.	K3
CO4	Know the types, causes and mitigation of droughts.	K2
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	1	-	3	2	3					
CO2	3	1	2	3	3	3					
CO3	3	2	3	-	-	3					
CO4	3	-	-	3	2	3					
CO5	3	-	2	2	-	3					
<b>23GEOE09</b>	3	1	2	3	2	3					
1-Slight, 2-M	1–Slight, 2–Moderate, 3–Substantial										

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50 55	50 mb		-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	₹.(	-	_	100			
ESE	40	40	20	- //	-	-	100			



23F					BUSIN	ESS ANAL	YTICS					
251	DOLIO		(Common to all Branches)									
PRE	REQUIS	SITES					CATEGO	RY	L	Т	P	С
		NIL         OE         3         0         0									0	3
Co	urse	• To	o apprel	nend the fur	ndamenta	als of busines	ss analytics ar	nd its l	ife	cyc	le.	
Obje	ectives	• To	o gain k	nowledge a	about fun	damental bus	siness analyti	cs.				
		• To	o study	modeling fo	or uncert	ainty and sta	tistical inferen	nce.				
		• To	o apprel	nend analyti	tics the u	sage of Hado	op and Map I	Reduc	e fr	ame	wor	ks.
		• To	o acquir	e insight on	n other a	nalytical fran	neworks.					
UNIT	Γ – Ι	BUSINES	SS ANA	LYTICS A	AND PR	OCESS				9 P	erio	ds
Busin	ness analy	ytics: Overv	view of	Business an	nalytics,	Scope of Bu	siness analyti	ics, B	ısir	iess	Ana	lytics
Proce	ess, Rela	tionship of	f Busine	ess Analytic	cs Proce	ss and organ	ization, com	petitiv	/e a	adva	intag	ges of
Busin	ness Anal	ytics. Statis	stical To	ools: Statist	tical Not	ation, Descri	ptive Statistic	al me	tho	ds, ]	Revi	ew of
proba	bility dis	tribution a	nd data	modelling, s	sampling	g and estimat	ion methods o	overvi	ew	•		
UNIT	Γ – <b>Π</b>	REGRES	SSION A	ANALYSIS	S prime	m				9 P	erio	ds
Trend	liness an	d Regressi	ion Ana	lysis: Mode	elling R	elationships	and Trends i	n Dat	a, 1	simp	ole I	Linear
Regre	ession. In	nportant R	Resource	es, Busines	ss Analy	tics Personn	el, Data and	mod	els	for	Bus	siness
analy	tics, prob	olem solvin	ıg, Visua	alizing and l	Explorin	ig Data, Busi	ness Analytic	s Tecl	nno	logy	/.	
UNIT	Γ – III	STRUCT	URE O	F BUSINE	ESS ANA	ALYTICS				9 P	erio	ds
Organ	nization	Structures	of Busi	ness analyti	tics, Tea	m manageme	ent, Managen	nent I	ssu	es, İ	Desi	gning
Inform	mation I	Policy, Out	tsourcin	g, Ensurin	ng Data	Quality, M	easuring con	tribut	ion	of	Bu	siness
analy	tics, Ma	naging Cha	anges. I	Descriptive	Analyti	cs, predictiv	e analytics, j	predic	ativ	ve N	Aode	elling,
Predi	ctive ana	lytics analy	ysis, Da	ata Mining,	, Data M	lining Metho	dologies, Pre	script	ive	ana	lytic	s and
its ste	p in the	business an	alytics l	Process, Pre	escriptive	e Modelling,	nonlinear Op	timiza	tio	n.		
UNIT	$\Gamma - IV$	FORECA	ASTINC	<b>TECHNI</b>	QUES	SA.				9 P	erio	ds
Forec	asting T	echniques:	Qualita	ative and J	Judgmen	tal Forecasti	ng, Statistica	1 For	eca	sting	g M	odels,
Forec	asting M	lodels for S	Stationa	ry Time Se	eries, Fo	recasting Mc	dels for Tim	e Seri	es	with	ı a I	Linear
Trenc	l, Foreca	sting Time	e Series	with Seas	sonality,	Regression	Forecasting v	vith C	lası	ual	Vari	ables,
Selec	ting App	ropriate Fo	precastin	ig Models. I	Monte C	Carlo Simulat	ion and Risk	Analy	sis	: Mo	onte	Carle
Simu	lation Us	ing Analyt	tic Solve	er Platform,	, New-Pi	oduct Develo	opment Mode	el, Ne	WSV	vend	or N	lodel,
Overt	booking	Model, Cas	sh Budge	et Model.					~	0.1	<u> </u>	
UNII	$\Gamma - V$	DECISIO	JN ANA	ALYSIS AP	ND REC	ENT TREN	DS IN BUS	INES	5	91	Peri	ods
Daaia	ion Ano	ANALY I		Desision D	Duchlana	Desision St	trataging with	that			0	
Decis	Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome								ecent			
Trend	lonnies, le: Embe	dded and c	collabor	ative busing	on intel	ligence Visi	al data reco	151011	Dat	anii 19 St	g. N	elling
and $\Gamma$	and Data journalism											
Cont	Contact Periods											
Lectu	Lecture: 45 Periods Tutorial: 0 Periods Practical · 0Periods Total · 45 Periods											
Lette		UTIOUS	1 4001		ous	114000011	or crious	1000				us
REF	ERENC	ES										
1 V.	igneshPr	ajapati, " <b>B</b>	Big Data	Analytics	with R a	nd Hadoop"	Packt Publis	hing,	201	3.		
$\begin{vmatrix} 2 \\ \end{bmatrix} U$	mesh R	Hodeghatta	a, Umes	shaNayak, '	"Busines	ss Analytics	Using R – A	Prac	ctic	al A	lppro	oach",
$A_{j}$	press, 20	17.										
3 A	nandRaj	araman, Je	effrey Do	avid Ullmar	n, <b>"Min</b>	ing of Massi	ve Datasets",	, Cam	bri	dge	Uni	versity
P	ress, 201	2.										

4 Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.

U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making", Wiley, 5 2017.

6 Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

#### **COURSE OUTCOMES:**

		Taxonomy	
Upon completion of the course, the students will be able to:			
CO1	Identify the real world business problems and model with analytical solutions.	K4	
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4	
CO3	Convert any real world decision making problem to hypothesis and apply suitable	K4	
	statistical testing.		
CO4	Write and Demonstrate simple applications involving analytics using Hadoop and	K4	
	Map Reduce		
CO5	Use open source frameworks for modeling and storing data.	K4	

Bloom's

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	1/2	2		2	1			
CO2	1	1	1	2	1			
CO3	2	2		1	-			
CO4	2	2	衆 1 //	-	-			
CO5	1	2	/ \-	-	-			
<b>23EDOE10</b>	1	2.0%	1	2	1			
1 - Slight, 2 - Moderate,	3-Substantial							

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	25	25	6 25			100		
CAT2	20	25	25	30			100		
Assignment 1	25	30	25	20			100		
Assignment 2	30	20	30	20			100		
ESE	20	30	20	30			100		

# G1'

ZINY

23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY (Common to all Branches)										
PREREQUIS	SITES				CATEGORY	L	Т	Р	С		
	NIL OE 3								3		
Course	• Sı	ummarize b	pasics of indus	strial safety.	1						
Objectives	• D	escribe fun	damentals of	maintenance	engineering.						
	• Ex	xplain wear	r and corrosion	n.	0						
	• III	• Illustrate fault tracing.									
	• Id	lentify prev	rentive and per	riodic mainter	nance.						
UNIT – I	INTROD	UCTION					9	Perio	ods		
Accident, cau	ises, types,	results and	d control, me	chanical and	electrical hazard	ls, ty	pes, o	causes	s and		
preventive ste	ps/procedu	re, describe	e salient point	s of factories	act 1948 for hea	alth a	nd sa	fety,	wash		
rooms, drinkin	ng water la	youts, ligh	t, cleanliness,	fire, guardin	g, pressure vesse	els, e	tc., Sa	afety	color		
codes. Fire pro	evention and	d firefighti	ng, equipment	t and methods	5.						
UNIT – II	FUNI	DAMENTA	ALS OF MAI	INTENANCI	E ENGINEERIN	١G	9	Perio	ods		
Definition and	d aim of ma	aintenance	engineering, I	Primary and s	secondary function	ons ar	nd res	ponsi	bility		
of maintenan	ce departm	nent, Type	s of mainten	ance, Types	and application	s of	tools	used	1 for		
maintenance,	Maintenanc	ce cost & its	s relation with	replacement	economy, Servic	e life	ofec	luipm	ent.		
UNIT – III	WEA	R AND CO	ORROSION	AND THEF	R PREVENTION	N	9	Perio	ods		
Wear- types, o	causes, effe	ects, wear r	eduction meth	ods, lubrican	ts-types and app	licati	ons, I	ubric	ation		
methods, gene	eral sketch,	, working a	and applicatio	ons, i. Screw	down grease cuj	9, ii.	Press	ure g	rease		
gun, iii. Splas	h lubricatio	on, iv. Grav	ity lubrication	ı, v. Wick fee	d lubrication vi.	Side	feed l	ubrica	ation,		
vii. Ring lubr	rication, De	finition, pr	inciple and fa	actors affectin	ng the corrosion.	Тур	es of	corro	sion,		
corrosion prev	vention met	hods.									
UNIT – IV	FAUI	LT TRACI	NG	WAN'			9	Perio	ods		
Fault tracing-	concept an	d importar	ice, decision	tree concept,	, need and appli	catio	ns, se	quen	ce of		
fault-finding a	activities, s	show as de	cision tree, d	raw decision	tree for probler	ns 1n	mac	hine t	tools,		
hydraulic, pne	eumatic, aut	tomotive, tl	hermal and ele	ectrical equip	ment's like, I. A	ny or	ie ma	chine	tool,		
11. Pump 111. A	ar compress	sor, iv. Inte	rnal combusti	on engine, v.	Boiler, vi. Electr	ical r	notors	s, Typ	es of		
faults in mach	ine tools an	id their gen	eral causes.				0	<b>D</b> ·	1		
$\frac{\mathbf{UNII} - \mathbf{V}}{\mathbf{D} \cdot 1 \cdot 1}$	PERI	IODIC AN	DPREVENI				9	$\frac{\text{Perio}}{1}$	ods		
Periodic inspe	ection-conce	ept and ne	ed, degreasing	g, cleaning a	nd repairing sche	emes,	over	naulii	1g 01		
mechanical co	omponents,	overnaulin	g of electrical	i motor, com	mon troubles and	i rem	edies		ectric		
motor, repair	motor, repair complexities and its use, definition, need, steps and advantages of preventive										
Pumps iii A	Pumps iii Air compressors in Dissel generating (DC) sets Program and schedule of proventive										
maintenance of	rumps, III. Air compressors, IV. Diesel generating (DG) sets, Program and schedule of preventive										
cvcle concept	and imports	ance	enten equipin	ient, auvantag	ses of preventive	111011	ul	1	opun		
Contact Peri	ods:										
Lecture: 45 P	Periods	Tutorial	: 0 Periods	Practical	l:0Periods To	otal:4	5 Pe	riods			

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London, 2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers,
	2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition
	,2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COU	COURSE OUTCOMES:					
		Taxonomy				
Upon	completion of the course, the students will be able to:	Mapped				
CO1	Ability to summarize basics of industrial safety	K4				
CO2	Ability to describe fundamentals of maintenance engineering	K4				
CO3	Ability to explain wear and corrosion	K4				
CO4	Ability to illustrate fault tracing	K4				
CO5	Ability to identify preventive and periodic maintenance	K4				

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	2	1	1	-	-			
CO2	2	2	1	-	1			
CO3	1	201	1	1	1			
CO4	2 4	01 32		1	1			
CO5	20	1500 BIL 116	2	1	1			
23EDOE11	2 20 20	CIUL/C		1	1			
1 - Slight, $2 - $ Moderate, $3 - $ Su	ıbstantial							

	10		1	E7			
ASSESSMENT	PATTERN – TH	IEORY	W/2				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

<b>23EDOE12</b>
25EDUEI2

#### **OPERATIONS RESEARCH**

(Common to all Branches)

		anonosj					
PREREQUISITE	L	Т	P	С			
	3	0	0	3			
Course	• Solve linear programming problem and solve	using graphical meth	nod.				
Objectives	• Solve LPP using simplex method.						
	• Solve transportation, assignment problems.						
	• Solve project management problems.						
	• Solve scheduling problems.						
UNIT – I	INTRODUCTION			9	Per	iods	
Optimization Tech	nniques, Model Formulation, models, General L.R Form	nulation, Simplex T	echni	ique	es, So	ensitivity	
Analysis, Inventor	ry Control Models						
UNIT – II	LINEAR PROGRAMMING PROBLEM			9 Periods			
Formulation of a	LPP - Graphical solution revised simplex method -	duality theory - du	ıal si	mp	lex 1	nethod -	
sensitivity analysis	s - parametric programming						
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM			9	Per	iods	
Nonlinear program	mming problem - Kuhn-Tucker conditions min cos	t flow problem - :	max	flo	w pi	oblem -	
CPM/PERT	C BYDER DBALLOD BILLID BALLID	76					
UNIT – IV	SEQUENCING AND INVENTORY MODEL			9	Per	iods	
Scheduling and s	sequencing - single server and multiple server mod	lels - deterministic	inve	ento	ory 1	nodels -	
Probabilistic inver	ntory control models - Geometric Programming.	5					
UNIT – V	GAME THEORY	//		9	Per	iods	
Competitive Mod	Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in						
Networks, Elementary Graph Theory, Game Theory Simulation							
Contact Periods:							
Lecture: 45 Periods Tutorial : 0 Periods Practical : 0 Periods Total : 45 Periods							
REFERENCES							

1	H.A. Taha "Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5		
CO1	2	1	1	-	-		
CO2	2	2	1	-	-		
CO3	1	1	2	1	1		
CO4	1	1	-	-	-		
CO5	2	1	-	-	-		
23EDOE12	2	1	1	1	1		

l – Slight,	2 – Moderate,	3 – Substantial
-------------	---------------	-----------------

ASSESSMEN	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	25	25	25			100			
CAT2	20	25	25	30			100			
Assignment 1	25	30	25	20			100			
Assignment 2	30	20	30	20			100			
ESE	20	30	20	30			100			



23MFOE13	OCCUPATIONAL HEALTH	AND SAFETY						
	(Common to all Brand	ches)						
PREREQUISI	TES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course	• To gain knowledge about occupational health hazard	and safety measure	es at	work	c pla	ce.		
Objectives	• To learn about accident prevention and safety manag	ement.						
	• To learn about general safety measures in industries.	To learn about general safety measures in industries.						
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS		9 Periods			ds		
Safety- History	and development, National Safety Policy- Occupatio	nal Health Hazard	ls -	Ergo	nom	nics -		
Importance of I	ndustrial Safety Radiation and Industrial Hazards- Machin	e Guards and its ty	pes, J	Auto	mati	on.		
		•						
UNIT – II	SAFETY AT WORKPLACE					ds		
Safety at Work	place - Safe use of Machines and Tools: Safety in use of	of different types o	f un	it op	erati	ons -		
Ergonomics of	Machine guarding - working in different workplaces - O	peration, Inspectior	1 and	l mai	inten	ance,		
Plant Design an	d Housekeeping, Industrial lighting, Vibration and Noise	Case studies.						
UNIT – III	ACCIDENT PREVENTION	b.		9 Periods				
Accident Preven	ntion Techniques - Principles of accident prevention - Def	initions, Theories, I	Princ	iples	– H	azard		
identification an	nd analysis, Event tree analysis, Hazop studies, Job safety	analysis - Theorie	s and	1 Pri	ncip	les of		
Accident causa	tion - First Aid : Body structure and functions - Fractur	e and Dislocation,	Inju	ries t	to va	rious		
body parts.		>						
UNIT – IV	SAFETY MANAGEMENT			9 P	erio	ds		
Safety Manager	ment System and Law - Legislative measures in Indust	rial Safety: Variou	is ac	ts in	volv	ed in		
Detail- Occupat	ional safety, Health and Environment Management: Bure	au of Indian Stand	ards	on H	Iealt	h and		
Safety, 14489,	15001 - OSHA, Process safety management (PSM) and it	its principles - EPA	sta:	ndaro	ls- S	afety		
Management: C	rganisational & Safety Committee - its structure and funct	tions.						
UNIT – V GENERAL SAFETY MEASURES 9 Pe					erio	ds		
Plant Layout fo	r Safety -design and location, distance between hazardou	us units, lighting, c	olou	r coc	ling,	pilot		
plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System:								
Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health								
and safety meas	and safety measures in Industries.							
<b>Contact Perio</b>	ds:	1						
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Period	ls Total:45 Per	iods					

1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, NewDelhi, 2008.
5	https://nptel.ac.in/courses/110105094
6	https://archive.nptel.ac.in/courses/110/105/110105094/

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures at work place.	K3
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in industries.	К3
CO4	Know various laws, standards and legislations.	K2

**CO5** Implement safety and proper management of industries.

COURSE ARTICULATION MATRIX:							
Cos/Pos	PO1	PO2	PO3	PO4	PO5		
CO1	2	1	1	1	1		
CO2	2	2	1	1	1		
CO3	1	2	1	1	1		
CO4	2	1	1	1	1		
CO5	2	1	2	1	1		
23MFOE13	2	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		50	50 50				100
CAT2		50	- 30	20			100
Individual		50	50				100
Assessment 1/			A CONTRACT				
Case Study 1/							
Seminar 1 /		10 10	C.	r //			
Project1							
Individual		50	30	20			100
Assessment 2/							
Case Study 2/				11			
Seminar 2 /		1 9					
Project 2							
ESE		40	40	20			100

K4

23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS (Common to all Branches)							
PREREQUISIT	ES	CATEGORY	L	Τ	Р	С		
	NIL	OE	3	0	0	3		
Course	• To understand the costing concepts and their role in d	ecision making.						
Objectives	• To acquire the project management concepts and their	To acquire the project management concepts and their various aspects in selection.						
	• To gain the knowledge in costing concepts with proje	ct execution.						
	• To develop knowledge of costing techniques in servic	e sector and various	bud	getai	y co	ntrol		
	techniques.							
	• To familiarize with quantitative techniques in cost ma	nagement.						
UNIT – I	INTRODUCTION TO COSTING CONCEPTS 9 Periods							
Introduction and	Overview of the Strategic Cost Management Process,	, Cost concepts in	dec	ision	-mal	cing;		
Relevant cost, Di	fferential cost, Incremental cost and Opportunity cost. Obje	ectives of a Costing	Syst	em; ]	Inver	ntory		
valuation; Creation	on of a Database for operational control; Provision of data for	or Decision - Makin	g.					
UNIT – II	PROJECT PLANNING ACTIVITIES			91	Perio	ods		
Project: meaning	, Different types, why to manage, cost overruns centers.	various stages of	proje	ect e	xecu	tion:		
conception to co	ommissioning. Project execution as conglomeration of t	echnical and nonte	chni	cal a	activ	ities.		
Detailed Enginee	ring activities. Pre project execution main clearances and	documents Project t	eam:	Rol	e of	each		
member. Importa	nce Project site: Data required with significance. Project	contracts. Types and	d cor	ntent	s. Pr	oject		
execution Project	cost control. Bar charts and Network diagram. Project com	missioning: mechar	ical	and j	proce	ess.		
UNIT – III	COST ANALYSIS	(		91	Perio	ods		
Cost Behaviour	and Profit Planning Marginal Costing; Distinction betwe	en Marginal Costin	ig an	d A	bsorp	otion		
Costing; Break-	even Analysis, Cost-Volume-Profit Analysis. Various	decision-making pr	oble	ms.	Stan	dard		
Costing and Vari	ance Analysis.							
UNIT – IV	PRICING STRATEGIES AND BUDGETORY CONT	ROL		91	Perio	ods		
Pricing strategies	: Pareto Analysis. Target costing, Life Cycle Costing, C	osting of service se	ctor,	Just	-in -	time		
approach, Materi	al Requirement Planning, Enterprise Resource Planning.	Budgetary Control;	Flex	ible	Bud	gets;		
Performance bud	gets; Zero-based budgets. Measurement of Divisional pr	ofitability pricing d	ecisi	ons	inclu	ding		
transfer pricing.								
UNIT - V         TQM AND OPERATIONS REASEARCH TOOLS         9 Periods								
Total Quality N	lanagement and Theory of constraints, Activity-Based	Cost Management,	Bei	nch	Marl	king;		
Balanced Score	Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear							
Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.								
<b>Contact Period</b>	8:							
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Periods To	tal: 45 Periods						
REFEREN	NCES:							

# Charles T. Horngren and George Foster, Advanced Management Accounting, 2018. John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor &Francis, 2016 Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015. Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall of India, New Delhi, 2011. https://archive.nptel.ac.in/courses/110/104/110104073/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Apply the costing concepts and their role in decision making.	К3
CO2	Apply the project management concepts and analyze their various aspects in	K4
	selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various budgetary	K2
	control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	K3

#### **COURSE ARTICULATION MATRIX:**

COs/Pos	PO1	PO2	PO3	PO4	PO5		
CO1	1	1	2	1	1		
CO2	2	mo.	1	1	-		
CO3	Boy 2 7 7 0	2	2	-	-		
CO4		1940 01	A VE	1	1		
CO5	CAR ST	2725		1	-		
<b>23MFOE14</b>			I	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

1h

### ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		0	40	60			100
CAT2		30	30	40			100
Individual		200 1000	40	60			100
Assessment 1 /							
Case Study 1/		0	1	2-1			
Seminar 1 /		200	20-10	0			
Project1		624	0 50000	er i			
Individual		30	30	40			100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE		20	40	40			100

22MEOE15	23MEOE15 COMPOSITE MATERIALS								
231VIFUE15	(Common to all Brand	ches)							
PREREQUIS	ITES	CATEGORY	L	T P	C				
	NIL	OE	3	0 0	3				
Course	• To summarize the characteristics of composite ma	aterials and effect	of rei	nforcen	nent				
Objectives	in composite materials.								
	• To identify the various reinforcements used in con-	mposite materials.							
	• To compare the manufacturing process of metal n	natrix composites.							
	• To understand the manufacturing processes of pol	ymer matrix comp	osite	s.					
	• To analyze the strength of composite materials.								
UNIT – I	INTRODUCTION		9	Perio	ls				
Definition – C	Classification and characteristics of Composite materia	als. Advantages ar	id app	olication	1 of				
composites. F	unctional requirements of reinforcement and matrix.	Effect of reinforce	ement	on ove	erall				
composite per	formance.								
UNIT – IIREINFORCEMENT9 Periods					ls				
Preparation-la	yup, curing, properties and applications of glass fiber	s, carbon fibers, K	Levlar	fibers	and				
Boron fibers.	Properties and applications of whiskers, particle reinfo	rcements. Mechan	ical H	Behavio	r of				
composites: R	ule of mixtures, Inverse rule of mixtures. Isostrain and	Isosteresconditions	5.						
UNIT – III	MANUFACTURING OF METAL MATRIX COM	IPOSITES	9	Period	ls				
Casting – Soli	d State diffusion technique, Cladding – Hot isostatic pr	ressing- Manufactu	uring	of Cera	mic				
Matrix Compo	osites: Liquid Metal Infiltration – Liquid phase sint	ering–Manufacturi	ng of	f Carbo	n –				
Carbon compo	sites: Knitting, Braiding, Weaving- Properties and app	lications.							
UNIT – IV	MANUFACTURING OF POLYMER MATRIX C	OMPOSITE	9	Period	ls				
Preparation of	Moulding compounds and prepregs - hand layup method	nod – Autoclave m	ethod	l –Filan	nent				
winding metho	od – Compression moulding – Reaction injection mould	ling. Properties and	d app	lication	s.				
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	1	9	Period	ls				
Laminar Failu	re Criteria-strength ratio, maximum stress criteria, m	aximum strain cri	teria,	interac	ting				
failure criteria	, hygrothermal failure. Laminate first play failure-insig	ght strength; Lamin	nate s	trength	-ply				
discount trunca	ated maximum strain criterion; strength design using ca	plet plots; stress c	oncer	trations	5.				
<b>Contact Perio</b>	ods:	-							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 P	eriods Tot	tal: 4	5 Perio	ds				
	TONE MARCHINE STATE								
REFERENCI									

#### **REFERENCES:**

IVL	
1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz, 2013.

5 https://nptel.ac.in/courses/112104168

COU	RSE OUTCOMES:	Bloom's				
Upon completion of the course, the students will be able to:						
CO1	Know the characteristics of composite materials and effect of reinforcement in					
	composite materials.					
CO2	Know the various reinforcements used in composite materials.					
CO3	Understand and apply the manufacturing processes of metal matrix composites	K3				
<b>CO4</b>	Understand and apply the manufacturing processes of polymer matrix	K3				
	composites.					

CO5 Analyze the strength o	f composite ma	terials.			K4					
COURSE ARTICULATION	COURSE ARTICULATION MATRIX:									
COs/Pos	PO1	PO2	PO3	PO4	PO5					
CO1	1	2	1	1	1					
CO2	2	2	1	1	2					
CO3	2	1	2	1	1					
CO4	1	2	2	2	1					
CO5	1	2	1	1	1					
23MFOE15	1	2	2	1	1					
1 - Slight, $2 - $ Moderate, $3 - $ S	bubstantial									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1		60	40				100		
CAT2			60	40			100		
Individual	7	60	40				100		
Assessment 1 /		V James	TURCE						
Case Study 1/		75-22		2					
Seminar 1 /	6			- No.					
Project1									
Individual		100	60	40			100		
Assessment 2 /									
Case Study 2/			121						
Seminar 2 /				11					
Project 2			N/A						
ESE		40	40	20			100		



AATTO DA (		
231100116	23TEOE1	6

#### **GLOBAL WARMING SCIENCE**

(Common to all Branches)

	(**************************************	- =				
PREREQUISIT	ES	CATEGORY	L	Т	P	С
	NIL	OE	3	0	0	3
Course	To make the students learn about the material con	sequences of climate	change,	sea le	evel o	hange
Objectives	due to increase in the emission of greenhouse gase	s and to examine the	science b	ehino	l miti	gation
	and adaptation proposals.					
UNIT – I	INTRODUCTION				9 Per	iods
Terminology rela	ating to atmospheric particles - Aerosols - Types,	characteristics, meas	surements	– Pa	article	e mass
spectrometry - A	nthropogenic-sources, effects on humans.					
UNIT – II CLIMATE MODELS						iods
General climate	modeling- Atmospheric general circulation model	- Oceanic general of	circulation	mo	del, s	ea ice
model, land mod	el concept, paleo-climate - Weather prediction by n	umerical process. In	pacts of o	clima	te ch	ange -
Climate Sensitivi	ty - Forcing and feedback.					
UNIT – III	EARTH CARBON CYCLE AND FORECAST				9 Per	iods
Carbon cycle-pro	ocess, importance, advantages - Carbon on earth - G	lobal carbon reservo	irs - Inter	actic	ns be	etween
human activities	and carbon cycle - Geologic time scales - Fossil fuel	s and energy - Pertur	bed carbo	n cyo	cle.	
UNIT – IV	GREENHOUSE GASES				9 Per	iods
Blackbody radiat	ion - Layer model - Earth's atmospheric compositi	ion and Green house	gases eff	fects	on w	reather
and climate - Rad	lioactive equilibrium - Earth's energy balance.					
UNIT – V	GEO ENGINEERING				9 Per	iods
Solar mitigation	- Strategies - Carbon dioxide removal - Solar radia	ation management - I	Recent ob	serve	ed tre	nds in
global warming f	or sea level rise, drought, glacier extent.					
<b>Contact Periods</b>						
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 4	5 Periods	5		
REFERE	NCES:	N.				

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its
	<b>Consequences</b> ", Princeton University Press, 1 st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions for Global
	Warming", Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1 st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global energybalance",
	Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout the earth.	K2
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2
CO4	Know about current issues, including impact from society, environment, economy as	
04	well as ecology related to greenhouse gases.	K4
CO5	Know the safety measures and precautions regarding global warming.	K5

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	2	1	1	2			
CO2	1	1	2	1	1	1			
CO3	1	2	1	1	1	2			
CO4	1	1	1	1	1	2			
CO5	2	1	2	1	1	2			
<b>23TEOE16</b>	1	1	1	1	1	2			
1-Slight, $2-$ M	Moderate, 3 – Su	ıbstantial							

ASSESSMENT P	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	<b>Evaluating</b>	Creating	Total			
Category*	(KI) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	20	35	35	10	-	-	100			
CAT2	15	B 25 Day	25	20	15	-	100			
Individual		N ASSA	Jan Ja							
Assessment 1/		182	A CONSTRUCTION							
Case Study 1/	25	20	20	35	-	-	100			
Seminar 1 /			- C.	- 77						
Project 1			. J							
Individual										
Assessment 2/			STUD YEL							
Case Study 2/	20	20	35	15	10	-	100			
Seminar 2/		1 9								
Project 2		8								
ESE	25	20	25	20	10	-	100			



**23TEOE17** 

#### INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUIS	NITES	CATEGORY	L	Т	P	С	
ENGINEER	NG PHYSICS	OE	3	0	0	3	
Course	To make the students provide strong, essential, important	nt methods and four	datio	ons o	of qua	antum	
Objectives	mechanics and apply quantum mechanics on engineering t	ïelds.					
UNIT – I	INTRODUCTION 9 Periods						
Particles and Waves - Operators in quantum mechanics - The Postulates of quantum mechanics - The Schrodinger							
equation value	es and wave packet Solutions - Ehrenfest's Theorem.						
UNIT – II	<b>ELECTRONIC STRUCTURE AND MOTION</b>			91	Perio	ds	
Atoms- The I	Hydrogen Atom - Many-Electron Atoms - Pseudopotentials,	Nuclear Structure, M	lolec	ules,	Crys	stals -	
Translational	motion - Penetration through barriers - Particle in a box - T	wo terminal quantur	n dot	dev	ices -	· Two	
terminal quan	tum wire devices.						
UNIT – III	SCATTERING THEORY			91	Perio	ds	
The formulati	on of scattering events - Scattering cross section - Stationary	scattering state - Par	rtial	wave	stati	onary	
scattering eve	nts - multi-channel scattering - Solution for Schrodinger equat	ion- Radial and wav	e equ	ation	1 - G1	eens'	
function.	Bisterin Danster and Bistorin						
UNIT – IV	CLASSICAL STATISTICS	3)		91	Perio	ds	
Probabilities a	and microscopic behaviours - Kinetic theory and transport pro-	cesses in gases - Ma	agnet	ic pr	opert	ies of	
materials - Th	e partition function.	~					
UNIT – V	QUANTUM STATISTICS	1/		91	Perio	ds	
Statistical me	chanics - Basic Concepts - Statistical models applied to me	tals and semicondu	ctors	- T	he th	ermal	
properties of s	solids- The electrical properties of materials - Black body radi	ation - Low tempera	tures	and	deger	nerate	
systems.							
<b>Contact Peri</b>	ods:						
Lecture:45 P	eriods Tutorial: 0 Periods Practical: 0 Periods	Total:45 Perio	ods				
REFE	RENCES:	3					
1 Vladim	i V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc	io, "Introduction to	o Na	inoel	lectro	nics:	
Science	e, Nanotechnology, Engineering, and Applications", Cambrid	lge University Press,	lst	Editi	on, 2	007.	
2 Vinod I	Kumar Khanna, "Introductory Nanoelectronics: Physical Th	eory and Device Ai	nalys	is", 1	Routl	edge,	
<u>Ist Edi</u>	tion, 2020. W Hanson "Fundamentals of Nanoelactronics" Pearson P	ublishers United St	atos 1	Zditiz	n 21	007	
4 Marc B	aldo "Introduction to Nanoelectronics" MIT Open Courses	are Publication 201	1105 I	Junic	<i>m</i> , 20	/07.	
5 Vladim	i V Mitin "Introduction to Nanoalactronics" Cambridge	University Press S	1.	Asia	n Ed	ition	
2009.	r randelectronics, cambriage	Sniversuy Tress, So	Juin	лыи	п Ци	011,	
6 Peter L Mecha	. Hagelstein, Stephen D. Senturia and Terry P. Orlando, " <b>Inti</b> nics", Wiley, 2004.	oductory Applied Q	uant	um	Stati	stical	
7 A. F. J.	Levi, "Applied Quantum Mechanics", 2 nd Edition, Cambridg	e, 2012.					
			-				

Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
CO1	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
<b>CO4</b>	Learn the concepts involved in kinetic theory of gases.	K2

CO5	Know about statistical models applies to metals and semiconductor.	К3

COURSE AR	COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	1	1	1	1	1			
CO2	2	2	1	1	1	1			
CO3	2	2	2	1	1	1			
CO4	1	1	1	1	1	1			
CO5	1	1	1	1	1	1			
<b>23TEOE17</b>	1	1	1	1	1	1			
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	30	30	20	20	-	-	100	
CAT2	30	30	20	20	-	-	100	
Individual			PARA PARA					
Assessment 1/								
Case Study 1/	35	25	20	20	-	-	100	
Seminar 1/			3	i //				
Project 1								
Individual			STIP.	× 1				
Assessment 2/				11				
Case Study 2/	30	25	20	25	-	-	100	
Seminar 2/		1 2						
Project 2		1 8						
ESE	20	30	30	20	-	-	100	

2 Care

<b>23TEOE18</b>	3
-----------------	---

### GREEN SUPPLY CHAIN MANAGEMENT

(Common to all Branches)

PREREQUIS	CATEGORY	L	Т	P	С	
	NIL	OE	3	0	0	3
Course	To make the students learn and focus on the	fundamental strates	gies,	tools ar	nd tech	iniques
Objectives	required to analyze and design environmentally	sustainable supply	chain	system	s.	
UNIT – I	INTRODUCTION				9 Peri	ods
Intro to SCM	- complexity in SCM, Facility location - Logis	tics - Aim, activit	ies, i	mportar	nce, pr	ogress,
current trends -	Integrating logistics with an organization.					
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAG	GEMENT			9 Peri	ods
Basic concepts	of supply chain management - Supply chain oper	rations – Planning a	and sc	ourcing	- Maki	ng and
delivering - Su	pply chain coordination and use of technology - D	Developing supply o	hain	systems	5.	
UNIT – III	PLANNING THE SUPPLY CHAIN				9 Peri	ods
Types of deci	sions – strategic, tactical, operational - Logist	tics strategies, imp	oleme	nting t	he stra	ategy -
Planning reso	urces - types, capacity, schedule, controlling	material flow, m	neasu	ring an	d imp	proving
performance.	- many					
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN				9 Peri	ods
Procurement			0.000 1 10			
	cycle, types of purchase – Framework of e-pro	ocurement - Invent	OIY I	nanagei	ment –	EOQ,
uncertain dema	nd and safety stock, stock control - Material hand	dling – Purpose of	wareh	nanagei nouse ar	ment – nd own	EOQ, ership,
uncertain dema layout, packag	ind and safety stock, stock control - Material hand ring - Transport – mode, ownership, vehicle	dling – Purpose of v routing and sched	wareh uling	nouse ar model	ment – nd own s- Tra	EOQ, ership, velling
uncertain dema layout, packag salesman probl	cycle, types of purchase – Framework of e-pround and safety stock, stock control - Material hand ging - Transport – mode, ownership, vehicle ems - Exact and heuristic methods.	dling – Purpose of v routing and sched	wareh uling	nouse ar model	ment – nd own s- Tra	EOQ, ership, velling
uncertain dema layout, packag salesman probl UNIT – V	cycle, types of purchase – Framework of e-pro- ind and safety stock, stock control - Material hand ing - Transport – mode, ownership, vehicle ems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATE	dling – Purpose of v routing and sched	wareh uling	mouse ar model	nent – nd own s- Tra <b>9 Peri</b>	EOQ, hership, velling ods
uncertain dema layout, packag salesman probl UNIT – V Five key conf	cycle, types of purchase – Framework of e-pro- and and safety stock, stock control - Material hand ging - Transport – mode, ownership, vehicle ems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATE iguration components - Four criteria of good	curement - Invent dling – Purpose of routing and sched EGIES supply chain stra	wareh uling	manager nouse ar model s - Net	nent – nd own s- Tra 9 Peri xt gen	EOQ, ership, velling ods eration
uncertain dema layout, packag salesman probl UNIT – V Five key conf strategies- New	<ul> <li>cycle, types of purchase – Framework of e-provided and safety stock, stock control - Material hand sing - Transport – mode, ownership, vehicle ems - Exact and heuristic methods.</li> <li>SUPPLY CHAIN MANAGEMENT STRATE iguration components - Four criteria of good v roles for end-to-end supply chain management</li> </ul>	curement - Invent dling – Purpose of routing and sched CGIES supply chain stra t - Evolution of su	wareh uling tegies	manager nouse ar model s - Nez chain o	nent – nd own s- Tra 9 Peri xt gen rganiz	eration – EOQ, hership, velling
uncertain dema layout, packag salesman probl UNIT – V Five key conf strategies- New International is	cycle, types of purchase – Framework of e-pro- and and safety stock, stock control - Material hand ging - Transport – mode, ownership, vehicle ems - Exact and heuristic methods. <b>SUPPLY CHAIN MANAGEMENT STRATH</b> iguration components - Four criteria of good v roles for end-to-end supply chain management sues in SCM – Regional differences in logistics.	EGIES supply chain stra t - Evolution of su	wareh uling tegies pply	manager nouse ar model s - Ne: chain o	ment – nd own s- Tra <b>9 Peri</b> xt gen rganiz	ership, velling ods eration ation –
uncertain dema layout, packag salesman probl UNIT – V Five key conf strategies- New International is Contact Perio	cycle, types of purchase – Framework of e-pro- and and safety stock, stock control - Material hand sing - Transport – mode, ownership, vehicle ems - Exact and heuristic methods. <b>SUPPLY CHAIN MANAGEMENT STRATH</b> iguration components - Four criteria of good v roles for end-to-end supply chain management sues in SCM – Regional differences in logistics. ds:	Curement - Invent dling – Purpose of routing and sched EGIES supply chain stra t - Evolution of su	uling uling tegies	manager nouse ar model s - Nez chain o	nent – nd own s- Tra 9 Peri xt gen rganiz	eration –
uncertain dema layout, packag salesman probl UNIT – V Five key conf strategies- New International is Contact Perio Lecture: 45 Perio	cycle, types of purchase – Framework of e-pro- and and safety stock, stock control - Material hand ing - Transport – mode, ownership, vehicle ems - Exact and heuristic methods. <b>SUPPLY CHAIN MANAGEMENT STRATH</b> iguration components - Four criteria of good v roles for end-to-end supply chain management sues in SCM – Regional differences in logistics. ds: eriods Tutorial: 0 Periods Practical: (	Currement - Invent         dling - Purpose of v         routing and sched         EGIES         supply chain stra         t - Evolution of su         0 Periods       T	uling utegies pply	manager nouse ar model s - Nez chain o 45 Peri	nent – nd own s- Tra 9 Peri xt gen rganiz	ership, velling ods eration ation –
uncertain dema layout, packag salesman probl UNIT – V Five key conf strategies- New International is Contact Perio Lecture: 45 Po REFEREN	cycle, types of purchase – Framework of e-product and safety stock, stock control - Material hand sing - Transport – mode, ownership, vehicle ems - Exact and heuristic methods.         SUPPLY CHAIN MANAGEMENT STRATH         iguration components - Four criteria of good         v roles for end-to-end supply chain management         sues in SCM – Regional differences in logistics.         ds:         eriods       Tutorial: 0 Periods         Practical: 0	Securement - Invent         dling - Purpose of v         routing and sched         EGIES         supply chain stra         t - Evolution of su         0 Periods       T	uling uling tegies pply	manager model s - Ne: chain o 45 Per	nent – nd own s- Tra 9 Peri xt gen rganiz	eration –

	Management", Routledge, 1 st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle
	Approach", McGraw-Hill Education, 1 st Edition, 2011.
3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1 st Edition, 2017.
4	Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach", Replica, 2021.
5	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for
	Sustainable Business Practice", IGI Global, 1 st Edition, 2016.
6	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.
7	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction",
	Routledge, 1 st Edition, 2017.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational	K 5
	decisions.	КJ
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	K3
<b>CO4</b>	Analyze inventory management models and dynamics of supply chain.	K4
CO5	Identify issues in international supply chain management and outsources strategies.	K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	3		
CO2	2	2	1	1	1	1		
CO3	2	1	2	1	1	1		
CO4	2	2	1	1	2	2		
CO5	1	1	2	1	1	3		
23TEOE18	2	1	1	1	1	2		
1 – Slight, 2 – Mode	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Total	Creating	Evaluating	Analyzing	Applying	Understanding	Remembering	Test /		
%	(K6) %	(K5) %	(K4) %	(K3) %	(K2) %	(K1) %	Bloom's		
			>(	" winner	-6		Category*		
100	-	10	10	30	25	25	CAT1		
100	-	-	10	20	40	30	CAT2		
				STATE	6000		Individual		
					1000		Assessment 1/		
100	-	10	15	25	20	30	Case Study 1/		
			* //				Seminar 1/		
							Project 1		
				STR. N			Individual		
							Assessment 2/		
100	-	-	10	25	30	35	Case Study 2/		
				Sar	1 <u>8</u>		Seminar 2/		
				-			Project 2		
100	-	10	10	20	30	30	ESE		
		5			498				
		5	-						
			acus	20	and the second				
			ET.	10 58 000	UR				
	-	- 10	10	25	30	35	Case Study 2/ Seminar 2/ Project 2 ESE		

23PSOE19 DISTRIBUTION AUTOMATION SYSTEM (Common to all Branches) SEME						I
PREREQUISI	TES	CATEGORY	L	Τ	Р	C
	NIL	OE	3	0	0	3
Course	To study about the distributed automation and economic	evaluation schen	nes of p	ower	netw	ork
Objectives						
UNIT – I	INTRODUCTION				9 Per	iods
Introduction to	Distribution Automation (DA) - Control system inter-	faces- Control an	nd data	requ	ireme	ents-
Centralized (vs)	decentralized control- DA system-DA hardware-DAS sol	ftware.				
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS				9 Per	iods
DA capabilities	- Automation system computer facilities- Managemen	t processes- Info	rmatior	n mar	nagem	ent-
System reliabilit	y management- System efficiency management- Voltage	management- Lo	ad man	agem	ent.	
UNIT – III	COMMUNICATION SYSTEMS				9 Per	iods
Communication	requirements - reliability- Cost effectiveness- Data	requirements-	Two w	vay c	apabi	lıty-
Communication	during outages and faults - Ease of operation and maint	enance- Conform	ung to 1	the ar	chitec	ture
of flow. District	ution line carrier- Ripple control-Zero crossing techni	que- l'elephone,	cable	v, r	adio,	AM
broadcast, FM S	SCA, VHF radio, microwave satellite, liber optics-Hybrid	1 communication	system	is use	aini	field
	ECONOMIC EVALUATION METHODS	2)			0 Dom	inda
Development or	d evaluation of alternate plans, salest study area. Sal	act study pariod	Droiac	t 100	d grou	ious
Development al	ives. Calculate operating and maintenance costs-Evaluate	alternatives	· riojec	1 10a	u gio	w 111-
$\mathbf{UNIT} - \mathbf{V}$	FCONOMIC COMPARISON				9 Per	inds
Economic com	parison of alternate plans-Classification of expenses	- capital expend	litures-0	Comn	arison	$\frac{100}{100}$
revenue require	ments of alternative plans-Book life and continuing	olant analysis- Y	ear by	vea	r reve	enue
requirement ana	lysis, Short term analysis- End of study adjustment-Bre	ak even analysis	, sensit	ivity	analy	sis -
Computational a	ids.		·	5	5	
<b>Contact Period</b>	s: R A	11				
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Period	s			
	A la	B				
REFERE	NCES	608				
1 M.K. Khedka	r, G.M. Dhole, "A Textbook of Electric Power Distribu	ution Automation	ı", Laxı	ni Pu	blicat	tions,
Ltd., 2010.	Constant and					
2 Maurizio Di Science & Bi	Paolo Emilio, <b>"Data Acquisition Systems: From Fund</b> usiness Media, 21-Mar-2013	amentals to App	lied De	sign'	', Spri	inger
3 IEEE Tutoria	al course "Distribution Automation", IEEE Working G	roup on Distribu	tion Au	toma	tion, 1	IEEE
Power Engin	neering Society. Power Engineering Education Commit and Distribution Committee. Institute of Electrical and H	ttee, IEEE Power Electronics Engin	r Engir eers. 19	neerin 988	ig So	ciety.

4 Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COUR Upon c	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	К3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COURSE ARTICULATION MATRIX							
COs/Pos	PO1	PO2	PO3	PO4			
CO1	2	-	1	3			
CO2	3	-	3	2			
CO3	3	-	3	2			
CO4	3	-	3	1			
CO5	2	-	1	2			
23PSOE19	3	-	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
		a C	9					
CAT1	20%	30%	20%	10%	20%	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	10%	30%	20%	20%	-	100%	
Assessment1/								
Case study1/			· · · · ·	<b>-</b> 77				
Seminar 1/			5					
Project1								
Individual	20%	30%	10%	20%	20%	-	100%	
Assessment2/		11 16		11				
Case study2/		// 8/						
Seminar 2 /		1 8						
Project2		1 0						
ESE	30%	20%	20%	20%	10%	-	100%	



**23PSOE20** 

## ELECTRICITY TRADING AND ELECTRICITY ACTS

(Common to all Branches)

PREREQUISI	res	CATEGORY L T P						
	NIL	OE	3	0	0	3		
Course	To acquire expertise on Electric supply and demand	of Indian Grid, gain	exposi	ure o	n ene	rgy		
Objectives	<b>Objectives</b> trading in the Indian market and infer the electricity acts and regulatory authorities.							
UNIT – I	ENERGY DEMAND			9	Peri	ods		
Basic concepts	in Economics - Descriptive Analysis of Energy D	Demand - Decompo	sition	Anal	ysis	and		
Parametric App	roach - Demand Side Management - Load Managemen	nt - Demand Side M	lanagen	nent	- Ene	ergy		
Efficiency - Reb	oound Effect							
UNIT – II	UNIT – II ENERGY SUPPLY					ods		
Supply Behavio	r of a Producer - Energy Investment - Economics of N	on-renewable Resou	irces -	Econ	omic	s of		
Renewable Ene	rgy Supply Setting the context - Economics of Ren	ewable Energy Sup	ply - I	Econo	omics	s of		
Electricity Supp	ly							
UNIT – III	ENERGY MARKET			9	Peri	ods		
Perfect Competi	tion as a Market Form - Why is the Energy Market not	Perfectly Competiti	ive? - N	1arke	t Fai	lure		
and Monopoly -	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E	ra II - Oil Market: O	PEC					
UNIT – IV	LAW ON ELECTRICITY	(O)		9	Peri	ods		
Introduction of	the Electricity Law; Constitutional Design - Evolution of	of Laws on Electricit	y Salie	nt Fe	ature	s of		
Electricity Act, 2	2003 - Evolution of Laws on Electricity - Salient Featur	es of the Electricity	Act 200	3				
UNIT – V	<b>REGULATORY COMMISSIONS FOR ELECTRI</b>	CITY ACT		9	Peri	ods		
Regulatory Con	missions - Appellate Tribunal - Other Institutions under	er the Act - Electricit	ty (Am	endm	ent)	Bill		
2020/2021. A C	Critical Comment - Renewable Energy - Role of Civil	Society; Comments	on Dra	ft Re	enewa	able		
Energy Act, 201	5	11						
Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								
REFERE	NCES A	3						

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy", Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands, 2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	<b>Practices</b> ", Cambridge Univesity Press, 2014.

COURSE OUTCOMES:		Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	К3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical sustainability	K4



COURSE ARTICULATION MATRIX							
COs/Pos	PO1	PO2	PO3	PO4			
CO1	3	-	3	3			
CO2	3	-	1	1			
CO3	3	-	2	2			
CO4	3	-	1	2			
CO5	3	-	3	3			
23PSOE20	3	-	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20%	30%	20%	30%	-	-	100%			
CAT2	20%	20%	20%	20%	20%	-	100%			
Individual Assessment1/ Case study1/ Seminar 1/ Project1	20%	30%	30%	20%	-	-	100%			
Individual Assessment2/ Case study2/ Seminar 2 / Project2	20%	30%		20%	-	40%	100%			
ESE	30%	30%	-	20%	20%	-	100%			
			1) (2) (2) 1) (3) (2)	A P						

**MODERN AUTOMOTIVE SYSTEMS 23PSOE21** (Common to all Branches) PREREQUISITES CATEGORY Т Р С L NIL OE 3 3 0 0 To expose the students with theory and applications of Automotive Electrical and Electronic Course **Objectives** Systems. UNIT – I **INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS** 9 Periods Introduction to modern automotive systems and need for electronics in automobiles- Role of electronics and microcontrollers- Sensors and actuators- Possibilities and challenges in automotive industry- Enabling technologies and industry trends. UNIT – II SENSORS AND ACTUATORS 9 Periods Introduction- basic sensor arrangement- Types of sensors- Oxygen sensor, engine crankshaft angular position sensor - Engine cooling water temperature sensor- Engine oil pressure sensor- Fuel metering- vehicle speed sensor and detonation sensor- Pressure Sensor- Linear and angle sensors- Flow sensor- Temperature and humidity sensors- Gas sensor- Speed and Acceleration sensors- Knock sensor- Torque sensor- Yaw rate sensor-Tyre Pressure sensor- Actuators - Stepper motors - Relays. UNIT – III **POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE** 9 Periods Electronic Transmission Control - Digital engine control system: Open loop and close loop control systems-Engine cooling and warm up control- Acceleration- Detonation and idle speed control - Exhaust emission control engineering- Onboard diagnostics- Future automotive powertrain systems. UNIT – IV SAFETY, COMFORT AND CONVENIENCE SYSTEMS 9 Periods Cruise Control- Anti-lock Braking Control- Traction and Stability control- Airbag control system- Suspension control- Steering control- HVAC Control. **ELECTRONIC CONTROL UNITS (ECU)** UNIT - V9 Periods Introduction to Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166 Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces, analog and digital interfaces. **Contact Periods**: Lecture: 45 Periods **Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods** REFERENCES

- Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley and Sons, 2001.
   M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.
   Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
- 4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering applications	K4
CO4	Develop modern automotive control system for electrical and electronics systems	K6
CO5	Understand the function of sensors and actuators	K2

COURSE ARTICULATION MATRIX							
COs/Pos	PO1	PO2	PO3	PO4			
CO1	3	-	1	3			
CO2	3	-	3	2			
CO3	3	-	3	2			
CO4	2	-	3	1			
CO5	2	-	1	2			
23PSOE21	3	-	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	20%	30%	20%	_30%	-	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	30%		20%	-	30%	100%	
Assessment1/		1						
Case study1/			G	<b>F</b> //				
Seminar 1/			1					
Project1								
Individual	20%	30%		20%	-	40%	100%	
Assessment2/				11				
Case study2/		1 3						
Seminar 2 /		0						
Project2		A P						
ESE	30%	30%	20%	20%	_	-	100%	



**23PEOE22** 

#### VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISI	TES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To comprehend the Virtual instrumentation programm	ning concepts towards	mea	surem	ents a	and
Objectives	control and to instill knowledge on DAQ, signal cond	itioning and its associa	ated s	softwa	are to	ols
UNIT – I	INTRODUCTION				7 P	eriods
Introduction - a	dvantages - Block diagram and architecture of a vir	tual instrument - Con	venti	ional	Instru	uments
versus Traditional Instruments - Data-flow techniques, graphical programming in data flow, comparison with						
conventional pr	ogramming.					
UNIT – II	UNIT - IIGRAPHICAL PROGRAMMING AND LabVIEW9 Periods					eriods
Concepts of gra	phical programming - LabVIEW software - Concept of	of VIs and sub VI - Di	splay	/ type	s - D	igital -
Analog - Chart	and Graphs. Loops - structures - Arrays - Clusters- I	ocal and global varial	bles -	– Stri	ng - '	Fimers
and dialog contra	rols.					
UNIT – III	I MANAGING FILES & DESIGN PATTERNS				11 P	eriods
High-level and	low-level file I/O functions available in LabVIEW - I	mplementing File I/O	func	tions	to re	ad and
write data to	files – Binary Files – TDMS – sequential progra	imming – State mac	hine	prog	ramn	ning –
Communication	between parallel loops -Race conditions - Notifier	s & Queues – Produ	cer (	Consu	ımer	design
patterns	A Short Co					
UNIT – IV	PC BASED DATA ACQUISITION	~			9 P	eriods
Introduction to	data acquisition on PC, Sampling fundamentals, ADC	Cs, DACs, Calibration	, Res	solutio	on, -	analog
inputs and outp	uts - Single-ended and differential inputs - Digital I/O,	counters and timers, D	)MA	, Data	i acqu	isition
interface requir	ements - Issues involved in selection of Data acquisiti	on cards - Use of tim	er-co	unter	and	analog
outputs on the u	niversal DAQ card.					
UNIT – V	DATA ACQUISITION AND SIGNAL CONDITION	DNING			9 P	eriods
Components of	f a DAQ system, Bus, Signal and accuracy consid	eration when choosin	ng D	DAQ	hardv	vare –
Measurement o	Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation - Signal					
conditioning systems - Synchronizing measurements in single & multiple devices - Power quality analysis using						
Electrical Powe	r Measurement tool kit.	<b>B</b>				
<b>Contact Period</b>	ls: 866 // ····	280				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Periods				

#### **REFERENCES :**

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and
	Control", Newness, 2000

Sha-

COURS	SE OUTCOMES:	Bloom's
Upon co	ompletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6

**CO5** Familiarize and experiment with DAQ and Signal Conditioning

COURSE ARTICULATION	COURSE ARTICULATION MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	-	3	2	1
CO2	3	-	3	2	1
CO3	3	-	2	2	2
CO4	3	1	3	3	1
CO5	3	1	3	3	2
23PEOE22	3	1	3	2	1
1 – Slight, 2 – Moderate, 3 –	Substantial			•	

ASSESSMENT	<b>FPATTERN – T</b>	HEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		22	0 32				
CAT1	30	P 40 08.0	15	15	-	-	100
CAT2	15	10	-25	30	20	-	100
Individual	10	10	20	30	20	10	100
Assessment1/		1					
Case study1/							
Seminar 1/		110 0	1	k //			
Project1							
Individual	25	40	20	15	-	-	100
Assessment2/				11			
Case study2/		1 8					
Seminar 2 /		0 00	~				
Project2		A V		N/2			
ESE	30	25	15	20	5	5	100

K3

ENERGY MANAGEMENT SYSTEMS									
23FEUE23	(Common to all Bran	ches)							
PREREQUISI	TES	CATEGORY	L	Т	P	С			
	NIL	OE	3	0	0	3			
Course	To Comprehend energy management schemes, perform	n energy audit ar	nd ex	cecut	e eco	onomic			
Objectives	<b>Objectives</b> analysis and load management in electrical systems.								
UNIT – I	UNIT – I GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT 9 Periods								
Energy Conserv	ation Act 2001 and policies – Eight National Missions - B	asics of Energy ar	nd its	forr	ns (T	hermal			
and Electrical)	· Energy Management and Audit - Energy Managers ar	nd Auditors - Typ	es ai	nd N	letho	dology			
Audit Report - 1	Material and energy balance diagramsEnergy Monitorin	ng and Targeting.							
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENE	CRATION			9 F	eriods			
Boiler Systems	- Types - Performance Evaluation of boilers - Energ	y Conservation (	Oppo	rtuni	ity -	Steam			
Distribution - E	fficient Steam Utilisation - Furnaces:types and classifi	cation - Performa	ance	eval	uatio	n of a			
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technica	l options - classi	ficat	ion	- Te	chnical			
parameters and	actors influencing cogeneration choice - Prime Movers -	Frigeneration.							
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS				9 F	eriods			
Electricity Billin	g - Electricity load management - Maximum Demand Co	ontrol - Power Fac	tor i	mpro	vem	ent and			
its benefits - pf	controllers - capacitors - Energy efficient transformers	and Induction mo	tors	- rev	vindi	ng and			
other factors inf	luencing energy efficiency - Standards and labeling progr	amme of distribut	ion t	ransf	orme	rs and			
IM - Analysis of	distribution losses - demand side management - harmoni	cs - filters - VFD	and	its se	electi	on.			
UNIT – IV	STUDY OF ELECTRICAL UTILITIES	77			9 F	Periods			
Compressor typ	es - Performance - Air system components - Efficient	operation of com	press	sed a	air sy	vstems-			
Compressor ca	pacity assessment - HVAC: psychrometrics and air	-conditioning pro	ocess	es -	Ty	pes of			
refrigeration sys	tem - Compressor types and applications - Performan	ce assessment of	refrig	gerat	ion p	olants -			
Lighting System	s: Energy efficient lighting controls - design of interior lig	shting - Case study	<i>.</i>						
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMEN	Τ			9 F	eriods			
Performing Fina	ncial analysis: Fixed and variable costs - Payback period	d – ROI - method	ls –	facto	ors af	fecting			
analysis. Energy	Performance Assessment: Heat exchangers - Fans and I	Blowers - Pumps.	Ener	gy C	onse	rvation			
in buildings and	ECBC.	A							
<b>Contact Period</b>	s:								
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	<b>Total: 45 Periods</b>							
	Andre Co O' ALUM								
REFERE	NCES:	5							
1 Murphy W.R	and G.Mckay Butter worth, "Energy Management", H	einemann Publica	tions	, 200	)7				
2 Albert Thun	ann, Terry Niehus, William J. Younger, " <b>Handbook of</b>	Energy Audits",	Nint	h Ea	lition	, River			
Publishers, 2	2012.								
1 D G 11 1		4 1. 0 1.				C 1			

3 Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second edition, Technical Publications, 2019.

4 S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, **"Energy Conservation and Audit"**, Second Edition, Nirali Prakashan Publications, 2021.

5 www.em-ea.org/gbook1.asp

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	К3
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4

CO5 Perform assessm	nent of different systems.
---------------------	----------------------------

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	
CO1	3	2	2	1	1	
CO2	3	2	2	1	1	
CO3	3	2	2	1	1	
CO4	3	2	2	1	1	
CO5	3	2	2	1	1	
23PEOE23	3	2	2	1	1	
1 - Slight, 2 - Moderate, 3 -	Substantial				•	

ASSESSMEN	T PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	_	30	30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20 	20	-	100
ESE	10	30	30 6	20	10	-	100

K5

ADVANCED ENERGY STORAGE TECHNOLOGY							
	(Common to all Bran	ches)					
PREREQUISIT	ſES	CATEGORY	L	Т	Р	С	
	NIL	OE	3	0	0	3	
Course	To explore the fundamentals, technologies and application	ons of energy stora	ıge				
Objectives							
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTI	VE, INTRODUC	CTIO	N	9 Per	riods	
	AND CHANGES						
Storage Needs-	Variations in Energy Demand- Variations in Energy Su	pply- Interruptior	ns in	Energ	gy Sup	oply-	
Transmission Co	ongestion - Demand for Portable Energy-Demand and so	cale requirements	- En	viron	mental	and	
sustainability iss	ues-conventional energy storage methods: battery-types.						
UNIT - IITECHNICAL METHODS OF STORAGE9 Periods							
Introduction: Er	ergy and Energy Transformations, Potential energy (put	mped hydro, com	press	ed ai	r, sprii	ngs)-	
Kinetic energy	(mechanical flywheels)- Thermal energy without phase	e change passive	ad (ad	obe)	and a	ctive	
(water)-Thermal	energy with phase change (ice, molten salts, steam)-	Chemical energy	(hyd	rogen	, metł	nane,	
gasoline, coal,	oil)- Electrochemical energy (batteries, fuel cells)	- Electrostatic	energ	gy (o	capacit	ors),	
Electromagnetic	energy (superconducting magnets)- Different Types of En	nergy Storage Syst	tems.				
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORA	GE SYSTEMS			9 Per	riods	
Energy capture	rate and efficiency- Discharge rate and efficiency-	Dispatch ability	y an	d loa	id flo	wing	
characteristics, s	cale flexibility, durability - Cycle lifetime, mass and saf	ety – Risks of fire	e, exp	olosio	n, toxi	city-	
Ease of material	s, recycling and recovery- Environmental consideration	and recycling, M	erits	and o	lemeri	ts of	
different types o	f Storage.						
UNIT – IV	APPLICATION CONSIDERATION				9 Per	riods	
Comparing Stor	age Technologies- Technology options- Performance fac	tors and metrics-	Effic	iency	of En	ergy	
Systems- Energ	y Recovery - Battery Storage System: Introduction wi	th focus on Lead	l Aci	id an	d Lith	ium-	
Chemistry of B	attery Operation, Power storage calculations, Reversible	reactions, Charg	ing 1	patter	ns, Ba	ttery	
Management sys	stems, System Performance, Areas of Application of Ener	gy Storage: Waste	e heat	t reco	very, S	Solar	
energy storage,	Green house heating, Power plant applications, Drying an	d heating for proc	ess ir	ndustr	ries, en	ergy	
storage in autom	otive applications in hybrid and electric vehicles.	AGB .					
UNIT – V	HYDROGEN FUEL CELLS AND FLOW BATTERI	ES			9 Per	riods	
Hydrogen Econ	omy and Generation Techniques, Storage of Hydrogen,	Energy generation	n - S	uper	capaci	tors:	
properties, powe	er calculations - Operation and Design methods - Hybrid	d Energy Storage:	Mai	naging	g peak	and	
Continuous pov	ver needs, options - Level 1: (Hybrid Power genera	tion) Bacitor "B	Batter	y +	Capac	itor"	
Combinations: r	need, operation and Merits; Level 2: (Hybrid Power Ge	neration) Bacitor	+ Fu	iel Ce	ell or ]	Flow	
Battery operation	n-Applications: Storage for Hybrid Electric Vehicles, Reg	enerative Power, o	captu	ring r	nethod	ls.	
<b>Contact Period</b>	s:						
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	Fotal: 45 Periods					
REFERE	NCES :						

 DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
 Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.
 Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
 Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5		
CO1	3	1	3	3	3		
CO2	3	1	3	3	3		
CO3	3	1	3	3	3		
CO4	3	mon	3	3	3		
CO5	3		3	3	3		
<b>23PEOE24</b>	3	Danse aire	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial							
	1						
	2						

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	10	30	30	20	10	-	100			
CAT2	10	30	-30	20	10	-	100			
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100			
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100			
ESE	10	30	30	20	10	-	100			
23AE(	23AEOE25 DESIGN OF DIGITAL SYSTEMS (Common to all Branches)									
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------	---------------------------------------------------------	----------------------------------------------------------------------------	-------------------------------------------------------------------
PREREOIII	SITES			(Comme		RV	L	Т	Р	C
INLINLQUI	51125	NIL			OE		3	0	0	3
Course	To gain	knowledge in	the design	and VHDL r	programming	of sync	chronous	and a	synchro	nous
Objectives	sequenti	al circuits, PLD'	s and the ba	asic concepts of	f testing in VL	SI circu	iits		2	
UNIT-	I SYN	CHRONOUS S	EQUENTI	IAL CIRCUIT	DESIGN				9 Pe	riods
Analysis of	Clocked S	ynchronous Sequ	uential Circ	cuits - Modeling	g, state table r	eductio	n, state a	ssignm	ent, De	sign
of Synchron	ous Sequei	tial circuits, Des	ign of itera	ative circuits- A	SM chart –AS	M reali	zation.	C		C
UNIT-II	ASYN	CHRONOUS SI	EQUENTI	AL CIRCUIT	DESIGN				<b>9</b> Pe	riods
Analysis of	Asynchron	ous Sequential	Circuits - I	Races in ASC	- Primitive Fl	ow Tab	ole - Flor	w Tabl	e Redu	ction
Techniques,	State Assi	gnment Problem	and the Tra	ansition Table -	- Design of AS	SC – Sta	atic and I	Dynam	ic Haza	ds –
Essential Ha	azards-Dat	a Synchronizers.								
UNIT-III	SYSTI	EM DESIGN US	SING PLD	S					9 Pe	riods
Basic conce	pts – Progi	amming Techno	logies - Pro	ogrammable Lo	gic Element (I	PLE) –	Program	mable	Array L	ogic
$(\mathbf{DI} \mathbf{A}) \mathbf{D}_{rog}$	rammable	Array Logio (DA)	L) _Design	n of combinatio	nal and sequer	ntial cire	cuits usir	ng PLD	s– Com	plex
(FLA)-Flog		may Logic (PA	E) Design	i oi comomano	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se					1
PLDs (CPL)	Ds).	anay Logic (PA	L) Design	BROW BLUD	2018 Mar					1
PLDs (CPL) UNIT-IV	Ds).	DUCTION TO	VHDL	Andro picto					<b>9</b> Pe	riods
PLDs (CPL) UNIT-IV Design flow	Ds). INTRO w -Softwa	DUCTION TO e tools – VHI	<b>VHDL</b> DL: Data	Objects-Data	types – Oper	rators –	-Entities	and A	9 Per Archited	r <b>iods</b> tures
PLDs (CPL) UNIT-IV Design flow Components	Ds). INTRO W -Softwar s and Con	DUCTION TO re tools – VHI figurations – Sig	<b>VHDL</b> DL: Data gnal Assig	Objects-Data gnment – Conc	types – Oper current and Se	rators –	-Entities al statem	and Aments —	<b>9 Pe</b> Architec –Behav	r <b>iods</b> tures
PLDs (CPL) UNIT-IV Design flow Components Dataflow an	Ds). INTRO W -Softwa s and Con d Structura	<b>DUCTION TO</b> re tools – VHI figurations – Si l modeling– Tra	<b>VHDL</b> DL: Data gnal Assig nsport and	Objects-Data gnment – Conc Inertial delays	types – Oper current and Se –Delta delays-	rators – equentia Attribu	-Entities al statem tes - Gen	and A ents – erics–F	9 Per Architec –Behav Package	riods tures ioral, s and
PLDs (CPL) PLDs (CPL) UNIT-IV Design flow Components Dataflow an Libraries.	Ds). INTR( w -Softwa s and Con d Structura	DUCTION TO e tools – VHI figurations – Signations – Signations – Signations – Signations – Signations – Signations – Signational Statements – Signational Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Statements – Stateme	<b>VHDL</b> DL: Data gnal Assig nsport and	Objects-Data gnment – Conc Inertial delays	types – Oper current and Se –Delta delays-	rators - equentia Attribu	-Entities al statem tes - Gen	and A ents – erics–I	9 Per Architec Behav Package	riods tures ioral, s and
PLDs (CPL) PLDs (CPL) UNIT-IV Design flow Components Dataflow an Libraries. UNIT-V	Ds). INTRO V -Softwa: s and Con d Structura	DUCTION TO DUCTION TO e tools – VHI figurations – Si l modeling– Tran	<b>VHDL</b> DL: Data gnal Assig nsport and <b>STING A</b>	Objects-Data gnment – Conc Inertial delays	types – Oper current and Se –Delta delays- E DESIGN	rators - equentia Attribu	-Entities al statem tes - Gen	and A nents – erics–H	9 Per Architec –Behav Package 9 Pe	riods tures ioral, s and riods
PLDs (CPL) PLDs (CPL) UNIT-IV Design flow Components Dataflow an Libraries. UNIT-V Digital logi	Ds). INTRO W -Softwa: s and Con d Structura LOGI c circuit te	DDUCTION TO re tools – VHI figurations – Sig l modeling– Tran C CIRCUIT TE sting - Fault mod	<b>OVHDL</b> DL: Data gnal Assig nsport and <b>STING A</b> M lels - Coml	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic	types – Oper current and Se –Delta delays- E DESIGN circuit testing	rators - equentia Attribu g - Sequ	-Entities al statem tes - Gen eential log	and A ents – erics–H gic circ	9 Per Architec –Behav Package 9 Pe suit testi	riods tures ioral, s and riods
PLDs (CPL) PLDs (CPL) UNIT-IV Design flow Components Dataflow an Libraries. UNIT-V Digital logi Design for	Ds). INTRO W -Softwar s and Con ad Structura LOGIO c circuit te Testability	DUCTION TO The tools – VHI figurations – Signations – Signations 1 modeling– Tran C CIRCUIT TE sting - Fault model - Built-in Self-te	<b>VHDL</b> DL: Data gnal Assig nsport and <b>STING AN</b> dels - Coml est, Board	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le	types – Oper current and So –Delta delays- E DESIGN circuit testing vel Boundary	rators – equentia Attribu g - Sequ Scan –	-Entities al statem tes - Gen ential log Case Stu	and A eents – erics–H gic circ	9 Per Architec –Behav Package 9 Pe suit testi raffic Li	riods tures ioral, s and riods ng- ght
PLDs (CPL) PLDs (CPL) Design flow Components Dataflow an Libraries. UNIT–V Digital logi Design for Controller.	Ds). INTRO W -Softwa: s and Con d Structura LOGIC c circuit te Testability	DUCTION TO to tools – VHI figurations – Sig 1 modeling– Tran C CIRCUIT TE sting - Fault model - Built-in Self-te	<b>VHDL</b> DL: Data gnal Assig nsport and <b>STING AN</b> lels - Coml est, Board	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary	rators - equentia Attribu g - Sequ Scan -	-Entities al statem tes - Gen ential log Case Stu	and A ents – erics–H gic circ ıdy: Tı	9 Per Architec –Behav Package 9 Pe suit testi raffic Li	riods tures ioral, s and riods ng- ght
PLDs (CPL) PLDs (CPL) UNIT-IV Design flow Components Dataflow an Libraries. UNIT-V Digital logi Design for Controller. Contact Pe	Ds). INTRO W -Softwat s and Con ad Structura LOGIO c circuit te Testability riods:	DUCTION TO re tools – VHI figurations – Sig 1 modeling– Tran C CIRCUIT TE sting - Fault model - Built-in Self-te	<b>VHDL</b> DL: Data gnal Assig nsport and <b>STING AN</b> dels - Coml est, Board	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary	rators - equentia Attribu g - Sequ Scan -	-Entities al statem tes - Gen lential log Case Stu	and A eents – erics–H gic circ	9 Per Architec –Behav Package 9 Pe ouit testi raffic Li	riods tures ioral, s and riods ng- ght
PLDs (CPL) PLDs (CPL) UNIT-IV Design flow Components Dataflow an Libraries. UNIT-V Digital logi Design for Controller. Contact Per Lecture: 45	Ds). INTRO W -Softwars and Con ad Structura LOGI c circuit te Testability riods: Periods	DDUCTION TO re tools – VHI figurations – Sig l modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-te Tutorial: 0 l	<b>OVHDL</b> DL: Data gnal Assig nsport and <b>STING AN</b> lels - Coml est, Board	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T	rators - equentia Attribur g - Sequ Scan -	-Entities al statem tes - Gen ential log Case Stu 5 Period	and A ents – erics–I gic circ udy: Tr	9 Per Architec –Behav Package 9 Pe uit testi affic Li	riods tures ioral, s and riods ng- ght
PLDs (CPL) PLDs (CPL) UNIT-IV Design flow Components Dataflow an Libraries. UNIT-V Digital logi Design for Controller. Contact Per Lecture: 45	Ds). INTR( w -Softwa s and Con d Structura LOGI c circuit te Testability riods: Periods	DUCTION TO DUCTION TO re tools – VHI figurations – Sig 1 modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-to Tutorial: 0 I	<b>OVHDL</b> DL: Data gnal Assig nsport and <b>STING AN</b> lels - Coml est, Board = <b>Periods</b>	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T	rators - equentia Attribu g - Sequ Scan -	-Entities al statem tes - Gen lential log Case Stu 5 Period	and A eents – erics–F gic circ udy: Tr	9 Per Architec –Behav Package 9 Pe ouit testi affic Li	riods tures ioral, s and riods ng- ght
PLDs (CPL) PLDs (CPL) UNIT-IV Design flow Components Dataflow an Libraries. UNIT-V Digital logi Design for Controller. Contact Pe Lecture: 45	Ds). INTRO W -Softwa: s and Con ad Structura LOGI c circuit te Testability riods: Periods NCES:	DDUCTION TO re tools – VHI figurations – Sig l modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-te Tutorial: 0 I	<b>OVHDL</b> DL: Data gnal Assig nsport and <b>STING AN</b> lels - Coml est, Board : <b>Periods</b>	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T	rators – equentia Attribu g - Sequ Scan –	-Entities al statem tes - Gen ential log Case Stu 5 Period	and A eents – erics–H gic circ idy: Tr	9 Per Architec –Behav Package 9 Pe suit testi raffic Li	riods tures foral, s and riods ng- ght
PLDs (CPL) PLDs (CPL) UNIT- IV Design flow Components Dataflow an Libraries. UNIT-V Digital logi Design for Controller. Contact Pe Lecture: 45 REFERE	Ds). INTRO W -Softwa: s and Con d Structura LOGI c circuit te Testability riods: Periods NCES:	DDUCTION TO re tools – VHI figurations – Sig l modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-to Tutorial: 0 I	<b>VHDL</b> DL: Data gnal Assig nsport and <b>STING AN</b> lels - Coml est, Board a <b>Periods</b>	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T	rators - equentia Attribu g - Sequ Scan -	-Entities al statem tes - Gen eential log Case Stu 5 Period	and A eents — erics—F gic circ ady: Tr	9 Per Architec –Behav Package 9 Pe ouit testi raffic Li	riods tures ioral, s and riods ng- ght
PLDs (CPL)       PLDs (CPL)       UNIT-IV       Design flow       Dataflow and       Libraries.       UNIT-V       Digital logi       Design for       Controller.       Contact Pe       Lecture: 45       REFERE       1     Dor	Ds). INTRO W -Software s and Con ad Structura LOGI c circuit te Testability riods: Periods NCES: Dald G.Give	DDUCTION TO re tools – VHI figurations – Si, l modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-te Tutorial: 0 I ne, "Digital prin	<b>VHDL</b> DL: Data gnal Assig nsport and STING AN dels - Coml est, Board = Periods	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T McGrawHill, 2	rators – equentia Attribu g - Sequ Scan –	-Entities al statem tes - Gen lential log Case Stu 5 Period	and A eents – erics–H gic circ udy: Tr	9 Per Architec –Behav Package 9 Pe uit testi affic Li	riods tures ioral, s and riods ng- ght
PLDs (CPL)       PLDs (CPL)       UNIT-IV       Design flow       Components       Dataflow and       Libraries.       UNIT-V       Digital logi       Design for       Controller.       Contact Pe       Lecture: 45       REFERE       1     Dore       2     Nels	Ds). INTRO W -Softwa: s and Con d Structura LOGIO c circuit te Testability riods: Periods NCES: add G.Give son, V.P., J	DDUCTION TO re tools – VHI figurations – Si l modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-to Tutorial: 0 I ne, "Digital prin Vagale, H.T., Ca	D       VHDL         DL:       Data         gnal       Assig         nsport and       STING AN         Sting and       Sting and         String and       Sting and	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0 Design", Tatal	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T McGrawHill, 2 D., "Digital 1	rators - equentia Attribur g - Sequ Scan - <b>Sotal: 4</b> <b>Sotal: 4</b> <b>2002.</b> <b>Logic C</b>	-Entities al statem tes - Gen eential log Case Stu 5 Period	and A eents – erics–F gic circ ady: Tr s	9 Per Architec –Behav Package 9 Pe uit testi raffic Li	riods tures ioral, s and riods ng- ght ght
Image: PLDs (CPL)       PLDs (CPL)       Design flow       Components       Dataflow and       Libraries.       UNIT-V       Digital logi       Design for       Controller.       Contact Pee       Lecture: 45       REFERE       1     Dom       2     Nels       Pred	Ds). INTRO W -Softwa: s and Con d Structura LOGI c circuit te Testability riods: Periods NCES: ald G.Give con, V.P., I ntice Hall I	DDUCTION TO re tools – VHI figurations – Si 1 modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-te Tutorial: 0 I ne, "Digital print Vagale, H.T., Ca nternational, Inc.	<ul> <li><b>VHDL</b></li> <li><b>DL:</b> Data gnal Assignsport and STING AN dels - Comlest, Board - String And the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the string of the s</li></ul>	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0 Design", Tatan , and Irwin, J. ey, 1995.	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T McGrawHill, 2 D., "Digital D	rators – equentia Attribu g - Sequ Scan – Cotal: 4: 2002. Logic C	-Entities al statem tes - Gen lential log Case Stu 5 Period	and A eents – erics–F gic circ udy: Tr s	9 Per Architec –Behav Package 9 Pe uit testi affic Li	riods tures ioral, s and riods ng- ght esign
Image: Control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	Ds). INTRO W -Softwar s and Con d Structura LOGIO c circuit te Testability riods: Periods NCES: ald G.Give con, V.P., In ntice Hall I neiA.Pedro	DDUCTION TO re tools – VHI figurations – Si l modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-te Tutorial: 0 I ne, "Digital print Nagale, H.T., Ca nternational, Inc. i, "Circuit Desig	<b>VHDL Design OVHDL DL:</b> Data gnal Assignsport and <b>STING AN STING AN Idels - Combody Stilles - Combody <b>Stilles - Combody Stilles - Combody Stilles - Combody Stilles - Combody <b>Stilles - Combody Stilles - Combody <b>Stilles - Combody </b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b></b>	Objects-Data gnment – Conc Inertial delays <b>ND TESTABL</b> binational logic and System Le <b>Practical: 0</b> <b>Design", Tatal</b> <i>i, and Irwin, J.</i> ey, 1995. <b>DL</b> ", PHILearn	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T McGrawHill, 2 D., "Digital I aing, 2011.	rators – equentia Attribur g - Sequ Scan – Sotal: 4: 2002. Logic C	-Entities al statem tes - Gen eential log Case Stu 5 Period	and A eents – erics–F gic circ ady: Tr s	9 Per Architec –Behav Package 9 Pe uit testi raffic Li	riods tures ioral, s and riods ng- ght ght
PLDs (CPL)         PLDs (CPL)         UNIT-IV         Design flow and         Libraries.         UNIT-V         Digital logi         Design for         Controller.         Contact Pee         Lecture: 45         REFERE         1       Dom         2       Nels         3       Volu         4       Part	Ds). INTRO W -Softwa s and Con d Structura LOGIO c circuit te Testability riods: Periods NCES: ald G.Give son, V.P., I neiA.Pedro agK Lala, "	DDUCTION TO re tools – VHI figurations – Si I modeling– Tran C CIRCUIT TE sting - Fault mod - Built-in Self-te Tutorial: 0 I ne, "Digital prin Nagale, H.T., Ca nternational, Inc. ni, "Circuit Desig Digital Circuit T	D       VHDL         DL:       Data         gnal       Assig         nsport and       STING AN         dels       - Comlessity         est,       Board         Periods       - Comlessity         aciples and       - Complexity         aciples aciples and       - Complexity         aciplestic <td>Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0 Design", Tatan , and Irwin, J. ey, 1995. DL", PHILearn Testability", A</td> <td>types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T McGrawHill, 2 D., "Digital I ning, 2011. cademicPress,</td> <td>rators – equentia Attribu g - Sequ Scan – Cotal: 4: 2002. Logic C</td> <td>-Entities al statem tes - Gen lential log Case Stu 5 Period</td> <td>and A eents – erics–H gic circ udy: Tr s</td> <td>9 Per Architec –Behav Package 9 Pe uit testi affic Li</td> <td>riods tures ioral, s and riods ng- ght esign</td>	Objects-Data gnment – Conc Inertial delays ND TESTABL binational logic and System Le Practical: 0 Design", Tatan , and Irwin, J. ey, 1995. DL", PHILearn Testability", A	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T McGrawHill, 2 D., "Digital I ning, 2011. cademicPress,	rators – equentia Attribu g - Sequ Scan – Cotal: 4: 2002. Logic C	-Entities al statem tes - Gen lential log Case Stu 5 Period	and A eents – erics–H gic circ udy: Tr s	9 Per Architec –Behav Package 9 Pe uit testi affic Li	riods tures ioral, s and riods ng- ght esign
Image: Control legistration       Design flow       Dataflow and       Libraries.       UNIT-V       Digital logi       Design for       Controller.       Contact Per       Lecture: 45       REFERE       1     Dord       2     Nels       Prev       3     Volid       4     Parce       5     Chart	Ds). INTRO W -Softwar s and Con ad Structura LOGIO c circuit te Testability riods: Periods NCES: add G.Give son, V.P., I ntice Hall I neiA.Pedro agK Lala, " rlesHRoth,	DDUCTION TO re tools – VHI figurations – Si il modeling– Tra C CIRCUIT TE sting - Fault mod - Built-in Self-te Tutorial: 0 I ne, "Digital prin Vagale, H.T., Ca nternational, Inc. i, "Circuit Desig Digital Circuit T "Digital Systems	<ul> <li><b>VHDL</b></li> <li><b>Design</b></li> <li><b>VHDL</b></li> <li><b>DL</b>: Data gnal Assignsport and</li> <li><b>STING AN</b></li> <li><b>STING AN</b></li> <li><b>Idels - Combody</b></li> <li><b>STING AN</b></li> <li><b>Besty Board and an analysis</b></li> <li><b>Periods</b></li> <li><b>Periods</b></li> <li><b>Combody Construction</b></li> <li><b>Periods</b></li> <li><b>Combody Construction</b></li> <li><b>STING AN</b></li> <li><b>STING </b></li></ul>	Objects-Data gnment – Conc Inertial delays <b>ND TESTABL</b> binational logic and System Le <b>Practical: 0</b> <b>Design", Tatan</b> <i>i, and Irwin, J.</i> <i>ey, 1995.</i> <b>DL", PHILearn</b> <b>Testability", A</b> <b>Sing VHDL", O</b>	types – Oper current and Se –Delta delays- E DESIGN circuit testing vel Boundary Periods T McGrawHill, 2 D., "Digital I ning, 2011. cademicPress, Cencage 2 nd Ed	rators – equentia Attribu g - Sequ Scan – <b>Total: 4</b> : 2002. <b>Logic C</b> ,1997. dition20	-Entities al statem tes - Gen eential log Case Stu 5 Period	and A eents – erics–H gic circ idy: Tr s	9 Per Architec –Behav Package 9 Per suit testi faffic Li	riods tures ioral, s and riods ng- ght esign

COUR	COURSEOUTCOMES:					
Upon o	Upon completion of the course ,students will be able to/have:					
CO1	To design synchronous sequential circuits based on specifications.	K3				
CO2	To design asynchronous sequential circuits based on specifications	К3				
CO3	Ability to illustrate digital design implementation using PLDs.	K2				
<b>CO4</b>	To develop algorithm and VHDL code for design of digital circuits.	K3				
CO5	Understand the different testing methods for combinational and sequential circuits.	K2				

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	2	-	-	1			
CO2	3	-	2	-	-	1			
CO3	3	-	2	-	-	1			
CO4	3	-	2	-	-	1			
CO5	3	-	2	-	-	1			
23AEOE25	3	-	2	-	-	1			
1 - Slight, 2 - Moder	– Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	40%	40%	20%				100%			
CAT2	40%	40%	20%	Strend Strend			100%			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1		50%	50%				100%			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2		50%	50%				100%			
ESE	20%	45%	35%	N/5			100%			



**23AEOE26** 

## **BASICS OF NANO ELECTRONICS**

(Common to all Branches)

	(Common to a	ii Branches)						
PREREQUISI	TES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course	The students will be able to acquire knowledge ab	out nano device f	abricatio	on tech	nology,	nano		
Objective	structures, nano technology for memory devices a	and applications o	f nano	electro	onics ir	1 data		
	transmission.							
UNIT – I	TECHNOLOGY AND ANALYSIS				9 P	eriods		
Fundamentals	s : Dielectric, Ferroelectric and Optical properties - Film	n Deposition Metho	ods – Lit	thograp	ohy			
Material remo	oving techniques - Etching and Chemical Mechanical	l Polishing - Scan	ning Pro	obeTec	hniques	-		
UNIT – II	CARBON NANO STRUCTURES				9 P	eriods		
Principles and	l concepts of Carbon Nano tubes - Fabrication - E	lectrical, Mechani	cal and	Vibra	tionProp	perties		
- Applications	of Carbon Nano tubes.							
UNIT – III	LOGIC DEVICES				9 P	eriods		
Silicon MOSI	FET's: Novel materials and alternative concepts - S	ingle electron dev	ices for	· logic	applicat	tions -		
Super conduct	or digital electronics - Carbon Nano tubes for data proc	essing.						
UNIT – IV	MEMORY DEVICES AND MASS STORAGE DE	EVICES			9 P	eriods		
Flash memorie	es - Capacitor based Random Access Memories - Mag	gnetic Random Acc	ess Me	mories	- Inform	nation		
storage based	on phase change materials - Resistive Random Access l	Memories - Hologra	aphicDa	ta stora	ige.			
UNIT – V	DATA TRANSMISSION AND INTERFACING D	ISPLAYS			9 P	eriods		
Photonic Netw	works - RF and Microwave Communication Syster	n - Liquid Crysta	ıl Displ	ays -	Organic	Light		
emitting diode	s.							
<b>Contact Perio</b>	Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								
REFEI	RENCES:							

## **REFERENCES:**

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and novel
	devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics Science,
	Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer, 2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher, California", 2003.

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon c	Upon completion of the course, students will be able to/have:					
CO1	Explain principles of nano device fabrication technology.	K2				
CO2	Describe the concept of Nano tube and Nano structure.	K2				
CO3	Explain the function and application of various nano devices	K3				
CO4	Reproduce the concepts of advanced memory technologies.	K2				
CO5	Emphasize the need for data transmission and display systems.	K2				

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	3	-	2	-	-	1	3	-	1	
CO2	3	-	2	-	-	1	3	-	1	
CO3	3	-	2	-	-	1	3	-	1	
CO4	3	-	2	-	-	1	3	-	1	
CO5	3	-	2	-	-	1	3	-	1	
<b>22AEOE26</b>	3	-	2	-	-	1	3	-	1	
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT I	PATTERN – THEO	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	50%	25%	25%	192010			100%
CAT2	50%	25%	25%				100%
Individual	50%	25%	25%				100%
Assessment 1/		15					
Case Study 1/		(A) A	-	- 77			
Seminar 1 /			<u> </u>				
Project1							
Individual	50%	25%	25%				100%
Assessment 2/				11			
Case Study 2/		1 9 6					
Seminar 2 /		8					
Project 2		1 0					
ESE	50%	25%	25%				100%
		A A A A A A A A A A A A A A A A A A A		233			
	(						
		20.0	200-10	an no			
		Contraction of the second	1 13 200	Y			
		Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco		Y			

	. /			(Common	to all Branches	)			
PREREQUISI	TES			(Common	CATEGOR	Y L	Т	P	C
			NIL		OE	3	0	0	3
Course T	The stu	dent	s will be able to acquir	e knowledge ab	out the high pe	rformanc	e RISC,	LISC a	nd special
<b>Objective</b> p	ourpose	e pro	cessors.	-					-
UNIT – I	MICF	ROP	ROCESSOR ARCHIT	ECTURE				9 Pe	riods
Instruction set	t – Dat	a for	nats – Instruction forma	ts – Addressing	modes – Memo	ry hierar	chy – reg	isterfile	- Cache
– Virtual mer	mory	and	paging – Segmentation	– Pipelining –	The instructi	on pipeli	ne – pip	eline h	azards –
Instruction lev	vel para	alleli	sm – reduced instruction	n set – Computer	principles – R	SCversus	CISC –	RISC p	roperties
– RISC evalua	ation.								_
UNIT – II	HIGH	I PE	<b>RFORMANCE CISC</b> A	ARCHITECTU	RE –PENTIUI	Л		9 Pe	riods
The software	model	– f	unctional description -	CPU pin descri	ptions – Addr	essing m	odes – P	rocesso	r flags –
Instruction set	t – Bus	ope	rations – Super scalar ar	rchitecture – Pip	e lining – Bran	ch predic	tion – Th	e instru	ction and
caches – Float	ting po	int u	nit– Programming the Pe	entium processor					
UNIT – III	HIGH	I PE	<b>RFORMANCE CISC</b> A	ARCHITECTU	RE – PENTIU	M INTE	RFACE	9 Pe	riods
Protected mod	le oper	ation	n – Segmentation – pag	ing – Protection	- multitasking	- Except	tion and	interrup	ots- Input
/Output – Virt	ual 80	36 m	odel – Interrupt processi	ng.	B.R.B.Burner				
UNIT – IV	HIGH	I PE	RFORMANCE RISC A	ARCHITECTU	RE: ARM			9 Pe	riods
ARM archited	cture -	- Al nh ir	RM assembly language struction set	program – Al	RM organizatio	on and in	nplement	tation -	- ARM
UNIT – V	SPEC		PURPOSE PROCESS	ORS	- >>			9 Pe	riods
Altera Cyclon	e Proc	esso	- Audio codec - Vide	o codec design -	- Platforms – C	eneral pu	irpose pr	ocessor	–Digital
signal process	sor – E	mbe	dded processor – Medi	a Processor – V	ideo signal Pro	cessor –	Custom 1	Hardwa	are – Co-
Processor.				Y STUD					
Contact Perio	ods:		1	IS EI	11				
Lecture: 45 I	Period	<b>S</b>	Tutorial: 0 Periods	Practical: 0	Periods To	otal: 45 P	eriods		
REFERE	NCES	:	1 3						
1 Daniel To	abak, <b>'</b>	'Adv	anced Microprocessors	", McGraw Hill I	nc., 2011.				
2 James L.	2 James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.								
3 Steve Fur	3 Steve Furber, "ARM System –On –Chip architecture", Addison Wesley, 2009.								
4 <i>Gene. H.</i>	4 Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.								
5 Barry. B.	Brey,	"The	e Intel Microprocessors	Architecture, Pr	ogramming an	d Interfa	cing", Pl	HI, 2008	8.
6 Valvano,	"Emb	edde	d Microcomputer System	ms" Cencage Lea	aring India Pvt	Ltd, 2011			
7 $Iain E.G.$	Richa	rdso	ı, <b>"Video codec design'</b>	', John Wiley & s	ons Ltd, U.K, 2	002.			

COUR	COURSE OUTCOMES:				
Upon c	Upon completion of the course, students will be able to				
		Mapped			
CO1	Describe the fundamentals of various processor architecture.	K2			
CO2	Interpret and understand the high performance features in CISC architecture.	K2			
CO3	Describe the concepts of Exception and interrupt processing.	K2			
CO4	Develop programming skill for ARM processor.	К3			
CO5	Explain various special purpose processor	K2			

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	2	-	-	1			
CO2	3	-	2	-	-	1			
CO3	3	-	2	-	-	1			
CO4	3	-	2	-	-	1			
CO5	3	-	2	-	-	1			
22AEOE27	3	-	2	-	-	1			
1 – Slight, 2 – Moderate,	1 – Slight, 2 – Moderate, 3 – Substantial								

					EORY	ATTERN – THE	ASSESSMENT P
Total %	Creatin g (K6)	Evaluating (K5) %	Analyzing (K4) %	Applying (K3) %	Understanding (K2) %	Remembering (K1) %	Test / Bloom's Category*
	%		- 60h	0 34			
100%			1999	20%	40%	40%	CAT1
100%				20%	40%	40%	CAT2
100%				50%	50%		Individual
							Assessment 1 /
			- 7/	-	10 0		Case Study 1/
				<b>人</b> 文	110 0		Seminar 1 /
							Project1
100%				50%	50%		Individual
			11		1 . 16		Assessment 2 /
					// 8/		Case Study 2/
					1 8		Seminar 2 /
					1 0		Project 2
100%				30%	40%	30%	ESE
				20% 50% 50% 30%	40% 50% 50%	40%	CAT2IndividualAssessment 1 /Case Study 1/Seminar 1 /Project1IndividualAssessment 2 /Case Study 2/Seminar 2 /Project 2ESE

23VLOE28	HDL PROGRAMMIN	NG LANGUAGES				
	(Common to all	l Branches)				
PREREQUISITES	S S	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To code and simulate any digital function in	Verilog HDL and u	nders	tand	the	difference
Objective	between synthesizable and non-synthesizable code	S.				
UNIT – I	VERILOG INTRODUCTION AND MODELIN	IG			ç	) Periods
Introduction to Ver	rilog HDL, Language Constructs and Conventions,	Gate Level Modelin	ıg, M	odeli	ng at	Dataflow
Level, Behavioral N	Modeling, Switch Level Modeling, System Tasks, Fu	unctions and Compile	r Dir	ective	es.	
UNIT – II	SEQUENTIAL MODELING AND TESTING				Ģ	) Periods
Sequential Models	- Feedback Model, Capacitive Model, Implicit Me	odel, Basic Memory	Com	pone	nts, I	Functional
Register, Static Ma	achine Coding, Sequential Synthesis. Test Bench	- Combinational Cir	cuits	Testi	ng, S	Sequential
Circuit Testing, Tes	st Bench Techniques, Design Verification, Assertion	Verification.				
UNIT – III	SYSTEM VERILOG				ç	) Periods
Introduction, Syste	em Verilog declaration spaces, System Verilog Lite	eral Values and Buil	lt-in 1	Data	Туре	s, System
Verilog User-Defin	ned and Enumerated Types, system Verilog Arr	ays, Structures and	Unic	ons, s	syster	n verilog
Procedural Blocks,	Tasks and Functions.	Star Series				
UNIT – IV	SYSTEM VERILOG MODELING				ç	) Periods
System Verilog Pr	ocedural Statements, Modeling Finite State Mach	ines with System Ve	erilog	, Sys	tem	Verilog
Design Hierarchy.						
UNIT – V	INTERFACES AND DESIGN MODEL				ç	) Periods
System Verilog In	terfaces, A Complete Design Modeled with Syster	n Verilog, Behaviora	al ano	d Tra	nsact	ion Level
Modeling.						
<b>Contact Periods</b> :						
Lecture: 45 Period	ls Tutorial:0 Periods Practical:0 Periods	Total: 45 Periods				
REFEREN						

1	T.R.Padmanabhan, B Bala Tripura Sundari, "Design through Verilog HDL", Wiley 2009.
2	Stuart Sutherland, Simon Davidmann, Peter Flake, Foreword by Phil Moorby, "System Verilog For Design
	Second Edition A Guide to Using System Verilog for Hardware Design and Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of Projects on
	FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language Features",
	Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System
	Verilog for Hardware Design and Modeling" 1st Edition, 2003

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Explain the verilog coding and simulate any digital function using Verilog HDL	K2
CO2	Develop sequential modeling based Verilog HDL code and develop the test bench for	K3
	the modeling	
CO3	Explain the system verilog modeling	K2
<b>CO4</b>	Differentiate the synthesizable and non-synthesizable code	K3
CO5	Apply good coding techniques on system verilog interfaces and complete design model	K3

COURSE ARTICUI	LATION MATI	RIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3		2		2
CO2	3	3		2		2
CO3	3	3		2		2
CO4	3	3		2		2
CO5	3	3		2		2
23VLOE28	3	3		2		2
1 – Slight, 2 – Moder	ate, 3 – Substant	ial				

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	8300	-	-	100%
Individual	-	50%	50%	フトビ	-	-	100%
Assessment 1 /			TUNE Y				
Case Study 1/							
Seminar 1 /	1.5		-	77			
Project1			5				
Individual	-	50%	50%	· //-	-	-	100%
Assessment 2 /				8 11 6			
Case Study 2/			121	11			
Seminar 2 /		1 0 3					
Project 2				11 4			
ESE	40%	40%	20%		-	-	100%

	CMOS VLSI	DESIGN				
23VLOE29	(Common to al	l Branches)				
PREREQUI	SITES	CATEGORY	L	Т	Р	C
NIL		OE	3	0	0	3
Course	To gain knowledge on CMOS Circuits with its char	acterization and to de	sign CM	OS logi	ic and	sub-
Objective	system with low power		C	C		
UNIT – I	INTRODUCTION TO MOS CIRCUITS				9 Per	iods
MOS Transis	stor Theory -Introduction MOS Device Design Equ	uations -MOS Transi	stor as a	a Swite	hes -	Pass
Transistor - C	CMOS Transmission Gate -Complementary CMOS I	nverter - Static Load	MOS In	verters	- Inve	rters
with NMOS 1	oads - Differential Inverter - Tri State Inverter - BiCM	IOS Inverter.				
UNIT – II	<b>CIRCUIT CHARACTERIZATION AND PERFO</b>	DRMANCE ESTIMA	TION		9 Per	riods
Delay Estima	tion, Logical Effort and Transistor Sizing, Power Di	ssipation, Sizing Rou	ting Con	ductors.	, Charg	ge
Sharing, Desi	gn Margin and Reliability.		-			-
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN				9 Per	iods
CMOS Logic	Gate Design, Physical Design of CMOS Gate, Desi	gning with Transmiss	ion Gate	s, CMC	S Log	jic
Structures, Cl	ocking Strategies, I/O Structures.				_	
UNIT – IV	CMOS SUBSYSTEM DESIGN				9 Per	iods
DataPath Op	perations-Addition/Subtraction, Parity Generators,	Comparators, Zero/	One De	tectors,	Bina	ry
Counters, AL	Us, Multipliers, Shifters, Memory Elements, Control-	FSM, Control Logic In	nplemen	tation.		
UNIT – V	LOWPOWERCMOS VLSIDESIGN				9 Per	iods
Introduction t	to Low Power Design, Power Dissipation in FET Dev	ices, Power Dissipatio	n in CM	OS, Lov	w-Pow	er
Design throu	gh Voltage Scaling - VTCMOS Circuits, MTCMO	<b>DS</b> Circuits, Architec	tural Le	vel App	oroach	_
Pipelining and	d Parallel Processing Approaches, Low Power Basics	CMOS Gate and Adde	er Design	ı.		
Contact Peri	ods:					
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 Perio	ds			
REFE	CRENCES:					

1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-Graw Hill,
	2011. A K K
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley, 1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective",
	Pearson Education 2013.
4	Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M. Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Explain the MOS circuits and Transmission gates	K2
CO2	Illustrate the CMOS Circuits with its characterization	K2
CO3	Design CMOS logic circuits	К3
<b>CO4</b>	Design CMOS sub-system	К3
CO5	Discuss low power CMOS VLSI Design	K2

COURSE ARTIC	CULATION N	ATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	-	2	-	3
CO2	2	1	-	2	-	3
CO3	2	1	-	2	-	3
CO4	3	1	-	2	-	3
CO5	3	1	-	2	-	3
23VLOE29	3	1	-	2	-	3
1 – Slight, 2 – Mo	derate, 3 – Sul	ostantial				

ASSESSMENT P	ATTERN – THE	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	63630 m	-	-	100%
Individual	-	50%	50%	SIN 2	-	-	100%
Assessment 1/		CO2	MARCHAR .				
Case Study 1/							
Seminar 1/			Theory of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local di	- 77			
Project1			. i	F //			
Individual	-	50%	50%	1	-	-	100%
Assessment 2 /			STUD .				
Case Study 2/			\$**'全 *				
Seminar 2/		// 6/					
Project 2		1 2					
ESE	40%	40%	20%		-	-	100%



/ 3 V L L J H 30					
25 V LOE50	(Common to all Branches)				
PREREQUISI	REREQUISITES       CATEGORY       L       T       P       Q         IL       OE       3       0       0         ourse       To provide students with foundations in High level synthesis, verification and CAD Tools         bijetive       NIT - 1       HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS       9       Period         verview HLS flow, Scheduling Techniques, Resource sharing and Binding Techniques, Data-path an ontroller Generation Techniques.       9       Period         NIT - II       HIGH LEVEL SYNTHESIS       9       Period       9         roduction to HDL, HDL to DFG, operation scheduling: constrained and unconstrained scheduling, ASAI       LAP, List scheduling, Force directed Scheduling, operator binding, Static Timing Analysis: Delay model stup time, hold time, cycle time, critical paths, Topological mvs. Logical timing analysis, False paths, Arriv me (AT), Required arrival Time (RAT), Slacks.       9       Period         NIT - III       HIGH-LEVEL SYNTHESIS       9       Period         AD tools for synthesis, optimization, simulation and verification of digital systems- BDD based approaches, function quivalence, finite state automata, o-automata, FSM verification of design at various levels as well as for secial realizations and structures such as microprogrammes, PLAs, gate arrays etc. Technology mapping fi GAs. Low power issues in high level synthesis and logic synthesis.       9       Period         NIT - V       ADVANCED TOPICS       9       9       Period<	C			
NIL	OE	3	0	0	3
Course	To provide students with foundations in High level synthesis, verification and	CA	D To	ols	
Objective					
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS		9	Peri	iods
Overview HLS	flow, Scheduling Techniques, Resource sharing and Binding Technique	es, D	ata-p	ath	and
Controller Gene	ration Techniques.				
UNIT – II	HIGH LEVEL SYNTHESIS		9	Peri	iods
Introduction to	HDL, HDL to DFG, operation scheduling: constrained and unconstrained s	sched	uling	, AS	AP
ALAP, List sch	eduling, Force directed Scheduling, operator binding, Static Timing Analyst	sis: D	elay	mod	lels
setup time, hold	l time, cycle time, critical paths, Topological mvs. Logical timing analysis, F	alse j	oaths	, Arr	iva
time (AT), Requ	iired arrival Time (RAT), Slacks.				
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION		9	Peri	iods
Simulation bas	ed verification - Formal Verification of digital systems- BDD based appr	oache	es, fi	inctio	ona
equivalence, fin	ite state automata, $\omega$ -automata, FSM verification.				
UNIT – IV	CAD TOOLS FOR SYNTHESIS		9	Peri	iods
CAD tools for	synthesis, optimization, simulation and verification of design at various lev	vels a	s we	ll as	fo
special realizati	ons and structures such as microprogrammes, PLAs, gate arrays etc. Technology	ology	map	ping	fo
FPGAs. Low po	wer issues in high level synthesis and logic synthesis.				
UNIT – V	ADVANCED TOPICS		9	Peri	iods
UNIT – V Relative Schedu	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling	luling	<b>9</b> mod	<b>Peri</b> es, f	iods ree
UNIT – V Relative Schedu floating schedul	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed sched ing mode, Pipelining, Handshaking, System Design, High-Level Synthesis for	luling FPGA	9 mod A.	<b>Peri</b> es, f	iods ree
UNIT – V Relative Schedu floating schedul Contact Period	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed sched ing mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s:	luling FPGA	9 mod A.	Peri es, f	iods ree
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed sched ing mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	luling FPGA	9 mod A.	Peri es, f	iods ree
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	luling FPG4	9 mod A.	<b>Peri</b> es, f	iods ree
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES :	luling FPGA	9 mod A.	Peri es, f	iods ree
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE I Philippe Co	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital	luling FPG <i>I</i>	9 mod A. <i>cuit</i> "	Peri es, f	ree.
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE <i>I</i> Philippe Co 2008.	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital	luling FPG4	9 mod A.	Peri es, f	ree.
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital ., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200	luling FPGA al Cir	9 mod A. <i>cuit</i> "	Peri es, f	iods ree
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N 3 D. Micheli,	ADVANCED TOPICS         uling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s:         riods       Tutorial: 0 Periods       Practical: 0 Periods       Total: 45 Periods         NCES :	luling FPGA al Cir	9 mod A. <i>cuit</i> "	Peri es, f	iods free ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE I Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, 1	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital ., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 Synthesis and optimization of digital systems", Mc Graw Hill, 2005. und Gajski, D. D., "High level synthesis", Kluwer, 2000.	luling FPG₽ al Cir	9 mod A.	Peri es, f	ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE l Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, 4 Dutt, N. D. o 5 Gerez S.H.,	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital f., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 (Synthesis and optimization of digital systems", Mc Graw Hill, 2005. and Gajski, D. D., "High level synthesis", Kluwer, 2000. "Algorithms for VLSI Design Automation", John Wiley (1998)	luling FPGA al Cir	9 mod A.	Peri es, f	ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, 4 Dutt, N. D. a 5 Gerez S.H., 6 David. C. K	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital ., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 Synthesis and optimization of digital systems", Mc Graw Hill, 2005. und Gajski, D. D., "High level synthesis", Kluwer, 2000. "Algorithms for VLSI Design Automation", John Wiley (1998) u and G. De Micheli, "High-level Syntheses of ASICs Under Timing and	luling FPG4 al Cir	9 mod A.	Peri es, f	ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, 4 Dutt, N. D. d 5 Gerez S.H., 6 David. C. K Synchroniza	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital ., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 Synthesis and optimization of digital systems", Mc Graw Hill, 2005. und Gajski, D. D., "High level synthesis", Kluwer, 2000. "Algorithms for VLSI Design Automation", John Wiley (1998) a and G. De Micheli, "High-level Syntheses of ASICs Under Timing and ttion Constraints", Kluwer Academic Publishers, 1992.	luling FPG4 al Cir	9 mod A.	Peri es, f	ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, 4 Dutt, N. D. o 5 Gerez S.H., 6 David. C. K Synchroniza 7 K. Parhi, "V	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital ., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 Synthesis and optimization of digital systems", Mc Graw Hill, 2005. and Gajski, D. D., "High level synthesis", Kluwer, 2000. "Algorithms for VLSI Design Automation", John Wiley (1998) and G. De Micheli, "High-level Syntheses of ASICs Under Timing and tion Constraints", Kluwer Academic Publishers, 1992. 'LSI Digital Signal Processing Systems: Design and Implementation", Jan 19	luling FPG4 al Cir 05.	9 mod A. <i>cuit</i> ''	Peri es, f	ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, 4 Dutt, N. D. a 5 Gerez S.H., 6 David. C. K Synchroniza 7 K. Parhi, "V 8 Egon Boerg	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital L, "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 Synthesis and optimization of digital systems", Mc Graw Hill, 2005. und Gajski, D. D., "High level synthesis", Kluwer, 2000. "Algorithms for VLSI Design Automation", John Wiley (1998) a and G. De Micheli, "High-level Syntheses of ASICs Under Timing and tion Constraints", Kluwer Academic Publishers, 1992. "LSI Digital Signal Processing Systems: Design and Implementation", Jan 12 er and Robert Staerk "Abstract State Machines: A Method for High-Level	luling FPG4 al Cir 05. 9999, 1 I Syst	9 mod A. cuit"	Peri es, f	ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, ' 4 Dutt, N. D. a 5 Gerez S.H., 6 David. C. K Synchroniza 7 K. Parhi, ''V 8 Egon Boerg Analysis'', S	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital ., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 Synthesis and optimization of digital systems", Mc Graw Hill, 2005. and Gajski, D. D., "High level synthesis", Kluwer, 2000. "Algorithms for VLSI Design Automation", John Wiley (1998) and G. De Micheli, "High-level Syntheses of ASICs Under Timing and and G. De Micheli, "High-level Syntheses of ASICs Under Timing and tion Constraints", Kluwer Academic Publishers, 1992. "LSI Digital Signal Processing Systems: Design and Implementation", Jan 19 er and Robert Staerk "Abstract State Machines: A Method for High-Lever Springer, 2006.	luling FPGA al Cir 05. 999, 1 I Syst	9 mod A. cuit" Wiley tem 1	Peri es, f	ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, 4 Dutt, N. D. d 5 Gerez S.H., 6 David. C. K Synchroniza 7 K. Parhi, "V 8 Egon Boerg Analysis", S	ADVANCED TOPICS ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital L, "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 Synthesis and optimization of digital systems", Mc Graw Hill, 2005. and Gajski, D. D., "High level synthesis", Kluwer, 2000. "Algorithms for VLSI Design Automation", John Wiley (1998) a and G. De Micheli, "High-level Syntheses of ASICs Under Timing and tion Constraints", Kluwer Academic Publishers, 1992. TSI Digital Signal Processing Systems: Design and Implementation", Jan II er and Robert Staerk "Abstract State Machines: A Method for High-Level Springer, 2006.	luling FPG4 al Cir 05. 999, 1 I Syst	9 mod A. cuit" Wiley	Peri es, f	ring
UNIT – V Relative Schedu floating schedul Contact Period Lecture: 45 Per REFERE 1 Philippe Co 2008. 2 Sherwani, N 3 D. Micheli, 4 Dutt, N. D. a 5 Gerez S.H., 6 David. C. K Synchroniza 7 K. Parhi, "V 8 Egon Boerg Analysis", S	ADVANCED TOPICS ding, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for s: riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods NCES : ussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital a, "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 200 Synthesis and optimization of digital systems", Mc Graw Hill, 2005. and Gajski, D. D., "High level synthesis", Khuwer, 2000. "Algorithms for VLSI Design Automation", John Wiley (1998) a and G. De Micheli, "High-level Syntheses of ASICs Under Timing and tion Constraints", Khuwer Academic Publishers, 1992. (LSI Digital Signal Processing Systems: Design and Implementation", Jan 19 er and Robert Staerk "Abstract State Machines: A Method for High-Level pringer, 2006.	Luling FPGA al Cir 05. 999, 1 I Syst	9 mod A. cuit " Wiley tem 1 oom	Peri es, f	ring

Upon co	Upon completion of the course, the students will be able to:			
CO1	Understand the fundamentals of High level synthesis	K2		
CO2	Synthesis the HDL for operation scheduling	K2		
CO3	Simulate and verify any digital systems	K2		
CO4	Apply CAD tools for synthesis	K2		
CO5	Have knowledge on various scheduling modes	K2		

## COURSE ARTICULATION MATRIX:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VLOE30	2	2	-	2	2	-

## ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Category	(KI) 70	(K2) 70	(KJ) 70	(K4) 70	(K3) 70	(KU) 70	
CAT1	50%	50%		-	-	-	100%
CAT2	50%	50%		-	-	-	100%
Individual	-	50%	50%		-	-	100%
Assessment 1/		a star	• 32	AD.			
Case Study 1/		Staten Dal	Sen PHE UR	18-16-10 M			
Seminar 1 /		1059	CITE OF				
Project1		- Aller		No.			
Individual	-	50%	50%		-	-	100%
Assessment 2/		10 0		<b>F</b> //			
Case Study 2/				t //			
Seminar 2/							
Project 2							
ESE	50%	50%		-11	-	-	100%



# ARTIFICIAL INTELLIGENCE

(Common to all Branches)

PREREQUISI	res	CATEGORY	L	Т	P	С
	NIL	OE	3	0	0	3
Course Identify and apply AI techniques in the design of systems that act i						naking
Objectives	automatic decisions and learn from experience.					
UNIT – I	I SEARCH STRATEGIES					
Uninformed Str	ategies - BFS, DFS, Djisktra, Informed Strateg	ies – A* search, He	euristic	e func	tions	s, Hill
Climbing, Adve	rsarial Search – Min-max algorithm, Alpha-beta Pro	uning				
UNIT – II	PLANNING AND REASONING				9 P	eriods
State Space sear	rch, Planning Graphs, Partial order planning, Unce	ertain Reasoning – Pi	robabi	listic ]	Reas	oning,
Bayesian Netwo	rks, Dempster Shafer Theory, Fuzzy logic					
UNIT – III	PROBABILISTIC REASONING				9 P	eriods
Probabilistic Re	asoning over Time - Hidden Markov Models, Ka	lman Filters, Dynam	ic Bay	vesian	Netv	vorks.
Knowledge Rep	resentations - Ontological Engineering, Semantic N	Networks and descript	ion lo	gics.		
UNIT – IV	DECISION MAKING				9 P	eriods
Utility Theory,	Utility Functions, Decision Networks - Sequentia	l Decision Problems	– Part	ially (	Obse	rvable
MDPs – Game 7	Theory.	Search State				
UNIT – V	REINFORCEMENT LEARNING				9 P	eriods
Reinforcement I	earning - Passive and active reinforcement learning	g - Generations in Rei	inforce	ement	Lear	ning -
Policy Search – Deep Reinforcement Learning.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
REFERENCES :						

## **REFERENCES**:

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice Hall, 2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,
	2009.

COUR	SE OUTCOMES:	Bloom's
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	K3
CO3	Examine data using statistical codes and solve complex AI problems	K6
<b>CO4</b>	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	K6

COURSE ARTICULATION MATRIX						
COs/ POs	PO 1	PO2	PO 3	PO 4	PO5	PO6
CO1	3		2		3	3
CO2	3		2		3	3
CO3	3		3		3	3
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE31	3		3		3	3
1 - Slight, 2 - Mod	derate, 3 –	Substanti	al	·		

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1		20	40	20	20		100	
CAT2		10	20	40	10	20	100	
Individual								
Assessment 1/								
Case study 1/					50	50	100	
Seminar 1/								
Project 1								
Individual								
Assessment 2/								
Case study 2/					50	50	100	
Seminar 2/								
Project 2								
ESE	30	30	40				100	



23CSOE32

# COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUIS	ITES	CATEGORY	L	Т	P	С
	NIL	OE	3	0	0	3
Course	After the completion of the course, the students will be able to understand the concept of					
Objectives	layering in networks, functions of protocols of ea	hch layer of TCP/IP	protoc	ol su	ite, co	oncepts
	related to network addressing and routing a	and build simple	LANs	, pe	rform	basic
	configurations for routers and switches, and imp	olement IPv4 and I	Pv6 add	lress	ing so	chemes
	using Cisco Packet Tracer.					
UNIT – I	INTRODUCTION AND APPLICATION LAY	YER			9 F	Periods
Building netwo	ork - Network Edge and Core - Layered Archite	cture – OSI Mode	l – Inte	rnet	Archi	itecture
(TCP/IP) Netw	vorking Devices: Hubs, Bridges, Switches, Route	rs, and Gateways -	- Perfor	man	ce M	etrics -
Ethernet Netw	orking - Introduction to Sockets - Application	h Layer protocols	- HTT	Ъ –	FTP	Email
Protocols – DN	JS.					
UNIT – II	TRANSPORT LAYER AND ROUTING				9 F	Periods
Transport Lay	er functions –User Datagram Protocol – Transm	ission Control Pro	tocol –	Flo	w Co	ntrol –
Retransmission	n Strategies - Congestion Control - Routing Prin	nciples – Distance	Vector	Roi	ıting	– Link
State Routing	- RIP - OSPF - BGP - Introduction to Quality	of Service (QoS).	Case Stu	udy:	Conf	iguring
RIP, OSPF BG	P using Packet tracer	ANY)				
UNIT – III	NETWORK LAYER				9 F	Periods
Network Layer	:: Switching concepts - Internet Protocol - IPV4 P	acket Format – IP	Address	sing -	– Sub	netting
– Classless Int	ter Domain Routing (CIDR) - Variable Length	Subnet Mask (VL	SM) –	DHC	CP -	ARP –
Network Addr	ess Translation (NAT) - ICMP - Concept of SDI	N.Case Study: Con	figuring	g VL	AN,	DHCP,
NAT using Pac	cket tracer					
UNIT – IV	INTERNETWORK MANAGEMENT				9 F	Periods
Introduction to	the Cisco IOS - Router User Interface - CLI - Ro	uter and Switch Ad	lministr	ative	e Funo	ctions -
Router Interfa	ces - Viewing, Saving, and Erasing Configurat	tions - Switching	Service	es -	Conf	iguring
Switches - Mar	naging Configuration Registers - Backing Up and	Restoring IOS - Ba	acking U	Jp ai	nd Re	storing
the Configuration	ion - Using Discovery Protocol (CDP) - Checking	Network Connectiv	vity			
UNIT – V	TRAFFIC MANAGEMENT AND WAN PRO	DTOCOLS			9 F	Periods
Managing Tra	ffic with Access Lists: Introduction to Access	Lists - Standard A	ccess ]	Lists	- Ex	tended
Access Lists	- Named Access Lists - Monitoring Access L	ists - Wide Area	Netwo	rking	g Pro	otocols:
Introduction to Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control						
(HDLC) Protocol - Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and						
Monitoring - I	Monitoring - Integrated Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring					
DDR	DDR					
<b>Contact Perio</b>	ds:					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 4	45 Perio	ods		

## **REFERENCES :**

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh Edition,
	Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education, 2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNATM: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	COUTCOMES:	Bloom's
		Taxonomy
Upon con	pletion of the course, the students will be able to:	Mapped
CO1	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	K3
CO4	Build simple LANs, perform basic configurations for routers and switches	K6
CO5	Illustrate various WAN protocols	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3		2	1
CO2	3		3	no	2	2
CO3	3	Contraction of the second	3	A 010	3	2
CO4	3	10	3 - 0	6110	3	3
CO5	3		3	GAL O	3	3
23CSOE32	3	1000	3		3	2
1 – Slight, 2 –	- Moderat	te, 3 – Substant	tial		37	

ASSESSMENT PATTERN – THEORY (Times New Roman, Size 11)									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*		8							
CAT1	30	30	20	20			100		
CAT2		30	20	30	10	10	100		
Individual	10	30	20	20	20		100		
Assessment 1/			< /2						
Case Study 1/		Querus a	000	aurua					
Seminar 1/		TTO A	10 - 20 - 12	STA					
Project 1		202		~					
Individual		20	20	20	20	20	100		
Assessment 2/									
Case Study 2/									
Seminar 2/									
Project 2									
ESE	20	40	40				100		

23CSOE33
LOCDOLOU

## **BLOCKCHAIN TECHNOLOGIES**

(Common to all Branches)

	(Common to							
PREREQUI	SITES	CATEGORY	L	T	Р	С		
	3	0	0	3				
Course The objective of the course is to explore basics of block chain technology and its application in								
Objectives	various domaiin							
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY AND	BLOCKCHAIN			9 Pe	riods		
History of B	lockchain - Types of blockchain- CAP theorem a	and blockchain - benefits	and	Limi	itatio	ns of		
Blockchain –	Decentalization using blockchain - Blockchain im	plementations- Block chai	n in	prac	tical	use -		
Legal and Go	vernance Use Cases							
UNIT – II	BITCOIN AND CRYPTOCURRENCY				9 Pe	riods		
Introduction	to Bitcoin, The Bitcoin Network, The Bitcoin Min	ning Process, Mining Dev	elopr	nent	s, B	itcoin		
Wallets, Dec	entralization and Hard Forks, Ethereum Virtual M	Iachine (EVM), Merkle T	ree,	Dou	ble-S	Spend		
Problem, Blo	ockchain and Digital Currency, Transactional Blo	ocks, Impact of Blockcha	in T	echr	iolog	y on		
Cryptocurren	cy							
UNIT – III	ETHEREUM				9 Pe	riods		
Introduction	to Ethereum, Consensus Mechanisms, Metamask	Setup, Ethereum Accourt	its, ,	Tra	insac	tions,		
Receiving Etl	hers, Smart Contracts							
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAM	IMING			9 Pe	riods		
Introduction	to Hyperledger, Distributed Ledger Technology &	& its Challenges, Hyperle	dger	&	Dist	ribute		
Ledger Techr	nology, Hyperledger Fabric, Hyperledger Composer.	Solidity - Programming wi	th so	lidit	у			
UNIT – V	BLOCKCHAIN APPLICATIONS				9 Pe	riods		
Ten Steps to	o build your Blockchain application – Applica	tion: Internet of Things	s, M	edica	al R	ecord		
Management	System, Domain Name Service and Future of Block	chain, Alt Coins						
Contact Peri	ods:							
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0	Periods Total: 45 Pe	riods	5				
REFE	RENCES:							
1 Imran Ba	shir, "Mastering Blockchain: Distributed Ledger	Technology, Decentralize	ation	, an	d Sr	nart		

- Contracts Explained", Second Edition, Packt Publishing, 2018.
- 2 Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions", McGraw Hill Education , 2018.
- 3 Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016.
- 4 Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
- 5 Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018
- 6 NPTEL Course : Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

COURSE OUTCOMES:					
		Taxonomy			
Upon co	ompletion of the course, the students will be able to:	Mapped			
CO1	Comprehend the working of Blockchain technology	K2			
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	K3			
CO3	Comprehend the working of Hyperledger in an real time application	K2			
<b>CO4</b>	Apply the learning of solidity to build de-centralized apps on Ethereum	K3			
CO5	Develop applications on Blockchain	K3			

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2		3	2		3			
CO2	2	3	3	3	2	3			
CO3	3		3	2		3			
CO4	3	3	3	3	2	3			
CO5	3	3	3	3	2	3			
23CSOE33	3	3	3	3	2	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PA	ATTERN – THEO	RY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		-N	mm				
CAT1	20	40	40				100
CAT2	20	30	50	Sand Part			100
Individual		10/595	THE PO				
Assessment 1/		30	70				100
Case Study 1/							
Seminar 1 /			- G	- //			
Project1							
Individual							
Assessment 2/		40	60				100
Case Study 2/				11			
Seminar 2 /							
Project 2							
ESE	10	60	30				100

_

23SE & C71	ENGLISH FOR RESEARCH	PAPER WRITIN	G							
23SEACZI	(Common to all B	ranches)								
PREREQUISITES CATEGORY L										
	NIL AC 2									
Course	The objective of the course is to make the learners understand the format and intricacies									
Objectives	involved in writing a research paper.									
UNIT – I	PLANNING AND PREPARATION				6 Peri	iods				
Need for publis	hing articles, Choosing the journal, Identifying a mod	del journal paper, C	Creation	n of fi	les fo	or each				
section, Expecta	ations of Referees, Online Resources.									
UNIT – II	SENTENCES AND PARAGRAPHS				6 Peri	iods				
Basic word in	English, Word order in English and Vernacular, place	cing nouns, Verbs,	Adjec	tives,	and A	Adverb				
suitably in a se	entence, Using Short Sentences, Discourse Markers a	nd Punctuations- S	tructur	re of a	ı Para	ıgraph,				
Breaking up len	gthy Paragraphs.									
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC	) OF WRITING			6 Peri	iods				
Accuracy, Brev	ity and Clarity in Writing, Reducing the linking word	s, Avoiding redund	ancy, A	Approp	oriate	use of				
Relative and R	eflexive Pronouns, Monologophobia, verifying the j	ournal style, Logic	al Cor	nnectio	ons be	etween				
others author's	findings and yours.									
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND	PARAPHRASING	r J		6 Peri	iods				
Making your fir	ndings stand out, Using bullet points headings, Tables a	und Graphs- Availin	ig nor	n-expe	rts op	inions,				
Hedging, Tonin	g Down Verbs, Adjectives, Not over hedging, Limitatic	ons of your research	•							
UNIT – V	UNIT - V SECTIONS OF A PAPER 6 Periods									
Titles, Abstracts, Introduction, Review of Literature, Methods, Results, Discussion, Conclusions, References.										
Contact Periods:										
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods										
REFERENCES :										

1	Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht Heidelberg
	London, 2011.

COURS	E OUTCOMES :	Bloom's Taxonomy
Upon co	mpletion of this course the learners will be able to	Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	K4
CO3	Practice unambiguous writing.	К3
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	K3

COURSE ARTICULATION MATRIX :								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	1	1	1	1		
CO2	3	3	1	1	1	1		
CO3	3	3	1	1	1	1		
CO4	3	3	1	1	1	1		
CO5	3	3	1	1	1	1		
23SEACZ1	3	3	1	1	1	1		

1 – S	light,	2 –	Moderate,	3 –	Substantial
-------	--------	-----	-----------	-----	-------------

ASSESSMENT P	SSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual									
Assessment 1/									
Case Study 1/	-	50	50	-	-	-	100		
Seminar 1/									
Project 1									
Individual									
Assessment 2/									
Case Study 2/	-	50	50	-	-	-	100		
Seminar 2/									
Project 2			NTTY YM						
ESE	30	30	40 92		-	-	100		



23SEACZ2		DISASTER MANAGEMENT					
		(Common to all Branches)					
Course		• To become familiar in key concepts and consequences about hazar	rds, disaster and				
Objectives		area of occurrence.					
	•	• To know the various steps in disaster planning.					
		• To create awareness on disaster preparedness and management.					
UNIT – I	INT	RODUCTION	6 Periods				
Disaster: Definiti	ion, Fa	ctors and Significance; Difference between Hazard and Disaster; Na	tural and Manmade				
Disasters: Differe	ence, N	Nature, Types and Magnitude. Areas proneto ,EarthquakesFloods ,Dr	oughts, Landslides,				
Avalanches,Cycl	lone ar	nd Coastal Hazards with Special Reference to Tsunami.					
UNIT – II	REP	PERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods				
Economic Damag	ge, Los	ss of Human and Animal Life, Destruction of Ecosystem. Natural Dis	asters: Earthquakes,				
Volcanisms, Cyc	clones,	, Tsunamis, Floods, Droughts and Famines, Landslides and Aval	lanches, Man-made				
disaster: Nuclear	Reac	tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea	aks of Disease and				
Epidemics, War a	and Co	onflicts.					
UNIT – III	DISA	ASTER PLANNING	6 Periods				
Disaster Plannin	g-Disa	ster Response Personnel roles and duties, Community Mitigation	Goals, Pre-Disaster				
Mitigation Plan, I	Person	nel Training, Comprehensive Emergency Management, Early Warnin	g Systems.				
UNIT – IV	DISA	ASTER PREPAREDNESS AND MANAGEMENT	6 Periods				
Preparedness: Me	onitori	ng of Phenomena Triggering a Disaster or Hazard; Evaluation of F	Risk: Application of				
Remote Sensing,	Data f	from Meteorological and other Agencies, Media Reports: Governmer	tal and Community				
Preparedness.							
UNIT – V	RISI	K ASSESSMENT	6 Periods				
Disaster Risk: C	oncept	t and Elements, Disaster Risk Reduction, Global and National Disa	ster Risk Situation.				
Techniques of Ri	isk As	sessment, Global Co-Operation in Risk Assessment and Warning, Pe	cople's Participation				
in Risk Assessme	in Risk Assessment, Strategies for Survival.						
<b>Contact Periods</b>	Contact Periods:						
Lecture:30 Peri	ods	Tutorial: 0 Periods Practical: 0Periods Total: 30 Perio	ds				
REFERENCES:							

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New Roya
	Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New
	Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep & Deep Publication
	Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing
	House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4

CO5 Prepare risk assessment strategy for national and global disaster.

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5		
CO1	2	1	1	2	2		
CO2	1	2	1	1	1		
CO3	1	1	1	2	2		
CO4	1	1	1	2	2		
CO5	2	1	1	2	2		
23SEACZ2	1	1	1	2	2		
1 - Slight, 2 - Moderate, 3 -	- Substantial						

## **ASSESSMENT PATTERN – THEORY**

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	Sto BILLIO			100
CAT2			100			100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	50	50				100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2			100			100
ESE	25	25	50			100

K4

23SEACZ3		VALUE EDUCATION							
		(Common to all B	ranches)		1	1			
PREREQUIS	ITES		CATEGORY	L	T	P	C		
	1	NIL	AC	2	0	0	0		
Course		• Value of education and self- development	nt						
Objectives		• Requirements of good values in students							
		Importance of character							
UNIT – I	I	ETHICS AND SELF-DEVELOPMENT				6 ]	Periods		
Social values	and	individual attitudes. Work ethics, Indian visio	on of humanism.	Mora	l and	l nor	1-moral		
valuation. Stan	ndards	and principles. Value judgements.							
UNIT – II	I	PERSONALITY AND BEHAVIOR DEVELO	OPMENT			6	Periods		
Soul and Sc	cientif	ic attitude. Positive Thinking. Integrity a	nd discipline. Pu	inctua	ality,	Lov	ve and		
Kindness. Avo	oid fau	It Thinking. Free from anger, Dignity of labo	our. Universal brot	therho	ood a	nd re	eligious		
tolerance.		-Marring-					e		
UNIT – II	Ι	VALUES IN HUMAN LIFE				6	Periods		
Importance of	f culti	vation of values, Sense of duty. Devotion, S	Self-reliance. Confi	idence	e, Co	ncen	tration.		
Truthfulness, (	Clean	liness. Honesty, Humanity. Power of faith, Nat	tional Unity. Patric	otism.	Love	e for	nature,		
Discipline.			1						
UNIT – I	V	VALUES IN SOCIETY	37			6	Periods		
True friendshi	ip. H	appiness Vs suffering, love for truth. Aware	e of self-destructiv	ve ha	bits.	Asso	ociation		
andCooperatio	on. Do	ing best for saving nature.							
UNIT – V	V	POSITIVE VALUES				6	Periods		
Character and	Com	petence –Holy books vs Blind faith. Self-ma	nagement and Go	od he	ealth.	Scie	ence of		
reincarnation.	Equal	ity, Nonviolence, Humility, Role of Women, Al	ll religions and sam	ne me	ssage	. Mir	nd your		
Mind, Self-control. Honesty, Studying effectively.									
<b>Contact Perio</b>	ods:								
Lecture: 30 P	eriod	s Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 30	) Peri	ods				
		28							
REFERENCES	5:	CHORESON							
		TO BUILDED	TA						
1  Cl  l  l	C C L		1 0 10	C 1	<b>.</b> .	•,	ת		

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press,
	New Delhi, 1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004
4	https://nptel.ac.in/courses/109104068/36

COUI	RSE OUTCOMES :	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the values and work ethics.	К3
CO2	Enhance personality and 167ehavior development.	K3
CO3	Apply the values in human life.	К3
<b>CO4</b>	Gain Knowledge of values in society.	К3
CO5	Learn the importance of positive values in human life.	K3



COURSE ARTICULATION MATRIX									
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	3	-	-	1			
CO2	-	-	3	-	-	1			
CO3	-	-	3	-	-	1			
CO4	-	-	3	-	-	1			
CO5	-	-	3	-	-	1			
23SEACZ3	-	-	3	-	-	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%		-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%			-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	N (	-	-	100%
ESE	20%	50%	30%	-	-	-	100%



23SEACZ4		CONSTITUTION OF INDIA (Common to all Branches)	SE	ER						
PREREOUISITI	REQUISITES CATEGORY									
	NIL AC									
Course		• To address the importance of constitutional rights and du	ties							
Objectives		• To familiarize about Indian governance and local admini	To familiarize about Indian governance and local administration.							
		• To know about the functions of election commission.								
UNIT – I	IN	IDIAN CONSTITUTION			6 I	Peri	iods			
History of Making	g of	the Indian Constitution: History Drafting Committee, (Compo	sition & Working	) - Pł	nilos	opł	ny of			
the Indian Constit	utio	n: Preamble Salient Features.								
UNIT – II	C	ONSTITUTIONAL RIGHTS & DUTIES			6 F	Peri	iods			
Contours of Cons Exploitation, Rig Directive Principl	titut ht t es o	ional Rights & Duties: Fundamental Rights, Right to Equality o Freedom of Religion, Cultural and Educational Rights, F f State Policy, Fundamental Duties.	y, Right to Freedo Right to Constitut	m, R ional	ight Re	ag me	ainst dies,			
UNIT – III	0	RGANS OF GOVERNANCE			6 I	Peri	iods			
Organs of Gove Executive, Preside	rnar ent,	ace: Parliament, Composition, Qualifications and Disquali Governor, Council of Ministers, Judiciary, Appointment and	fications, Powers Transfer of Judges	and s, Qu	Fu: alifi	nct cat	ions, ions,			
Powers and Funct	tions				<i>(</i> <b>)</b>					
UNIT – IV	L	DCAL ADMINISTRATION			6 H	'er	iods			
role of Elected R Elected officials (Different departm	Repr and nent	esentative, CEO of Municipal Corporation. Panchayat raj: I their roles, CEO Zila Panchayat: Position and role. Block s), Village level: Role of Elected and Appointed officials, Imp	ntroduction, PRI: c level: Organiza ortance of grass re	Zila tiona ot de	Par 1 Hi moc	era era	ayat. rchy y.			
UNIT – V	E	LECTION COMMISSION			6 F	Peri	iods			
Election Commiss Election Commiss Contact Periods:	sion	n: Role and Functioning. Chief Election Commissioner an Role and Functioning. Institute and Bodies for the welfare of	d Election Comr SC/ST/OBC and v	nissio	oners en.	5. \$	State			
Lecture: 30 Perio	ods	Tutorial: 0 Periods Practical: 0 Periods Total: 30	Periods							
REFERENCES:						_				
1 "The Constit	utio	n of India", 1950 (Bare Act), Government Publication.								
2 Dr. S. N. Busi	i, D.	r. B. R. Ambedkar "Framing of Indian Constitution", 1st Edit	ion, 2015.							
3 M. P. Jain, "I	ndi	an Constitution Law", 7th Edn., Lexis Nexis, 2014.								
4 D.D. Basu, <b>1</b>	ntro	pauction to the Constitution of India", Lexis Nexis, 2015.								
COURSE OUTC	ON	IES:		Blo	om's	5				
Upon completion	of t	he course, the students will be able to:		Гахо Мај	non ppec	ny I				
CO1 Discuss t	he g	growth of the demand for civil rights in India.	with of the demand for civil rights in India.							

CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the	K2
	conceptualization of social reforms leading to revolution in India.	
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	1	1	1	1			
CO2	-	-	1	1	1	2			
CO3	-	-	1	1	2	1			
CO4	-	-	1	1	1	1			
CO5	-	-	1	1	1	1			
23SEACZ4	-	-	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20%	50%	30%	-	-	-	100%			
CAT2	20%	50%	30%	-	-	-	100%			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50% - 0 - 0			-	-	100%			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%			
ESE	20%	50%	30%	-	-	-	100%			



23SEACZ5		75	PEDAGOGY STUDIES			SEM	беті	7D	
		25	(Common to all Branches)			SENIESIEK			
PRF	PREREQUISITES     CATEGORY     L       NIL     AC     2						Т	Р	С
NIL				AC		2	0	0	0
• To understand of various theories of learning, prevailing pedagogical								tices	and
O	Objectives design of curriculum in engineering studies.								
	• Application of knowledge in modification of curriculum, its assessment and								
	introduction of innovation in teaching methodology.								
UNI	T – I	INTROD	UCTION				6 F	Perio	ds
Intro	oduction and	Methodol	ogy: Aims and rationale, Policy background, C	Conceptual fr	amew	ork an	d teri	nino	ogy
Theo	ories of lear	ning, Curri	culum, Teacher education. Conceptual framew	vork, Researd	ch que	estions	. Ove	erviev	v of
meth	nodology and	d Searching	ŗ.						
UNI	T – II	PEDAGO	GICAL PRACTICES				6 P	Perio	ds
The	matic overvi	iew: Pedag	ogical practices are being used by teachers	in formal an	d info	ormal	class	room	s in
deve	eloping cour	ntries. Curr	iculum, Teacher education. Evidence on the	effectiveness	s of p	edagog	gical	pract	ices
Met	hodology for	r the in dep	th stage: quality assessment of included studies						
UNI	T – III	PEDAGO	OGICAL APPROACHES	20			6 F	Perio	ds
Ном	v can teache	r education	(curriculum and practicum) and the school c	urriculum ar	nd gui	dance	mate	rials	best
supp	ort effective	e pedagog	y? Theory of change. Strength and nature c	of the body	of ev	idence	for	effec	tive
peda	ngogical pra	ctices. Peo	lagogic theory and pedagogical approaches.	Teacher's	attitud	les an	d bel	liefs	and
Peda	agogic strate	gies.		77					
UNI	T – IV	PROFES	SIONAL DEVELOPMENT	1			6 P	Perio	ds
Prof	essional dev	velopment:	alignment with classroom practices and follo	w-up suppor	rt. Pee	er sup	port ,	Sup	port
from	n the head te	acher and t	he community. Curriculum and assessment Ba	rriers to learr	ning: l	imited	resou	irces	and
large	e class sizes.			11					
UNI	T - V	CURRIC	ULUM AND ASSESSMENT				6 F	Perio	ds
Rese	earch gaps a	and future	directions Research design Contexts Pedagog	gy Teacher e	educat	ion C	urricu	ılum	and
asse	ssment Disso	emination a	nd research impact.	V a					
Con	tact Periods	5:	8882	200					
Lect	ture: 30 Per	iods [	<b>Futorial: 0 Periods Practical: 0 Periods</b>	Fotal: 30 Per	riods				
			Carlon Co Co An	40					
			TO LONG MORE TO	ア					
REF	FERENCES	:							
1	Ackers J. H	ardman F	Classroom interaction in Kenvan primary sci	hools. Comp	are. 3	1 (2): 2	245-2	61.2	001.
2	Alexander	RJ , Cultur	e and pedagogy: International comparisons in	n primary ed	ucatio	n. Oxf	ford a	nd B	oston:
	Blackwell,	2001		- *		0			
3	Akyeampon	g K, Lussi	er K, Pryor J, Westbrook J, Improving teac	hing and le	arninį	g of b	asic	math	s and
	reading in	Africa: Do	es teacher preparation count? International J	ournal Educe	ationa	l Deve	lopm	ent, É	33 (3):

- 272–282, 2013.
- 4 Agrawal M, Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379, 2004

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Explain the concept of curriculum, formal and informal education systems and teacher	K3
	education.	
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	К3
CO3	Understand the relation between teacher and community, support from various levels of	K3
	teachers to students and limitation in resources and size of the class.	
<b>CO4</b>	Perform research in design a problem in pedagogy and curriculum development.	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	1	1	2	1			
CO2	-	- 0	min	$\rightarrow 1$	1	2			
CO3	-	and and	<1>	a ciplant	2	1			
CO4	-	0	2754 Qr."		2	1			
23SEACZ5	-	100	MILLER	COLU.	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY	ł
-----------------------------	---

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20%	50%	30%	11-	-	-	100%			
CAT2	20%	50%	30%	- 1	-	-	100%			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	<u>, , , , , , , , , , , , , , , , , , , </u>	-	-	100%			
ESE	20%	50%	30%	-	-	-	100%			

23SEACZ6		STRESS MANAGEMENT BY YO (Common to all Branches)								
PREREQUISI	ΓES		CATEGORY	L	T	Р	С			
NIL AC 2 0										
Course	• To create awareness on the benefits of yoga and meditation.									
Objectives	•	To understand the significance of Asana and Pra	anayama.							
UNIT – I	PHY	SICAL STRUCTURE AND ITS FUNCTIONS				6 P	eriods			
Yoga - Physical	structu	re, Importance of physical exercise, Rules and reg	gulation of simplifi	ed pl	iysic	al exe	rcises,			
hand exercise,	leg e	xercise, breathing exercise, eye exercise, kap	alapathy, maharas	sana,	bod	y ma	issage,			
acupressure, bod	ły relax	ation.								
UNIT – II	YOG	A TERMINOLOGIES				6 P	eriods			
Yamas - Ahimsa	a, satya	, astheya, bramhacharya, aparigraha			1					
Niyamas- Sauch	ia, santo	osha, tapas, svadhyaya, Ishvara pranidhana.								
UNIT – III	ASA	NA				6 P	eriods			
Asana - Rules &	Regul	ations – Types & Benefits			1					
UNIT – IV	PRA	NAYAMA	20			6 P	eriods			
Regularization o	of breat	ning techniques and its effects-Types of pranayama	0)							
UNIT – V	MIN		e .			6 P	eriods			
Bio magnetism& mind - imprinting & magnifying – eight essential factors of living beings, Mental frequency and ten stages of mind, benefits of meditation, such as perspicacity, magnanimity, receptivity, adaptability, creativity.										
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods										
REFERENCES :				, 1 (1	1043					

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I", Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama (Publication
	Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn
	Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007.

COUR Upon c	Bloom's Taxonomy Mapped	
CO1	Practice physical exercises and maintain good health.	К3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	К3
CO4	Practice breathing techniques in a precise manner.	К3
CO5	Attain emotional stability and higher level of consciousness.	K2

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	-	-	-	-	2			
CO2	-	-	-	-	3			
CO3	-	-	-	-	2			
CO4	-	-	-	-	1			
CO5	-	-	-	-	1			
23SEACZ6	-	-	-	-	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
			10000				
CAT1	40%	30%	30%		-	-	100%
CAT2	30%	40%	30%	SUBJERT A	-	-	100%
Individual	40%	40%	20%		-	-	100%
Assessment1/		220	None	2			
Case study1/		15					
Seminar 1/	10		-	<b>-</b> 77			
Project1		110 0					
Individual	30%	30%	40%	N -1	-	-	100%
Assessment2/			MDA VI				
Case study2/				11			
Seminar 2 /		1 9		11 .			
Project2		8					
ESE	30%	30%	40%	NA.	-	-	100%
	\$			AD S			

23SEAC77	PERSONALITY DEVELOPMENT THROUGH LIFE								
2352/1027	ENLIGHTENMENT SKILLS								
PREPENIISITI	(Common to all Branches)	CATECORV	T	т	D	C			
NII			2	1	1	<u> </u>			
Course			4	U	U	U			
Objectives	• To familiar with Techniques to achieve the hig								
Objectives	• To become a person with stable mind, pleasing personality and determination.								
UNIT – I	6 Perio								
Neetisatakam-Hol	istic development of personality-Verses- 19,20,21,22 (v	wisdom)-Verses29,31,	32 (pi	ide &	& her	oism)-			
Verses- 26,28,6.									
UNIT – II					6 Pe	riods			
Verses- 52,53,59	(dont's)-Verses- 71,73,75,78 (do's) Approach to	day to day work	and d	luties	Sl	hrimad			
BhagwadGeeta - G	Chapter 2-Verses 41, 47,48,								
UNIT – III					6 Pe	riods			
Shrimad Bhagwad	dGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Ver	rses 5,13,17, 23, 35,-	Chapt	er 18	-Ver	ses 45,			
46, 48.	Cump								
UNIT – IV		20			6 Pe	riods			
Statements of basi	ic knowledgeShrimad BhagwadGeeta: -Chapter2-Verse	es 56, 62, 68 -Chapter	12 -V	erses	: 13,	14, 15,			
16,17, 18-Persona	lity of Role model.								
UNIT – V					6 Pe	riods			
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-Chapter18 -									
Verses 37,38,63.									
Contact Periods:									
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods									
REFERENCES :									

1	Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita", AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New
	Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog "Bhagavad Gita: The Song Of God", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada "Bhagavad-Gita As It Is", Bhaktivedanta Book Trust
	Publications, 2001

COUR	COURSE OUTCOMES:			
Upon o	completion of the course, the students will be able to:	Taxonomy Manned		
CO1	Apply the Holistic development in life	K4		
CO2	Effective Planning of day to day work and duties	K4		
CO3	Identify mankind to peace and prosperity	K4		
<b>CO4</b>	Develop versatile personality.	K4		
CO5	Awakening wisdom in life	K4		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	1	-	-	-			
CO2	-	-	1	-	-	-			
CO3	-	-	1	-	-	-			
CO4	-	-	1	-	-	-			
CO5	-	-	1	-	-	-			
23SEACZ7	-	-	1	-	-	-			

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20%	50%	30%	-	-	-	100%				
CAT2	20%	50%	30%	-	-	-	100%				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%				
ESE	20%	50%	30%		-	-	100%				



23SEACZ8	23SEACZ8 SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all Branches)								
PREREQUIS	ITES:	CATEGORY	L	Т	Р	С			
NIL		AC	2	0	0	0			
Course	• To get a working knowledge in illustrious Sanskrit,	the scientific langu	iage	ge in the world.					
Objectives	• Learning of Sanskrit to improve brain functioning.	Learning of Sanskrit to improve brain functioning.							
	• Enhancing the memory power.	• Enhancing the memory power.							
	• Learning of Sanskrit to develop the logic in mathem	atics, science & ot	her s	ubjec	cts.				
UNIT – I	BASICS OF SANSKRIT		6 ]	Perio	ods				
Alphabets in S	anskrit, Past/Present/Future Tense.								
UNIT – II	SENTENCES AND ROOTS			6 Periods					
Simple Sentend	ces - Order, Introduction of roots								
UNIT – III	SANSKRIT LITERATURE			6 Periods					
Technical infor	mation about Sanskrit Literature								
UNIT – IV TECHNICAL CONCEPTS -1						ods			
Technical concepts of Engineering-Electrical, Mechanical									
UNIT - V TECHNICAL CONCEPTS -2						ods			
Technical concepts of Engineering-Architecture, Mathematics									
<b>Contact Perio</b>	ds:	//							
Lecture: 30 P	eriods Tutorial: 0 Periods Practical: 0 Periods	Total: 30 Period	S						
DEFEDENCE	s.								

## **REFERENCES:**

Dr. Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020. 1

(ALC)

- Prathama Deeksha Vempati Kutumbshastri, "Teach Yourself Sanskrit", Rashtriya Sanskrit Sansthanam, 2 New Delhi, Publication, 2009.
- Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi, 2006. 3

COURS	SE OUTCOMES:	Bloom's
	200 20 000	Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Recognize ancient literature and their basics	K3
CO2	Formulate the sentences with order and understand the roots of Sanskrit	K2
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	K3
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K2
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	-	1	2	1			
CO2	-	-	-	1	2	-			
CO3	-	-	-	1	1	1			
CO4	-	-	-	2	1	1			
CO5	-	-	-	1	2	1			
23SEACZ8	-	-	-	1	2	1			

1 - Slight, 2 - Moderate, 3 - Substantial

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %			
Category*										
CAT1	20%	50%	30%	-	-	-	100%			
CAT2	20%	50%	30%	-	-	-	100%			
Individual	20%	50%	30%	-	-	-	100%			
Assessment 1 /										
Case Study 1/										
Seminar 1 /										
Project1										
Individual	20%	50%	30%	-	-	-	100%			
Assessment 2 /										
Case Study 2/			mornin							
Seminar 2 /			2 . 3	2						
Project 2		Sugara D	10.5m 011 110	Personal JA						
ESE	20%	50%	30%	221-17	-	-	100%			

