

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

2023 CURRICULAM & SYLLABI

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

M.E. APPLIED ELECTRONICS - FULL TIME

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- ➤ To achieve academic excellence through innovative teaching and learning practices.
- > To enhance employability and entrepreneurship.
- ➤ To improve the research competence to address societal needs.
- ➤ To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION AND MISSION OF THE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

VISION

The vision of ECE department is to become pioneer in higher learning and research and to produce creative solution to societal needs.

MISSION

- > To provide excellence in education, research and public service
- ➤ To provide quality education and to make the students entrepreneur and employable.
- ➤ Continuous upgradation of techniques for reaching heights of excellence in a Global Perspective.

CHOICE BASED CREDIT SYSTEM BRANCH: M.E. APPLIED ELECTRONICS- FULL TIME

PROGRAMME EDUCATIONAL OBJECTIVES:

PEO1: To critically evaluate the design and provide optimal solution to the problems in Advanced Signal Processing, Communications, Digital system Design, Embedded Systems and VLSI Design.

PEO2: To develop electronic systems using Modern engineering tools.

PEO3: To work professionally and ethically in Applied electronics and allied areas.

PROGRAM OUTCOMES

- PO1: Ability to apply the knowledge of mathematics and engineering principles for developing problem solving attitude in field of Applied electronics for analysis and synthesis.
- PO2: Ability to design and Interpret the data using modern tools in the domain of Applied electronics.
- PO3: To work professionally and ethically in Applied electronics and allied areas for societal needs.
- PO4: An ability to carry out research to solve the practical problems.
- PO5: Ability to present a substantial technical report in the field of Applied electronics.
- PO6: Students should be able to demonstrate a degree of mastery in the field of Applied electronics.

CHOICE BASED CREDIT SYSTEM CURRICULUM FOR CANDIDATES ADMITTED DURING 2023 ONWARDS FIRST SEMESTER

Sl.	Course	Course Title	Category		End Sem	Total			/Week edits		
No.	Code				Marks	Marks	L	T	P	С	
		THEORY									
1	23AEFCZ1	RESEARCH METHODOLOGY AND IPR (Common to all Branches)	FC	40	60	100	3	0	0	3	
2	23AEFC02	ADVANCED APPLIED MATHEMATICS (Common to Applied Electronics & VLSI Design)	FC	40	60	100	3	1	0	4	
3	23AEPC01	ADVANCED DIGITAL SYSTEM DESIGN (Common to Applied Electronics & VLSI Design)	PC	40	60	100	3	0	0	3	
4	23AEPC02	DSP ARCHITECTURES AND ALGORITHMS	PC	40	60	100	3	0	0	3	
5	23AEPC03	STATISTICAL SIGNAL PROCESSING	PC	40	60	100	3	0	0	3	
6	23AEPEXX	PROFESSIONAL ELECTIVE- I	PE	40	60	100	3	0	0	3	
7	23AEACXX	AUDIT COURSE –I	AC	40	60	100	2	0	0	0	
PRACTICAL											
8	23AEPC04	ADVANCED DIGITAL SYSTEM DESIGN LABORATORY	PC	60	40	100	0	0	4	2	
		Total		340	460	800	20	1	4	21	

SECOND SEMESTER

				CA	End	Total	Н	our	s/We	eek		
Sl. No.	Course Code	Course Title	Category	CA Marks	Sem Marks	Mark s	L	Т	P	С		
THEORY												
1	1 23AEPC05 INDUSTRIAL IOT PC 40 60 100 3 0 0 3											
2	23AEPC06	EMBEDDED SYSTEM DESIGN	PC	40	60	100	3	0	0	3		
3	23AEPEXX	PROFESSIONAL ELECTIVE-II	PE	40	60	100	3	0	0	3		
4	23AEPEXX	PROFESSIONAL ELECTIVE-III	PE	40	60	100	3	0	0	3		
5	23AEACXX	AUDIT COURSE-II	AC	40	60	100	2	0	0	0		
		THEORY WITH PR	ACTICAL (COMPONENT	Γ							
6	23AEPC07	DIGITAL IMAGE PROCESSING AND ITS APPLICATIONS	PC	50	50	100	3	0	2	4		
		PRA	ACTICAL									
7	23AEPC08	EMBEDDED SYSTEM DESIGN LABORATORY	PC	60	40	100	0	0	4	2		
8	23AEEE01	MINI PROJECT	EEC	60	40	100	0	0	4	2		
		Total		370	430	800	17	0	10	20		

THIRD SEMESTER

Sl.		0	Cate	CA	End	Total	Н	ours	/We	ek
No.	Course Code	Course Title	gor y	Marks	Sem Marks	Marks	L	Т	P	С
			THEOR	Y						
1	23AEPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3
2	23AEOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
		P	RACTIO	AL						
3	23AEEE02	INTERNSHIP/INDUSTRIAL TRAINING	EEC	100	-	100	-	-	**	2
4	23AEEE03	PROJECT – I	EEC	60	40	100	0	0	24	12
		Total		240	160	400	6	0	24	20

^{** 4} Weeks Internship/Industrial Training

FOURTH SEMESTER

Sl.	C	Common Tible	Cate	CA Marks	End	Total	Но	urs	/We	ek
No. Course Code	Course Title	gor y		Sem Mark s	Marks	L	T	P	С	
		P	RACTIO	AL						
1	23AEEE04	PROJECT - II	EEC	60	40	100	0	0	48	24
		Total		60	40	100	0	0	48	24

Total Credits: 85

PROFESSIONALELECTIVE (PE)

Sl. No.	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks		ırs/ Cred		ek
NO.					Marks	Marks	L	T	P	С
		PROFESS	IONAL ELE	CTIVE I						
1	23AEPE01	DIGITAL IC DESIGN (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
2	23AEPE02	ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS (Common to Applied Electronics	PE	40	60	100	3	0	0	3
		& VLSI Design)								
3	23AEPE03	SEMICONDUCTOR DEVICE MODELING	PE	40	60	100	3	0	0	3
4	23AEPE04	SMART SENSORS	PE	40	60	100	3	0	0	3
5	23AEPE05	MULTIMEDIA COMPRESSION TECHNIQUES	PE	40	60	100	3	0	0	3
		PROFESSI	ONAL ELEC	CTIVE II						
6	23AEPE06	ANALOG IC DESIGN (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
7	23AEPE07	EMI AND COMPATIBILITY	PE	40	60	100	3	0	0	3
8	23AEPE08	ADVANCED COMMUNICATION SYSTEMS	PE	40	60	100	3	0	0	3
9	23AEPE09	MEMS AND NEMS	PE	40	60	100	3	0	0	3
10	23AEPE10	SOFT COMPUTING AND OPTIMIZATION TECHNIQUES	PE	40	60	100	3	0	0	3

		PROFESSI	ONAL ELECT	ΓIVE III						
11	23AEPE11	MODELING AND SYNTHESIS WITH HDL	PE	40	60	100	3	0	0	3
12	23AEPE12	RF SYSTEM DESIGN	PE	40	60	100	3	0	0	3
13	23AEPE13	ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING	PE	40	60	100	3	0	0	3
14	23AEPE14	EMBEDDED PROCESSORS	PE	40	60	100	3	0	0	3
15	23AEPE15	BIO-MEDICAL IMAGE PROCESSING	PE	40	60	100	3	0	0	3
		PROFESSI	ONAL ELEC	TIVE IV						
16	23AEPE16	LOW POWER IC DESIGN (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
17	23AEPE17	VLSI SIGNAL PROCESSING (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
18	23AEPE18	ASIC DESIGN (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
19	23AEPE19	REAL TIME OPERATING SYSTEM	PE	40	60	100	3	0	0	3
20	23AEPE20	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	PE	40	60	100	3	0	0	3

LIST OF OPEN ELECTIVES

SI.	Carres Cada	Course Tible	Cata	CA	End	Total	Но	ours	/Wee	ek
No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	С
1	23SE0E01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SE0E02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SE0E03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EE0E04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EE0E05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EE0E06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GE0E08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23ED0E10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23ED0E11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23ED0E12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MF0E13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MF0E14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MF0E15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TE0E18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3

SI.	Carres Cada	Course Title	Cata	CA	End	Total	Но	ours	/Wee	ek
No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	С
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PE0E22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PE0E23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PE0E24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VL0E28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES

(Common to all Branches)

Sl.	Course Code	Course Title	Category	CA Marks	End Sem	Total	Н		/Wee	
No.					Marks	Marks	L	T	P	С
1	23AEACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23AEACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23AEACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23AEACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23AEACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23AEACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7		PERSONALITY DEVELOPMENT	AC	40	60	100	2	0	0	0
	23AEACZ7	THROUGH LIFE ENLIGHTENMENT SKILLS	7	80°						
8	23AEACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

		ı	Credits per	Semester			Total
S.No.	Course Category	I	II	III	IV	Total Credits	Credits in %
1	FC	7				7	8.23
2	PC	11	12			23	27.05
3	PE	3	6	3		12	14.11
4	OE			3		3	3.52
5	AC	0	0			0	
6	EEC		2	14	24	40	47.05
Т	otal	21	20	20	24	85	100

CATEGORYWISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

Sl. No.	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks		Hours/Week /Credits			
NO.					Marks	Maiks	L	T	P	C	
		Т	THEORY								
1	23AEFCZ1	RESEARCH METHODOLOGY AND IPR (Common to all Branches)	FC	40	60	100	3	0	0	3	
2	23AEFC02	ADVANCED APPLIED MATHEMATICS (Common to Applied Electronics & VLSI Design)	FC	40	60	100	3	1	0	4	
			Total	80	120	200	6	1	0	7	

PROFESSIONAL CORE (PC)

Sl. No.	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks	/Cr		rs/Week Credits				
NO.		1	(60)	l.	Marks	Maiks	L	T	P	C			
		1 6	THEORY	A									
1	(Common to Applied Electronics & VLSI Design)												
2	23AEPC02	DSP ARCHITECTURES AND ALGORITHMS	PC	40	60	100	3	0	0	3			
3	23AEPC03	STATISTICAL SIGNAL PROCESSING	PC	40	60	100	3	0	0	3			
4	23AEPC04	ADVANCED DIGITAL SYSTEM DESIGN LABORATORY (Common to Applied Electronics & VLSI Design)	PC	60	40	100	0	0	4	2			
5	23AEPC05	INDUSTRIAL IOT	PC	40	60	100	3	0	0	3			
6	23AEPC06	EMBEDDED SYSTEM DESIGN (Common to Applied Electronics & VLSI Design)	PC	40	60	100	3	0	0	3			
7	23AEPC07	DIGITAL IMAGE PROCESSING AND ITS APPLICATIONS	PC	50	50	100	3	0	2	4			
8	23AEPC08	EMBEDDED SYSTEM DESIGN LAB	PC	60	40	100	0	0	4	2			
			Total	370	430	800	18	0	10	23			

PROFESSIONAL ELECTIVE (PE)

Sl.	Course	Course Title	Category	CA Marks	End Sem	Total	Hours/Week /Credits				
No.	Code				Marks	Marks	L	Т	P	C	
	THEORY										
1	23AEPEXX	PROFESSIONAL ELECTIVE - I	PE	40	60	100	3	0	0	3	
2	23AEPEXX	PROFESSIONAL ELECTIVE - II	PE	40	60	100	3	0	0	3	
3	23AEPEXX	PROFESSIONAL ELECTIVE - III	PE	40	60	100	3	0	0	3	
4	23AEPEXX	PROFESSIONAL ELECTIVE - IV	PE	40	60	100	3	0	0	3	
		Total		160	240	400	12	0	0	12	

OPEN ELECTIVE (OE)

			7	7	End	Total	Hours/Weel				
S.No	Course Code	Course Title	Category	CA	Sem Marks	Marks	L	T	P	С	
	THEORY										
1	23AEOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3	
		Total	1000 Marie	40	60	100	3	0	0	3	

AUDIT COURSE (AC)

					End	Total		Hou	ırs/V	Veek		
S.No	Course Code	Course Title	Category	CA	Sem Marks	Total Marks	L	Т	P	С		
	THEORY											
1	23AEACXX	AUDIT COURSE - I	AC	40	60	100	2	0	0	0		
2	23AEACXX	AUDIT COURSE- II	AC	40	60	100	2	0	0	0		
		Total		80	120	200	4	0	0	0		

EMPLOYABLITY ENHANCEMENT COURSE (EEC)

			Category	CA	End	Total	Hours/Week				
S.No	Course	Course Title			Sem	Marks	L	Т	P	С	
	Code				Marks						
	THEORY										
1	23AEEE01	MINI PROJECT	EEC	60	40	100	0	0	4	2	
2	23AEEE02	INTERNSHIP/ INDUSTRIAL TRAINING	EEC	100	-	100	-	-	**	2	
3	23AEEE03	PROJECT - I	EEC	60	40	100	0	0	24	12	
4	23AEEE04	PROJECT - II	EEC	60	40	100	0	0	48	24	
		Total		280	120	400	0	0	76	40	

^{** 4} Weeks Internship/Industrial Training

23AEFCZ1	RESEARCH METHODOLOGY AND IPR	SEMESTER I
	(Common to all branches)	

PREREQUISITES	CATEGORY	L	T	P	С
NIL	FC	3	0	0	3

Course	To impart knowledge on research methodology, Quantitative methods for pro	blem solving, data
Objectives	interpretation and report writing	
	 To know the importance of IPR and patent rights 	
UNIT-I	INTRODUCTION	9 Periods

Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question - Choice of a problem Literature review, Surveying, SYNTHESIZING: critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research–APA Ethics code.

UNIT-II QUANTITATIVE METHODS FOR PROBLEM SOLVING

9 Periods

Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.

UNIT-III DATA DESCRIPTION ANDREPORT WRITING

9 Periods

Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables, Relation between frequency distributions and other graphs, preparing data for analysis. Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing are search report, referencing in academic writing.

UNIT-IV INTELLECTUAL PROPERTY

9 Periods

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT-V PATENT RIGHTS

9 Periods

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Contact Periods:

Lecture: 45 Periods

Tutorial:0 Periods Practical:0 Periods Total:45 Periods

- Stuart Melville and Wayne Goddard, "**Research methodology: anintroduction**", Juta Academic, 2nd edition, 2014.
- 2 Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, Cengage Learning, 2013
- 3 | RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2019
- 4 Dr.C.R.Kothari and GauravGarg, "Research Methodology: Methods and Trends", Newage international publishers, 4th Edition, 2018

	SE OUTCOMES: the completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Formulate research question for conducting research.	К3
CO2	Analyze the quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K2
CO4	Develop a structured content to write technical report.	К3
CO5	Summarize the importance of IPR and protect their research work through intellectual	K2
	property.	

			P03	P04	PO5	P06
CO1	2	1	3	3	1	3
CO2	2	3	1	3	3	3
CO3	2	3	3	3	3	3
CO4	2	3	1	3	3	3
CO5	-	- T - 3	2	-	1	3
23AEFCZ1	2	3	3	3	3	3
l – Slight, 2 – Moderate, 3 – Si	ubstantial	7000	-//-			

ASSESSMENT PA	TTERN - THE	ORY	(38)				
Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluati ng (K5) %	Creatin g (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100
ESE	30	30	20	20	-	-	100

	ADVANCED APPLIED MATHEMATICS	CEMECTED I
23AEFC02	(Common to Applied Electronics and VLSI Design)	SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	FC	3	1	0	4

Course Objective	 To acquire knowledge with the foundations of vector spaces space, linear transformation, graph theory and linear programostly used in various applications in engineering and science 	nmming problems			
UNIT-I	VECTOR SPACE	9+3 Periods			
Vector spaces – Subs Basis and Dimension	spaces – Linear combinations- Linear Span – Linear dependence – Lin ns.	ear independence –			
UNIT-II	INNER PRODUCT SPACE	9+3 Periods			
•	ace: Norms-Orthonormal basis, Gram Schmidt Orthogonalization ast square Approximations for linear system of equations. Hilbert spa	· ·			
UNIT-III	LINEAR TRANSFORMATIONS	9+3 Periods			
	cion–Nullspace, Rangespace-dimension theorem-Matrix and repres en values Eigen vectors of linear transformation Diagonalizati				
UNIT-IV	GRAPH THEORY	9+3 Periods			
	graphs, Incidence and Adjacency Matrices, Sub graphs-Vertex degrails, paths, cycles-Trees: Characterizations of trees, Cayley's form lems.				
UNIT-V	LINEAR PROGRAMMING PROBLEM	9+3 Periods			
Formulation–Graphical solution–Simplex method–Big-M method-Transportation and Assignment Models.					
Contact Periods: Lecture:45Periods Tutorial:15Periods Practical:0Periods Total:60Periods					

1	Bronson, R., "Matrix Operation", Schaum' soutlineseries, McGrawHill, Newyork, 2011.
2	T.Veerarajan, "Discrete Mathematics", McGrawHillEducation(India)Pvt.Ltd.,2019.
3	TahaH.A., "Operations Research: Anintroduction", Ninth Edition, Pearson Education ,Asia, NewDelhi, 2012.
4	Andrews, L.C. and Philips.R.L., "Mathematical Techniques for engineering and scientists", PrenticeHall of
	India, 2006.
5	O'NeilP.V., "Advanced Engineering Mathematics", Cengage learning India private limited,(Thomson
	Asiapvtltd , Singapore) 2007.

	Upon the completion of the course, the students will be able to:				
CO1	Obtain the knowledge of vector spaces and matrices	К3			
CO2	Explain the fallouts of inner product space for linear system of equations	К3			
CO3	Understand the concept of linear transformation	К3			
CO4	Understand the basic concept of graph theory and algorithm to solve network problems	К3			
CO5	Develop the knowledge of finding solutions of Linear Programming problems	К3			

COs/POs	P01	PO2	P03	P04	P05	P06
CO1	2	1	-	1	-	-
CO2	2	1	-	1	-	-
CO3	2	1	-	1	-	-
CO4	2		-	1	-	-
CO5	2	1	- 72/2/2	1	-	-
23AEFC02	2	1	-	1	-	-
- Slight, 2 – Mode	rate, 3 – Substar	ntial	E //			

ASSESSMENT	PATTERN - TH	EORY		à.			
Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Tota 1%
CAT1	20%	50%	30%	-	-	-	100 %
CAT2	20%	50%	30%	-	-	-	100 %
Individual /Assignment 1/case study/semin ar 1/Project 1	20%	50%	30%	-	-	-	100 %
Individual /Assignment 2/case study/semin ar 2/Project 2	20%	50%	30%	-	-	-	100 %
ESE	20%	50%	30%	-	-	-	100 %

23AEPC01

Lecture:45 Periods

ADVANCED DIGITAL SYSTEM DESIGN

(Common to Applied Electronics and VLSI Design)

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	0	0	3

Course Objective	To understand the design and modeling of digital circuits, analyse of synchronous and asynchronous sequential ci architectures of programmable devices and comr controllers.	rcuits and
UNIT – I	SYSTEM DESIGN USING VERILOG HDL	9 Periods
Overview of Digital	Design with Verilog HDL - Hierarchical Modeling Concepts - Ba	asic Concepts -
Modules and Ports -	- Language Constructs and Conventions - Gate Level Modeling - Dat	taflowModeling
- Behavioral Modeli	ing -Switch Level Modeling - System Tasks -Functions and Comp	iler Directives -
Realization of comb	inational circuits using Verilog.	
UNIT – II	MODELING AND DESIGN	9 Periods
Sequential Models -	- Feedback Model, Capacitive Model, Implicit Model, Basic Memor	y Components,
Functional Register	, Static Machine Coding, Sequential Synthesis. Design of memories	- ROM, single
and dual port RAM	- synchronous and asynchronous read - arithmetic circuit design -	serial/parallel
adder, subtractor, fl	loating point adder/subtractor multiplier - sequential multiplier, a	rray multiplier,
signed	A X TO	
Multiplier – ALU – H	Iardwired Control Design – Micro programmed Control Design.	
UNIT – III	SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods
Analysis of clocked	synchronous sequential circuits and modeling - State diagram,	state table,
stateassignment and	d reduction - Design of synchronous sequential circuits - Design of I	terative circuits
- ASM		
	n using ASM - Realization of synchronous sequential circuits using V	
UNIT – IV	ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods
Analysis of asynchr	onous sequential circuit – flow table reduction – Races - state assi	gnment-
transitiontable and	problems in transition table- Design of asynchronous sequential of	circuit - Static,
dynamic and		
	Data synchronizers – Mixed operating mode asynchronous circuit	s - Realization
	uential circuits using Verilog.	
UNIT – V	PROGRAMMABLE DEVICES AND CONTROLLER	9 Periods
	device families - Designing a synchronous sequential circuit us	
	te state machine using PLD – FPGA –Memory controller – Process	or control unit
	ntrollers: UART-I ² C – VGA Controllers – USB.	
Contact Periods :		

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Charles H. Roth Jr, "Fundamentals of Logic Design", Thomson Learning, 7th edition, 2014.					
2	Nripendra N Biswas, "Logic Design Theory" , Prentice Hall of India, 2010.					
3	Parag K. Lala, "Digital system Design using PLD", BS Publications, 2003.					
4	Morris Mano M, Charles R Kime, "Logic and Computer Design Fundamentals", Pearson					
	Education, 2015.					
5	M. Morris R. Mano and Michael D. Ciletti, "Digital Design: With an Introduction to the Verilog					
	HDL", 5 th edition, Pearson Education, 2013.					
6	Samir Palnitkar, "Verilog HDL - A Guide to Digital Design and Synthesis", Pearson, 2003.					

COURSE	COURSE OUTCOMES:					
Upon the	Taxonomy					
CO1	Explain the design of digital circuits in various abstraction level using	K2				
	Verilog HDL programming.					
CO2	Gain knowledge on sequential modeling and design of digital systems.	К2				
CO3	Design and analyse of synchronous sequential Circuits	K4				
CO4	Design and analyse of asynchronous sequential Circuits	K4				
CO5	CO5 Understand the architectures of programmable devices and					
	communication controllers					

COURSE ARTICULA	COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	PO5	P06			
CO1	3	3	-	1	-	2			
CO2	3	3	-	1	-	2			
CO3	3	3	-	2	-	2			
CO4	3	3	-	2	-	2			
CO5	3	3	-	1	-	2			
23AEPC01	3	3	-	1	-	2			
1 – Slight, 2 – Modera	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN -	THEORY						
Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creati ng (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual /Assignment 1/case study/seminar 1/Project 1		50%	30%	20%			100%
Individual /Assignment 2/case study/seminar 2/Project 2		50%	30%	20%			100%
ESE	30%	30%	20%	20%			100%

23AEPC02	DSP ARCHITECTURES AND ALGORITHMS	SEMESTER I
----------	----------------------------------	------------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	0	0	3

Course	To Understand the Fundamental blocks of TMS32007x Architecture and to
Objective	implement various DSP Algorithms

UNIT - I FUNDAMENTALS OF PROGRAMMABLE DSPs 9 Periods Von Neumann ,Harvard Architecture, Modified Harvard and VLIW Architecture - Modified Bus Structures and Memory access in P-DSPs- Multiple access memory , Multi-ported memory, Pipelining -Special Addressing modes in P-DSPs - On chip Peripherals- Computational accuracy in DSP processor- MAC

UNIT - IITMS320C67x DSP ARCHITECTURE9 PeriodsTMS320DSP Family Overview- TMS320C6000 DSP Family Overview- TMS320C67x DSP Architecture - Central Processing Unit (CPU), Internal Memory , Memory and Peripheral

UNIT - III TMS320C67x CPU DATA PATHS AND CONTROL 9 Periods

General-Purpose Register Files -Functional Units - Register File Cross -Memory, Load, and Store Paths- Data Address Paths -Control Register File- Instruction Operation and Execution- Parallel Operations- Conditional Operations- Resource Constraints- Addressing Modes- Instruction Compatibility

UNIT - IV TMS320C67x PIPELINE AND INTERRUPTS 9 Periods

Pipeline Operation- Pipeline Execution of Instruction Types- Functional Unit Constraints- Performance Considerations- Interrupts - Overview- Globally Enabling and Disabling Interrupts- Individual Interrupt Control- Interrupt Detection and Processing- Performance Considerations- Programming Considerations

UNIT - V IMPLEMENTATION OF BASIC DSP ALGORITHMS

9 Periods

Study of time complexity of DFT and FFT algorithm, Use of FFT for filtering long data sequence, IIR and FIR Filters, Interpolation, Decimation , Wavelet filter

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Digital Signal Processors, "Architecture, Programming and Applications" - B. Venkata Ramani							
	and M. Bhaskar, TMH, 2004.							
2	"Digital Signal Processing" – Jonatham Stein, John Wiley, 2005							
3	Avtar Singh and S. Srinivasan" Digital Signal Processing - Implementations using DSP							
	Microprocessors", cengage Learning India Private Limited, Delhi 2012							
4	Avtar Singh and S. Srinivasan " Digital Signal Processing ", Thomson Publications, 2004.							
5	Lapsley et al. S. Chand & Co "DSP Processor Fundamentals, Architectures & Features", 2000.							

COU	COURSE OUTCOMES:				
Upon	Upon completion of the course, students will be able to/have:				
		Mapped			
CO1	Understand the Fundamentals of Programmable DSPs	K2			
CO2	Understand various components of DSP Architecture	K2			
CO3	In depth knowledge on CPU Data Paths and Control	K2			
CO4	Understand various concepts Pipeline and Interrupts	K2			
CO5	Implement various DSP Algorithms	K2			

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	P03	P04	PO5	P06			
CO1	3	3	2	1	1	1			
CO2	3	3	2	1	1	1			
CO3	3	3	2	1	1	1			
CO4	3	3	2	1	1	1			
CO5	3	3	2	1	1	1			
23AEPC02	3	3	2	1	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial									
0.775-2.2-770									

			7,845/50				
ASSESSMEN	IT PATTERN – '	THEORY	302775	THE STATE OF			
Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applyin g (K3) %	Analyzi ng (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50%	50%	1 8				100%
CAT2	50%	50%	A 8.				100%
Individual /Assignme nt 1/case study/sem inar 1/Project 1		50%	50%				100%
Individual /Assignme nt 2/case study/sem inar 2/Project 2		50%	50%				100%
ESE	25%	50%	25%				100%

23AEPC03	STATISTICAL SIGNAL PROCESSING	CDM COMPD I
ZJALI CUJ	STATISTICAL SIGNAL I ROCESSING	SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	С
Digital Signal Processing	PC	3	0	0	3

Digital Signal Processing	PC	3	U	U	3		
• To introduce the concepts of Random Signal	Processing, Signal	Mod	lelin	g, Sp	ectra		
and Linear Estimation, Adaptive filtering and Li	inear estimation.						
INTRODUCTION TO RANDOM SIGNAL PROCESSING	G		9	Per	iods		
Discrete Random Processes- Ensemble Averages, Stationary processes, Bias and Estimation, Auto							
tocorrelation, Parseval's theorem, Wiener-Khintch	ine relation, Whi	te r	oise	, Po	ower		
y, Spectral factorization, Filtering Random Processes.							
SIGNAL MODELING			9	Per	iods		
of Random Processes – ARMA, AR, MA – Yule-Wal	ker equations- Lin	ear	Prec	lictio	n of		
d and Backward Predictions, Solution to Prony's	normal equation,	Lev	insoı	ı Du	ırbin		
SPECTRAL ESTIMATION			9	Per	iods		
spectra from finite duration signals, Nonparametric	c methods - Perio	dogr	am,	Mod	lified		
Bartlett, Welch and Blackman-Tukey methods,	Parametric metho	d,	AR(p)spe	ctral		
detection of Harmonic signals, MUSIC algorithm							
LINEAR ESTIMATION			9	Per	iods		
m Mean-Square Error (LMMSE) Filtering: Wiener H	lopf Equation, FIR	Wie	ner	filter	·,		
Noise Cancellation, Causal IIR Wiener filter, Noncausal IIR Wiener filter, Discrete Kalman filter.							
600	•						
ADAPTIVE FILTERS				Per	iods		
800 100			9				
ADAPTIVE FILTERS	ethod- Widrow-Hop	of LI	g MS a	lgori	thm,		
ADAPTIVE FILTERS lters – Adaptive filter based on steepest descent me	ethod- Widrow-Hop	of LI	g MS a	lgori	thm,		
	To introduce the concepts of Random Signal and Linear Estimation, Adaptive filtering and L INTRODUCTION TO RANDOM SIGNAL PROCESSING OF Processes - Ensemble Averages, Stationary productorelation, Parseval's theorem, Wiener-Khintchey, Spectral factorization, Filtering Random Processes. SIGNAL MODELING OF Random Processes - ARMA, AR, MA - Yule-Waled and Backward Predictions, Solution to Prony's SPECTRAL ESTIMATION Spectra from finite duration signals, Nonparametric Bartlett, Welch and Blackman-Tukey methods, detection of Harmonic signals, MUSIC algorithm LINEAR ESTIMATION OF THE PROCESSING AND SIGNAL PROCESSING AND S	To introduce the concepts of Random Signal Processing, Signal and Linear Estimation, Adaptive filtering and Linear estimation. INTRODUCTION TO RANDOM SIGNAL PROCESSING om Processes- Ensemble Averages, Stationary processes, Bias and atocorrelation, Parseval's theorem, Wiener-Khintchine relation, White, Spectral factorization, Filtering Random Processes. SIGNAL MODELING of Random Processes – ARMA, AR, MA – Yule-Walker equations- Linear and Backward Predictions, Solution to Prony's normal equation, SPECTRAL ESTIMATION spectra from finite duration signals, Nonparametric methods - Period Bartlett, Welch and Blackman-Tukey methods, Parametric method detection of Harmonic signals, MUSIC algorithm LINEAR ESTIMATION Im Mean-Square Error (LMMSE) Filtering: Wiener Hopf Equation, FIR	To introduce the concepts of Random Signal Processing, Signal Mode and Linear Estimation, Adaptive filtering and Linear estimation. INTRODUCTION TO RANDOM SIGNAL PROCESSING om Processes- Ensemble Averages, Stationary processes, Bias and Estimate and Processes and Estimate and Processes. SIGNAL MODELING of Random Processes – ARMA, AR, MA – Yule-Walker equations- Linear and Backward Predictions, Solution to Prony's normal equation, Leving SPECTRAL ESTIMATION spectra from finite duration signals, Nonparametric methods - Periodogr Bartlett, Welch and Blackman-Tukey methods, Parametric method, Adetection of Harmonic signals, MUSIC algorithm LINEAR ESTIMATION IMM Mean-Square Error (LMMSE) Filtering: Wiener Hopf Equation, FIR Wiene	To introduce the concepts of Random Signal Processing, Signal Modeling and Linear Estimation, Adaptive filtering and Linear estimation. INTRODUCTION TO RANDOM SIGNAL PROCESSING OM Processes- Ensemble Averages, Stationary processes, Bias and Estimation to Correlation, Parseval's theorem, Wiener-Khintchine relation, White noise sty, Spectral factorization, Filtering Random Processes. SIGNAL MODELING Of Random Processes – ARMA, AR, MA – Yule-Walker equations- Linear Predict and Backward Predictions, Solution to Prony's normal equation, Levinson SPECTRAL ESTIMATION SPECTRAL ESTIMATION Spectra from finite duration signals, Nonparametric methods - Periodogram, Bartlett, Welch and Blackman-Tukey methods, Parametric method, AR(p detection of Harmonic signals, MUSIC algorithm LINEAR ESTIMATION 9 Im Mean-Square Error (LMMSE) Filtering: Wiener Hopf Equation, FIR Wiener	To introduce the concepts of Random Signal Processing, Signal Modeling, Sp and Linear Estimation, Adaptive filtering and Linear estimation. INTRODUCTION TO RANDOM SIGNAL PROCESSING Per om Processes- Ensemble Averages, Stationary processes, Bias and Estimation, attocorrelation, Parseval's theorem, Wiener-Khintchine relation, White noise, Porty, Spectral factorization, Filtering Random Processes. SIGNAL MODELING Per of Random Processes – ARMA, AR, MA – Yule-Walker equations- Linear Prediction and Backward Predictions, Solution to Prony's normal equation, Levinson Dustried and Backward Predictions, Solution to Prony's normal equation, Levinson Dustried Inc. SPECTRAL ESTIMATION Per spectra from finite duration signals, Nonparametric methods - Periodogram, Model Bartlett, Welch and Blackman-Tukey methods, Parametric method, AR(p)specific detection of Harmonic signals, MUSIC algorithm LINEAR ESTIMATION Per of Mandom Processes – ARMA, AR (D) Specific detection of Harmonic signals, MUSIC algorithm LINEAR ESTIMATION Per of Mandom Processes – ARMA, AR (D) Specific detection of Harmonic Signals, MUSIC algorithm LINEAR ESTIMATION Per of Mandom Processes – ARMA (D) Specific detection, FIR Wiener filter of Mandom Processes – ARMA (D) Specific detection, FIR Wiener filter of Mandom Processes – ARMA (D) Specific detection of Harmonic Signals, MUSIC algorithm LINEAR ESTIMATION (D) Specific detection, FIR Wiener filter of Mandom Processes – ARMA (D) Specific detection, FIR Wiener filter of Mandom Processes – ARMA (D) Specific detection of Harmonic Signals, MUSIC algorithm Per of Mandom Processes – ARMA (D) Specific detection of Harmonic Signals, MUSIC algorithm Per of Mandom Processes – ARMA (D) Specific detection of Harmonic Signals, MUSIC algorithm Per of Mandom Processes – ARMA (D) Specific detection of Harmonic Signals, MUSIC algorithm Per of Mandom Processes – ARMA (D) Specific detection of Harmonic Signals (D) Specific detection of Harmonic Signals (D) Specific detection of Harmonic Signals (D) Specific d		

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons, Inc, Singapore, 2002.
- 2 Dimitris G. Manolakis and Vinay K .Ingle, "Applied Digital Signal Processing", Cambridge University Press, 2011.
- 3 T. Chonavel, "Statistical Signal Processing Modelling and Estimation", Springer London, 2012.
- 4 Umberto Spagnolini, "Statistical Signal Processing in Engineering", Wiley, 2018.

COUF	RSE OUTCOMES:	Bloom's
Upon	the completion of the course, the students will be able to	Taxonomy
		Mapped
CO1	Understand the Basics of random signal processing and Estimation of the	К2
	spectra of finite duration signal	
CO2	Design different Minimum Mean Square Error filters and model for prediction and	К2
	Estimation	
CO3	Analyze differentspeech signal Processing technique	K2
CO4	Design LMSE Filters	К2
CO5	Designing adaptive filters for different applications	K2

COs/POs	PO1	PO2	PO3	PO4	P05	P06
CO1	3	2	-	-	-	1
CO2	3	2	-	-	-	1
CO3	3	1	-	-	-	1
CO4	3	2	-	-	-	1
CO5	3	2		-	-	1
23AEPC03	3	2	20 E-53-20	-	-	1
	1	– Slight, 2 – Mod	derate, 3 – Sub	stantial		
		100	7			
			-1/			

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creatin g (K6) %	Total %		
CAT1	50%	50%	200			70	100%		
CAT2	50%	50%					100%		
Individual /Assignment 1/case study/seminar 1/Project 1	50%	50%					100%		
Individual /Assignment 2/case study/seminar 2/Project 2	50%	50%					100%		
ESE	50%	50%					100%		

23AEPC04	ADVANCED DIGITAL SYSTEM DESIGN LABORATORY	SEMESTER I
----------	---	------------

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	PC	0	0	4	2

Course Objective	To model digital systems in HDL at different abstraction levels, identify, formulate,
	solve and analyze problems using digital logics and to familiarize with the
	implementation of design on FPGAs and ASIC.

LIST OF EXPERIMENTS:

Design, simulation and implementation on FPGAs:

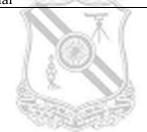
- 1. Combinational and Sequential logic circuits based on Mealy and Moore's Machine Modelling.
- 2. Arithmetic circuits like serial/parallel adder/subtractor and multiplier with and without pipelining
- 3. ALU architecture with suitable data path and control path circuits.
- 4. Vending machine/Traffic Light controller/ATM/Elevator control.

System Design on FPGAs:

- 5. LCD Interfacing / Keypad Interfacing.
- 6. Design MIPS 32-bit RISC processor and implement on FPGA.
- 7. Design a reconfigurable filter and verify its functionality on FPGA.
- 8. Design and implement the CORDIC algorithm on FPGA.

ASIC Design:

9. Perform digital design on combinational and sequential logic circuits from RTL to GDS


Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

	1	Charles Roth Jr.H., "Fundamentals of Logic Design", Australia cengage learning, 7th edition, 2014.
	2	Samir Palnitkar, "Verilog HDL-A guide to Digital Design and synthesis" 2 nd edition Pearson, Education in South Asia 2013.
ľ	3	Clive Maxfield, "The design warrior guide to FPGA's, devices, Tools and flows", Elsevier, 2011.
	4	Altera Corporation- "Standard Cell ASIC to FPGA Design Methodology and Guidelines", April 2009.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	An ability to Model digital systems in HDL at different abstraction levels	K2
CO2	An ability to design with and without pipelining circuits.	КЗ
CO3	An ability to Identify and design Interfacing circuits.	K4
CO4	An ability to Solve and analyze problems using CORDIC algorithm.	K4
CO5	Familiarize with the implementation of design on FPGAs and ASIC circuits.	К3

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	PO5	P06		
C01	3	3	2	3	1	1		
CO2	3	3	3	3	1	2		
CO3	3	3	2	3	1	2		
CO4	3	3	2	3	1	2		
CO5	3	3	2	3	1	2		
23AEPC04	3	3	2	3	1	2		
1 – Slight, 2 – Moderate,	3 – Substanti	al						

23AEPC05	INDUSTRIAL IOT	SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course
Objective

• To get knowledge on recent trends of industry 4.0 and cloud computing and to design IOT systems for various applications.

UNIT - I INTRODUCTION TO INDUSTRIAL 4.0

9 Periods

Overview of Internet of Things and IIOT- Introduction to Industry 4.0 –Evolution - Design requirements, Drivers, Impacts and applications - Sustainability assessment of industries – Cyber security -Industrial Internet Systems - Cyber Physical Systems - Characteristics -Industrial Processes - Functional & Operational Viewpoint.

UNIT - II INDUSTRIAL INTERNET OF THINGS

9 Periods

IIOT Architecture – IIOT Requirements – IIOT Business Model: Categorization- Business opportunities-Reference Architecture of IIOT - key Technologies: Augmented Reality - Virtual Reality - Artificial Intelligence - Introduction to Sensors- Characteristics- Categories- Smart Sensor-Actuators.

UNIT – III INDUSTRIAL DATA TRANSMISSION

9 Periods

Introduction to Industrial Data Transmission- Field bus, Profi bus, Inter bus, Bit bus, Mod bus, Digital STROM- Communication protocols-Types:802.15.4, Zigbee, 6LoWPAN, HART,Z wave, Wi-Fi, RFID, NFC-Industrial Data Acquisition-PLC-SCADA

UNIT – IV IOT ANALYTICS

9 Periods

Introduction to IIoT -IIoT Analytics - Big Data Analytics - Software Defined Networks- Machine Learning and Data Science in Industries - Cloud & FOG Computing- Industrial IoT: Security.

UNIT – V IIOT APPLICATION

9 Periods

Industrial IoT- Application Domains: Healthcare Applications in Industries - Inventory Management and Quality Control -Plant Safety and Security - Smart factories and Smart Cities -Applications of UAVs in Industries.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 SudipMisra, Chandana Roy, Anandarup Mukherjee, "Introduction to Industrial Internet of Tings and Industry 4.0", CRC Press, 1st edition, 2021
- 2 Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2017.
- 3 ArshdeepBahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press,2015.
- 4 Olivier Hersent, David Boswarthick, and Omar Elloumi, "The Internet of Things: Key Applications and Protocols", Wiley Publications-2011

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	the completion of the course, the students will be able to:	Mapped
CO1	Acquire knowledge about advanced Industrial IOT systems	K1
CO2	Explain various protocols and data analytics used for Industrial IOT.	К2
CO3	Understand Industrial Data Transmission	K2
CO4	Apply IOT in big data analytics and in Cloud & FOG Computing	К3
CO5	Ability to analyze and apply industrial IoT to real.	K4

COURSE ARTICULATION MATRIX COs/POs PO1 PO2 PO3 PO4 PO5 PO6										
COs/POs	P01	P02	PU3	P04	PU5	P06				
CO1	3	1	-	-	1	2				
CO2	3	1	-	-	1	2				
CO3	3	1	Cilma	-	1	2				
CO4	3	1		-	1	2				
CO5	3	1	TT	-	1	2				
23AEPC05	3	1			1	2				
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT P	ASSESSMENT PATTERN - THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
Category*											
CAT1	30%	30%		40%			100%				
CAT2	40%	50%		10%			100%				
Individual	30%	60%	10%				100%				
/Assignment											
1/case											
study/seminar											
1/Project 1											
Individual	30%	30%		40%			100%				
/Assignment											
2/case											
study/seminar											
2/Project 2											
ESE	30%	30%	10%	30%			100%				

23AEPC06	EMBEDDED SYSTEM DESIGN	SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
MICROPROCESSORS AND MICROCONTROLLERS	PC	3	0	0	3

Course	To learn the basic concepts of embedded systems, program design are	nd networks and					
Objective	exploit the architecture and applications of ARM CORTEX and PIC processor.						
UNIT – I	EMBEDDED PROCESSOR 9 Periods						
Embedded Com	Embedded Computers, Characteristics and Challenges of Embedded Computing System, Embedded system design						
process- Requi	rements, Specification, Architectural Design, Designing Hardware and Softwa	are Components,					
System Integra	tion, Formalism for System Design- Structural Description, Behavioural Des	scription, Design					
Example: Model	l Train Controller, Alarm Controller, Elevator Controller.						
UNIT – II	PIC CONTROLLER	9 Periods					
PIC 16F877- ard	chitecture, memory technologies, timing circuits, power-up and reset, parallel port	s, ADC, interrupt,					
PWM, counters	and timers, instruction set and assembly language programming.						
UNIT – III	INTERFACING WITH PIC	9 Periods					
Human and phy	ysical interfaces- switches to keyboard, LED display, liquid crystal display, Actua	tors and sensors,					
PWM, serial con	nmunication protocols (UART, I2C, SPI), programming interrupt, timers and counte	er.					
UNIT – IV	ARM CORTEX M4	9 Periods					
Introduction to	Cortex -M Processor family – Cortex M4 – Features - Architecture – Block Diagram	– Operation					
modes and state	es – Registers - Memory System – Exceptions and Interrupts – Instruction Set – Low	power					
UNIT - V	INTERFACING WITH ARM CORTEX	9 Periods					
ARM Cortex ST	M32F controller – Configuring GPIO Ports – Switches and LEDs - LCD display Sev	ven Segment LED					
Display – Matrix Keypad – ADC – DAC – Pulse Width Modulation – DMA - Serial Communication USART.							
Contact Period	S:						
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

	LI LINLINGES.							
1	Marilyn Wolf, "Computers as Components - Principles of Embedded Computing System							
	Design ",Third Edition "Morgan Kaufmann Publisher,2012.							
2	Tim Wilmshurst, "Designing Embedded Systems with PIC microcontrollers-Principles and							
	Applications", Newnes Publications, 2007.							
3	Muhammad Ali Mazidi, Rolin McKinlay, Danny Causey, "PIC Microcontroller and Embedded Systems:							
	Using Assembly and C for PIC18", Prentice hall publications, 2007.							
4	Martin Bates, "Interfacing PIC microcontrollers-Embedded Design by Interactive Simulation",							
	Newnes Publication, 2006.							
5	Joseph Yiu, "The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors", Newnes Third							
	Edition, 2013.							
6	Dr. Mark Fisher, ARM Cortex M4 Cook Book, Packt Publishing, 2016.							
7	Andrew N. Sloss Dominic Symes Chris Wright, "ARM System Developer's Guide Designing and							
	Optimizing System Software", 1st edition Elsevier Inc 2010.							

COURSE OUTCOMES:		
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Exploit the basic concepts of embedded system.	K2
CO2	Interpret the Architecture and features of PIC Controller.	K2
CO3	Apply programming skill for interfacing with PIC Controller.	K2
CO4	Interpret the Architecture and features of ARM CORTEX controller.	К3
CO5	Apply programming skill for interfacing with ARM CORTEX processor.	K2

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	P03	P04	P05	P06	
CO1	3	1	2	2	1	-	
CO2	3	1	2	2	1	-	
CO3	3	1	2	2	1	-	
CO4	3	1	2	2	1	-	
CO5	3	1	2	2	1	-	
23AEPC06	3	0.751	2	2	1	-	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %	
CAT1	30%	30%	40%	V.			100%	
CAT2	30%	30%	40%	000			100%	
Individual /Assignment 1/case study/seminar 1/Project 1	30%	30%	40%	8			100%	
Individual /Assignment 2/case study/seminar 2/Project 2	20%	30%	50%				100%	
ESE	30%	30%	40%				100%	

23AEPC07	DIGITAL IMAGE PROCESSING AND ITS	SEMESTER
23AEPCU7	APPLICATIONS	II

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	PC	3	0	2	4

Course Objective	 To Gain knowledge in Digital Image Fundamentals, Image Enhancement, Image Representation, Description, Image compression and in certain area of im Applications. 	-
UNIT - I	DIGITAL IMAGE FUNDAMENTALS	9 Periods

Representing Digital Images: Binary images, Gray scale images: Sampling and quantization, Spatial and Gray level resolution, Color images –Color models, Basics of color image processing-Basic relationship between Pixels: Neighbours of a Pixel, Adjacency, Connectivity, Regions and Boundaries, Distance measures. Image transforms: Discrete Fourier transforms, Discrete Wavelet transforms.

UNIT - II IMAGE ENHANCEMENT IN SPATIAL AND FREQUENCY DOMAIN 9 Periods

Spatial domain image Enhancement: Basic gray level transformations, Histogram processing, Enhancement using arithmetic & logical operators, Basics of spatial filtering Smothening spatial filters, Sharpening spatial filters. Frequency domain image Enhancement: Smothening frequency domain filters, Sharpening frequency domain filters, Homomorphic filtering- Noise models.

UNIT - III IMAGE SEGMNETATION, REPRESENTATION AND DESCRIPTION 9 Periods

Image segmentation: Detection of Discontinuities, Edge linking and boundary detection, Thresholding, Region based segmentation, Segmentation by Morphological watersheds. Representation and Description: Representation, Boundary Descriptors, Regional Descriptors.

UNIT – IV IMAGE COMPRESSION 9 Periods

Fundamentals of image compression: Coding redundancy, Inter Pixel redundancy, Psychovisual redundancy, Fidelity Criteria-Image compression models-Elements of Information theory-Error free compression-Lossy compression-Image compression standards.

UNIT - V IMAGE PROCESSING APPLICATIONS 9 Periods

Object Recognition: Pattern and Pattern classes –Recognition based on Decision –theoretic methods – Structural methods –Medical imaging processing: Pattern classification and diagnostic decision – Measures of diagnostic accuracy – Applications: Contrast enhancement of mammograms – Detection of calcifications by region growing – Shape and texture analysis of tumours.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 30 Periods Total: 75 Periods

List of Experiments - 30 Periods

- **1. Point-to-point transformation-**Thresholding an image and the evaluation of itshistogram.
- 2. Histogram Equalization.
- **3. Geometric transformations-**Image rotation, scaling, and translation. Two-dimensional Fourier transform I.
- **4. Two-dimensional Fourier Transform**. Harmonic content of an image using the discrete Fourier transform (DFT) and masking with DFT.
- 5. Linear filtering using convolution.
- **6. Ideal filters in the frequency domain**-Effects of filtering low and high frequencies in an image.
- **7. Non-Linear filtering using convolutional masks-**Effects of a median filter on an image corrupted with impulsive noise.
- **8.** Morphological operations I. Erosion and dilation
- **9. Entropy as a compression measure-**Entropy as a compression measurement to the DPCM compression measure.
- **10. Edge detection-**Edge detectors and their operation in noisy images.

-	1	Gonzalez R.C., Woods R.E., "Digital Image Processing", Fourth Edition, Pearson, 2017.
	2	Sinha G. R, Patel, B. C., "Medical Image Processing: Concepts And Applications", Prentice Hall, 2014.
	3	Anil K. Jain, 'Fundamentals of Digital Image Processing', Pearson, 2002.

COURSE	OUTCOMES:	Bloom's Taxonomy
Upon cor	mpletion of the course, the students will have the ability to :	Mapped
C01	Understand the fundamentals of Digital Image Processing and concepts in Image Enhancement.	К3
CO2	Analyze the image using descriptors and representation schemes and segmentation algorithms.	K4
C03	Apply the algorithms for object recognition, and Medical Image Processing.	K2
CO4	Understand the Image Compression Techniques	К3
CO5	Analyse the image Processing Applications	K4

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	P04	P05	P06	PSO1	PSO2	PSO3
C01	3	2	1	-	-	1	3	-	1
CO2	3	2	1	-	-	1	3	-	1
CO3	3	1	1	-	-	1	3	-	1
CO4	3	1	1	-	-	1	3	-	1
CO5	3	2	1	-	-	1	3	-	1
23AEPC07	3	2	1	-	-	1	3	-	1
1 - Slight, 2 - Moderate, 3 - Substantial									

ASSESSMENT P	ASSESSMENT PATTERN – THEORY						
Test /	Remember	Understan	Applying	Analyzing	Evalua	Creating	Total
Bloom's	ing (K1) %	ding (K2)	(K3) %	(K4) %	ting	(K6) %	%
Category*		%			(K5) %		
CAT1	20	20	30	30			100
CAT2	20	20	30	30			100
CAT3	30	40	10	20			100
Assignment 1	25	25	25	25			100
Assignment 2	25	25	25	25			100
Assignment 3	25	25	25	25			100
Quiz1	33	33	34	P			100
Quiz 2	33	33	34				100
Quiz 3	33	33	34				100
Other mode of		A	0 -11	le .			
internal		<u>(%)</u>		2			
assessments, if		1		e.			
any			PRINCES.				
ESE	20	20	30	30			100

23AEPC08

EMBEDDED SYSTEM DESIGN LABORATORY

SEMESTER II

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	PC	0	0	4	2

Course Objective This course enables to students to learn above the programming PIC controller and ARM Processor.

LIST OF EXPERIMENTS:

PIC controller:

- 1. Configuration of ports
- 2. Timer
- 3. Seven Segment display
- 4. I2C
- 5. LCD interface
- 6. Stepper Motor control.

ARM Processor:

- 1. GPIO Configuration
- 2. Timer
- 3. LCD interface
- 4. ADC and DAC
- 5. PWM Generation
- 6. Real Time Clock
- 7. Serial data transfer

Study of sensing elements using IOT.

Mini Project using PIC Controller or ARM processor

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total:60 Periods

1	Andrew N.Sloss Dominic Symes Chris Wright, "ARM System Developer's Guide Designing and Optimizing System Software", Elsevier Inc 2010.
2	Joseph Yiu ," The Definitive Guide to the ARM Cortex-M " , Elsevier- Newness, 2014.
3	Kirk Zurell, "C Programming for Embedded Systems", CRC Press, 2000.
4	Dogan Ibrahim, "Advanced PIC microcontroller projects in C", Newnes publication, 2012.
5	Muhammad Ali Mazidi, Rolin McKinlay, Danny Causey, "PIC Microcontroller and Embedded Systems"

	E OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	An ability to apply programming skills in PIC Controller.	K2
CO2	An exposure to interfacing concepts of PIC controller.	K4
CO3	An ability to apply programming skills in ARM processor	К3
CO4	An exposure to interfacing concepts of ARM processor.	К3
CO5	An ability to apply controllers for real time applications.	K4

COURSE ARTICULA	COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06			
CO1	3	3	-	2	-	1			
CO2	3	3	-	2	-	1			
CO3	3	3	-	2	-	1			
CO4	3	3		2	-	1			
CO5	3	3		2	-	1			
23AEPC08	3	3		2	-	1			
1 – Slight, 2 – Mode	rate, 3 – Subst	antial	77						

23AEEE01	MINI PROJECT	SEMESTER II
	·	1

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	EEC	0	0	4	2

COURSE OBJECTIVES:

• To identify, analyze, formulate and handle programming projects with a comprehensive and systematic approach. In particular acquire practical knowledge within the chosen area of technology for technical project development.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COURSE OUTCOMES:

Upon com	pletion of the course, students will be able to/have:	Bloom's Taxonomy Mapped
CO1	An exposure to take up real time problems and challenges.	К6
CO2	Hands-on experience on the technical topics	K4
CO3	Confidence to work on projects independently.	K4
CO4	Better presentation and communication skills	K5
CO5	An understanding of technical dissertation presentation and writing.	K5

COURSE ARTICULA	TION MATRI	X				
COs/POs	PO1	P02	P03	P04	PO5	P06
CO1	3	3	2	3	1	2
CO2	3	3	2	3	2	3
CO3	1	3	2	3	3	3
CO4	1	3	2	3	3	3
CO5	1	3	2	3	3	3
23AEEE01	3	3	2	3	3	3
1 – Slight, 2 – Moder	rate, 3 – Substa	antial				

23AEEE02	INTERNSHIP/INDUSTRIAL TRAINING	SEMESTER III
----------	--------------------------------	--------------

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	EEC	0	0	•	2

COURSE OBJECTIVES:

• To expose the students to work on real time challenges independently in industry and present their technical dissertation and writing.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 160 Periods Total: 160 Periods

COURSE O	UTCOMES:	Bloom's
Upon comp	pletion of the course, the students will have:	Taxonomy
		Mapped
CO1	An exposure to the processes of advanced electronics or other	К6
	related industries	
CO2	An ability to take up real time challenges.	K4
CO3	Confidence to work on the project independently.	K4
CO4	Team work experience	К3
CO5	An understanding of technical dissertation presentation and writing.	K5

COURSE ARTICULA	TION MATR	IX				
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3	2	3	1	2
CO2	1	3	2	3	3	3
CO3	3	3	2	3	2	3
CO4	2	2	3	3	1	2
CO5	3	3	2	3	2	3
23AEEE02	3	3	2	3	2	3
1 – Slight, 2 – Moder	ate, 3 – Subst	antial				

23AEEE03	PROJECT - I	SEMESTER III

PREREQUISITES :	CATEGORY	L	T	P	С
NIL	EEC	0	0	24	12

COURSE OBJECTIVE:

 To expose the students to work on real time challenges independently and to present the technical dissertation and writing.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 360 Periods Total: 360 Periods

COURSE (OUTCOMES:	Bloom's
II	ulation of the government has attached anto will be seen	Taxonomy
Upon com	pletion of the course, the students will have:	Mapped
CO1	An exposure to take up real time problems and challenges.	К6
CO2	Hands-on experience on the technical topics	K4
CO3	Confidence to work on projects independently.	K4
CO4	Better presentation and communication skills	K5
CO5	An understanding of technical dissertation presentation and	K5
	writing.	

COs/POs	P01	PO2	PO3	P04	PO5	P06
C01	3	3	2	3	1	2
CO2	1	3	2	3	3	3
CO3	3	3	2	3	2	3
CO4	1	1	1	1	3	3
CO5	3	3	2	3	2	3
23AEEE03	3	3	2	3	2	3

23AEEE04	PROJECT - II	SEMESTER IV

PREREQUISITES:	CATEGORY	L	Т	P	С
NIL	EEC	0	0	48	24

COURSE OBJECTIVE:

• To expose the students to work on real time challenges independently to provide solution and present the technical dissertation and writing.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 720 Periods Total: 720 Periods

	SE OUTCOMES: completion of the course, the students will have:	Bloom's Taxonomy Mapped
CO1	An exposure to take up real time problems and challenges and provide solution.	К6
CO2	Hands-on experience on the technical topics	K4
CO3	Confidence to work on projects independently.	K4
CO4	Better presentation and communication skills	K5
CO5	An understanding of technical dissertation presentation and writing.	K5
	\$10 plant 2010	

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	PO3	P04	PO5	P06			
CO1	3	3	2	3	1	2			
CO2	1	3	2	3	3	3			
CO3	3	3	2	3	2	3			
CO4	1	1	1	1	3	3			
CO5	3	3	2	3	2	3			
23AEEE04	3	3	2	3	2	3			
1 – Slight, 2 – Mode	erate, 3 – Subst	antial							

23AEPE01	DIGITAL IC DESIGN	SEMESTER I

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	 To learn VLSI design methodology, MOS transistor principles, combinational a 	and sequential
Objective	logic circuit design with FET devices, arithmetic building blocks and memory a	rchitectures.
TINITE T	OVERVIEW OF MICH RECICION METHODOLOGY	0.0. 3. 4.
UNIT - I	OVERVIEW OF VLSI DESIGN METHODOLOGY	9 Periods
VLSI Design	Process - Architectural design - Logical design-Physical design - Layout styles -	Full custom,
Semicustom a	pproaches, layout design rules: Need for design rules - Layer representations - CMOS	nwell / pwell
design rules -	Design rule backgrounder-Layer assignments-SOI rules.	
UNIT – II	MOS TRANSISTOR PRINCIPLES AND ADVANCED FET DEVICES	9 Periods
MOSFET Tran	sistor Characteristic under Static and Dynamic Conditions, MOS Transistor Secondary	Effects, CMOS
Inverter - Stat	ic Characteristic, Dynamic Characteristic, Power, Energy, and Energy Delay paramete	ers. FinFETs –
VI Characteris	tics – SuperFin Technology.	
UNIT - III	COMBINATIONAL LOGIC CIRCUITS	9 Periods
Static CMOS	Design - Complementary CMOS, Ratioed Logic, Pass-Transistor Logic. Dynamic C	MOS Design -
Dynamic Logi	80 SPT PAGE - T SATTROOM -	
-)	c: Basic Principles, Speed and Power Dissipation of Dynamic Logic, Issues in Dy	_
Cascading Dyr	19M2075651311.05770M87	_
Cascading Dyr	19M2075651311.05770M87	namic Design
Cascading Dyn UNIT - IV	namic Gates.	vnamic Design
Cascading Dyr UNIT - IV Timing metric	namic Gates. SEQUENTIAL LOGIC CIRCUITS	vnamic Design 9 Periods
Cascading Dyr UNIT - IV Timing metric synthesis, Pipe	namic Gates. SEQUENTIAL LOGIC CIRCUITS cs for sequential circuits, Static Latches and Registers, Dynamic Latches and Regist	ynamic Design 9 Periods ers, Clock tree
Cascading Dyr UNIT – IV Timing metric synthesis, Pipe UNIT – V	namic Gates. SEQUENTIAL LOGIC CIRCUITS es for sequential circuits, Static Latches and Registers, Dynamic Latches and Registers, Pulse and sense amplifier based Registers, Non-Bistable Sequential Circuits.	9 Periods ers, Clock tree
Cascading Dyr UNIT - IV Timing metric synthesis, Pipe UNIT - V Data path cir	namic Gates. SEQUENTIAL LOGIC CIRCUITS cs for sequential circuits, Static Latches and Registers, Dynamic Latches and Registelines, Pulse and sense amplifier based Registers, Non-Bistable Sequential Circuits. ARITHMETIC BUILDING BLOCKS AND MEMORY ARCHITECTURES	9 Periods ers, Clock tree

Lecture: 45 Periods

1	Jan M Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective", 2nd
	Edition, Prentice Hall of India, 2016.
2	Niel H.E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design- A circuits and Systems Perspective", 3rd
	Edition, Pearson education, 2015.
3	Niraj K. Jha l Deming Chen , "Nano electronic Circuit Design", Springers, 2021.
4	Wayne Wolf, "Modern VLSI Design", PHI Learning Private Limited, New Delhi, 2011.
5	Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits", McGraw Hill, 3rd Edition, 2016.

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

COs/POs	P01	P02	PO3	P04	P05	P06
C01	3	2	-	1	-	1
CO2	3	2	-	1	-	1
CO3	3	2	-	1	-	2
CO4	3	2	-	1	-	2
CO5	3	2	-	1	-	2
23AEPE01	3	2	-	1	-	2

ASSESSMENT	PATTERN - THE	ORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual		50%	30%	20%			100%
/Assignment		785					
1/case		2					
study/semin			1 1				
ar 1/Project		. 8	(23)				
1		Y.					
Individual		50%	30%	20%			100%
/Assignment		=		3			
2/case		19					
study/seminar							
2/Project 2							
ESE	30%	30%	20%	20%			100%

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS SEMESTER I 23AEPE02 (Common to Applied Electronics & VLSI Design)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	 To explain, analyse and construct various analog integrated circuits 	
Objective		
UNIT - I	CIRCUIT CONFIGURATION FOR BIPOLAR IC	9 Periods

Bipolar Current Mirrors-General Properties-Simple Current Mirror with beta helper-Simple current mirror with degeneration-Cascode Current Mirror-Wilson Current mirror-Bipolar Widlar Current Source-Bipolar Peaking Current Source-Supply Insensitive Biasing- Band-Gap-Referenced Bias Circuits in Bipolar Technology. Output Stages: Transfer Characteristics, Power Output and Efficiency of Emitter Follower and Class B Push-Pull stage.

UNIT - II **CIRCUIT CONFIGURATION FOR MOS IC**

MOS Current Mirrors-General Properties-Simple Current Mirror with beta helper-Simple current mirror with degeneration-Cascode Current Mirror-Wilson Current mirror-MOS Widlar Current Source-MOS Peaking Current Source- Band-Gap-Referenced Bias Circuits in CMOS Technology. Output Stages: Transfer Characteristics of Source Follower-CMOS Class AB Output Stage

UNIT - III TWO STAGE OPERATIONAL AMPLIFIERS

9 Periods

Basic Two-Stage MOS Operational Amplifiers: Common-Mode Rejection Ratio-Power-Supply Rejection Ratio-Effect of Overdrive Voltages-Layout Considerations - Two-Stage MOS Operational Amplifiers with Cascodes -MOS Telescopic-Cascode Operational Amplifiers - MOS Folded-Cascode Operational Amplifiers - MOS Active-Cascode Operational Amplifiers - Bipolar Operational Amplifiers- Frequency Response of Operational amplifiers.

UNIT - IV PHASE LOCKED LOOPS

9 Periods

Simple PLL: Phase detector- Basic PLL Topology-Dynamics of Simple PLL - Charge-Pump PLLs: Problem of Lock Acquisition-Charge Pump-Basic Charge-Pump PLL - Non-ideal Effects in PLLs - Jitter in PLLs - Delay-Locked Loops - Applications of PLL.

UNIT - V **NONLINEAR ANALOG CIRCUITS**

Analog Multiplier: Emitter Coupled pair as Multiplier-Gilbert Cell as Multiplier-Complete Analog Multiplier-Gilbert Multiplier Cell as Balanced Modulator and Phase Shifter. Noise: Sources of Noise-Noise Models of IC Components-Circuit Noise Calculations-Equivalent Input Noise Generator-Effect of Feedback on Noise Performance-Noise in Operation Amplifier-Noise Bandwidth-Noise Figure and Noise Temperature.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- Paul R. Gray, Paul J.Hurst, Stephen H.Lewis, and Robert G. Meyer, "Analysis and Design of Analog Integrated circuits", Wiley, 5th Edition, 2009. 2 Behzad Razavi, "Design of Analog CMOS Integrated circuits", McGraw Hill Education, 2nd Edition, 2016. 3
 - David Johns, Ken Martin, "Analog Integrated circuit design", Wiley, 2nd Edition, 2013.

4 Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits" McGraw Hill Education, 4th Edition, 2015.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyse the basic circuits required to build up Bipolar IC	K4
CO2	Analyse the basic circuits required to build up MOS IC	K4
CO3	Design and describe the characteristics of two stage Bipolar and MOS Operation amplifiers	К3
CO4	Analyse the various types of PLL circuit and explain their applications	K4
CO5	Discuss the construction and working of non-linear analog circuits and describe noise characteristics in analog circuits	K2

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	3	1		1	-	1			
CO2	3	1	e grand i Jean	n 1	-	1			
CO3	3	1		1	-	1			
CO4	3	1) 1	-	1			
CO5	3	1	1	1	-	1			
23AEPE02	3	1	10-3	1	-	1			
1 – Slight, 2 – M	oderate, 3 – Si	ıbstantial	1 : 1						

ASSESSMENT PA	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembe ring (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40%	40%	20%				100%		
CAT2	40%	40%	20%				100%		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	25%	25%			100%		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	25%	25%			100%		
ESE	30%	40%	20%	10%			100%		

23AEPE03 SEMICONDUCTOR DEVICE MODELING SEMESTER I

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	PE	3	0	0	3

Course Objective

• To acquire the fundamental knowledge on semiconductor theory, device modeling aspects of various semiconductor devices for electronic applications.

UNIT - I MOS CAPACITORS

9 Periods

Surface Potential: Accumulation, Depletion, and Inversion, Electrostatic Potential and Charge Distribution in Silicon, Capacitances in an MOS Structure, Polysilicon-Gate Work Function and Depletion Effects, MOS under Non equilibrium and Gated Diodes, Charge in Silicon Dioxide and at the Silicon-Oxide Interface, Effect of Interface Traps and Oxide Charge on Device Characteristics, High-Field Effects, Impact Ionization and Avalanche Breakdown, Band-to-Band Tunneling, Tunneling into and through Silicon Dioxide, Injection of Hot Carriers from Silicon Dioxide, High-Field Effects in Gated Diodes, Dielectric Breakdown.

UNIT - II MOSFET DEVICES

9 Periods

Long-Channel MOSFETs, Drain-Current Model, MOSFET I-V Characteristics, Subthreshold Characteristics, Substrate Bias and Temperature Dependence of Threshold Voltage, MOSFET Channel Mobility, MOSFET Capacitances and Inversion-Layer Capacitance Effect, Short-Channel MOSFETs, Short-Channel Effect, Velocity Saturation and High-Field Transport Channel Length Modulation, Source-Drain Series Resistance, MOSFET Degradation and Breakdown at High Fields.

UNIT - III CMOS DEVICE DESIGN

9 Periods

CMOS Scaling, Constant-Field Scaling, Generalized Scaling, Non scaling Effects, Threshold Voltage, Threshold-Voltage Requirement, Channel Profile Design, Non uniform Doping, Quantum Effect on Threshold Voltage, Discrete Dopant Effects on Threshold Voltage, MOSFET Channel Length, Various Definitions of Channel Length, Extraction of the Effective Channel Length, Physical Meaning of Effective Channel Length,

Extraction of Channel Length by C-V Measurements.

UNIT - IV BIPOLAR DEVICES

9 Periods

n-p-n Transistors, Basic Operation of a Bipolar Transistor, Modifying the Simple Diode Theory for Describing Bipolar Transistors, Ideal Current-Voltage Characteristics, Collector Current, Base Current, Current Gains, Ideal IC-VCE Characteristics, Characteristics of a Typical n-p-n Transistor, Effect of Emitter and Base Series Resistances, Effect of Base-Collector Voltage on Collector Current, Collector Current Falloffat High Currents, Non ideal Base Current at Low Currents, Bipolar Device Models for Circuit and Time- Dependent Analyses Basic dc Model, Basic ac Model, Small-Signal Equivalent-Circuit Model, Emitter Diffusion Capacitance, Charge-Control Analysis, Breakdown Voltages, Common-Base Current Gain in the Presence of Base-Collector Junction Avalanche, Saturation Currents in a Transistor.

UNIT - V MATHEMATICAL TECHNIQUES FOR DEVICE SIMULATIONS

9 Periods

Poisson equation, continuity equation, drift-diffusion equation, Schrodinger equation, hydrodynamic equations, trap rate, finite difference solutions to these equations in 1D and 2D space, grid generation.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Yuan Taur and Tak H.Ning, "Fundamentals of Modern VLSI Devices", Cambridge. University Press,2016.
2	A.B. Bhattacharyya "Compact MOSFET Models for VLSI Design", John Wiley & Sons Ltd, 2009.

3	Ansgar Jungel, "Transport Equations for Semiconductors", Springer, 2009.
4	Trond Ytterdal, Yuhua Cheng and Tor A. Fjeldly Wayne Wolf, "Device Modeling for Analog and RFCMOS
	Circuit Design", John Wiley & Sons Ltd, 2004.
5	Selberherr, S., "Analysis and Simulation of Semiconductor Devices", Springer-Verlag., 1984.
6	Behzad Razavi, "Fundamentals of Microelectronics" Wiley Student Edition, 2nd Edition, 2014 7.
7.	J P Collinge, C A Collinge, "Physics of Semiconductor devices" Springer, 2002.
8.	8. S.M.Sze, Kwok.K.NG, "Physics of Semiconductor devices", Springer, 2006.

	COURSE OUTCOMES: Upon completion of the course, students will be able to/have:			
CO1	Explore the properties of MOS capacitors.	K2		
CO2	Analyze the various characteristics of MOSFET devices.	K2		
CO3	Describe the various CMOS design parameters and their impact on performance of the device.	K2		
CO4	Discuss the device level characteristics of BJT transistors.	K2		
CO5	Identify the suitable mathematical technique for simulation.	К3		

COURSE ARTICULATION MATRIX:									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	3	2	1 1000	-	-	1			
CO2	3	2	1 6 -	-	-	1			
CO3	3	1	W 100	-	-	1			
CO4	2	2		-	-	1			
CO5	3	2	AND SERVICE OF THE PERSON	-	-	1			
23AEPE03	3	2	-	-	-	1			
1 – Slight, 2 – Mo	derate, 3 – Sul	bstantial							

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remember ing (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40%	40%	20%				100%		
CAT2	40%	40%	20%				100%		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1							100%		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40%	40%	20%				100%		
ESE	40%	40%	20%				100%		

23AEPE04	SMART	SENSORS			SE	MES	ΓER	<u> </u>
PREREQUISITI	ES			CATEGORY	L	T	P	С
	NIL			PE	3	0	0	3
Course	This course er	nables the stude	ents to lear	n the different typ	es of sei	nsors	, sma	 irt
Objective				d their application				
UNIT - I	DISPLACEMENT, FORCE AND PRESSURE SENSORS 9 Periods							
LVDT and Opti	sification and selection cal Encoder – Measuren phragm and piezoelectr	nent of force us		-	_			
UNIT - II	TEMPERATURE,	POSITION,	FLOW	AND LEVEL		9	Per	iods
	SENSORS	·						
Thermocouple	and RTD – Concept of th	ermal imaging-	- Measuren	ent of position us	ng Hall	effect	sen	sors,
	ors: Inductive and Capa ensors: Ultrasonic and L					and	vibra	ition
UNIT -III	SMART SENSORS	aser – Level Ser	13013. Ulti a	some and capaciti	v c.	q	Per	inds
			Cl					
	re of smart sensors and self-communicating in econtrol.	11765, 76						
UNIT -IV	INTERFACING SENSOR	RINFORMATION	N AND MCU			9	Per	iods
•	nd Signal Conditioning – sor Interface, Techniques	100,734,954	to reach an army specific	,		1CU C	ontr	ol
UNIT - V	APPLICATION FOR S			i – Sensor integrat	1011.	0	Per	ioda
	otocols – Industrial Ne						ess	Data
Communication	s – RF Sensing, Telemet	ry. Standards: II	EEE 1451, S	TIM, Smart Plug- a	ınd-Play	·		
Contact Period	s:							

Lecture: 45 Periods

1	D.Patranabis, -Sensors and Transducers, Second Edition, Prentice Hall of India, 2005.
2	Randy Frank, -Understanding Smart Sensors, Third Edition, Artech House Publishers, 2013.
3	Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015,3rd
	edition, Springer, New York.
4	Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland.
5	Sabrie Solomon, " Sensors Handbook ," 2nd edition McGraw Hill, 1998.
6	Y.L. Lin, "Smart Sensors and Systems", Springer, 2017.

Practical: 0 Periods

Total: 45Periods

Tutorial: 0 Periods

COURSE	OUTCOMES:	Bloom's
Upon com	pon completion of the course, the students will be able to:	
CO1	Understand the displacement, force and pressure sensors.	K2
CO2	Exploit the temperature, position, flow and level sensors.	K2
CO3	Gain knowledge on smart sensors and their applications.	K2
CO4	Interface sensor information and MCU.	K3
CO5	Gain knowledge about communication for smart sensors.	K2

COs/POs	P01	PO2	PO3	PO4	P05	P06
CO1	3	1	-	2	-	-
CO2	3	1	-	2	-	-
CO3	3	1	-	2	-	-
CO4	3	1	-	2	-	-
CO5	3	1	-	2	-	-
23AEPE04	3	1	-	2	-	-
- Slight, 2 – Moderate, 3	3 – Substantial	0.677	La Partico	,		•

ASSESSMENT	PATTERN - THE	ORY	7)			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20%	30%	50%				100%
CAT2	20%	30%	50%				100%
Individual	20%	30%	50%				100%
/Assignmen							
t 1/case							
study/semin							
ar 1/Project							
1							
Individual	20%	30%	50%				100%
/Assignment							
2/case							
study/seminar							
2/Project 2							
ESE	20%	30%	50%				100%

	<u> </u>	
23AEPE05	MULTIMEDIA COMPRESSION TECHNIQUES	SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

bjective	This course enables its students to learn above the	
Djective	 Various data coding techniques, audio compression techniques, 	image and vide
	compression techniques.	
IIT – I	INTRODUCTION	9 Periods
mpression Te	chniques – Overview of information theory - Lossless and Lossy coding– Moo	deling and Coding
axonomy of c	compression techniques - Rate distortion theory - Huffman coding - Nor	n-Binary Huffmar
des –Adaptive	Huffman Coding – Applications of Huffman Coding.	
IIT – II	ARITHMETIC CODING AND DICTIONARY	9 Periods
7	rechniques	
plications -Sta n length codin	 Algorithm, Integer implementation – Comparison of Huffman and Ariatic and Adaptive dictionary – LZ77, LZ78, LZW approach – Applications - Factor – Comparison of MH, MR, MMR and JBIG - Scalar and Vector Quantization. AUDIO COMPRESSION 	•
dio compress eech coding - (ion techniques - Frequency domain and filtering - Basic sub-band coding G.722 - Application to audio coding - MPEG audio - Silence suppression - Spe	g - Application to
dio compress eech coding - (chniques – Voc	ion techniques - Frequency domain and filtering - Basic sub-band coding G.722 - Application to audio coding - MPEG audio - Silence suppression - Spe	
dio compress eech coding - (chniques – Voc IIT – IV	ion techniques - Frequency domain and filtering - Basic sub-band coding G.722 - Application to audio coding - MPEG audio - Silence suppression - Specoders. IMAGE COMPRESSION iques - DPCM, DM - KL transform – Discrete cosine, Walsh, Hadamardtransfo	g - Application to eech compression 9 Periods
dio compress eech coding - (chniques – Voc NIT – IV edictive techni	ion techniques - Frequency domain and filtering - Basic sub-band coding G.722 - Application to audio coding - MPEG audio - Silence suppression - Specoders. IMAGE COMPRESSION iques - DPCM, DM - KL transform – Discrete cosine, Walsh, Hadamardtransform – Quad Trees – EZW, SPIHT, JPEG 2000.	g - Application to eech compression 9 Periods orm - JPEG,
dio compress eech coding - (chniques – Voc NIT – IV edictive techni	ion techniques - Frequency domain and filtering - Basic sub-band coding G.722 - Application to audio coding - MPEG audio - Silence suppression - Specoders. IMAGE COMPRESSION iques - DPCM, DM - KL transform – Discrete cosine, Walsh, Hadamardtransfo	g - Application to eech compression 9 Periods
dio compress eech coding - (chniques – Voc NIT – IV edictive techni	ion techniques - Frequency domain and filtering - Basic sub-band coding G.722 - Application to audio coding - MPEG audio - Silence suppression - Specoders. IMAGE COMPRESSION iques - DPCM, DM - KL transform – Discrete cosine, Walsh, Hadamardtransform – Quad Trees – EZW, SPIHT, JPEG 2000.	eed

1	Khalid Sayood, "Introduction to Data Compression", Morgan Kaufman, 2017.
2	Salomon D, "Data Compression The Complete Reference", Springer, 2015.
3	Jan Vozer, "Video Compression for Multimedia", AP Press, New York, 1995.
4	AlistarMoffat, "Compression and Coding Algorithms", Kluwer Academic Publishers, 2002
5	Salomon D, "A Guide to Data Compression Methods", Springer, 2002.

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

COURSE	OUTCOMES:	Bloom's
Upon con	apletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Code information using various Lossy and Lossless methods.	K2
CO2	Apply the concepts dictionary based coding techniques.	К3
CO3	Do various analysis on audio compression.	К3
CO4	Implement image and video compression	K2
CO5	Describe various video compression techniques	K2

COURSE ARTICULATI	ION MATRIX:									
COs/POs	P01	P02	PO3	P04	P05	P06				
CO1	3	-	2	1	-	1				
CO2	3	-	2	1	-	1				
CO3	3	-	2	1	-	1				
CO4	3	-	2	1	-	1				
CO5	3	-	2	1	-	1				
23AEPE05	3	and the same of	2	1	-	1				
l – Slight, 2 – Moderate,	3 – Substantial	19937		•	•					
	- Siigiit, 2 - Moderate, 5 - Substantiai									

ASSESSMENT	PATTERN - THI	EORY	1689	1			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		1963		2			
CAT1	40%	40%	20%				100
							%
CAT2	40%	40%	20%				100
							%
Individual		50%	50%				100
/Assignmen							%
t 1/case							
study/semi							
nar							
1/Project 1							
Individual		50%	50%				100
/Assignment							%
2/case							
study/semina							
r 2/Project 2							
ESE	40%	40%	20%				100%

23AEPE06

ANALOG IC DESIGN

(Common to Applied Electronics and VLSI Design)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	 To develop the skills to design analog VLSI circuits for a given specification. 	
Objective	10 develop the skins to design analog vest circuits for a given specification.	
UNIT - I	MOS DEVICE PHYSICS	9 Periods
General Cons	siderations, MOS I/V Characteristics, Second Order effects, MOS Device models- Long	channel versus
	el devices. Single Stage Amplifiers – General considerations, Common Source Stage	
resistive load	d, CS stage with diode connected load, CS stage with current source load, Source	Follower stage,
Common Gat	e Stage, Cascode Stage.	_
UNIT – II	MOS AMPLIFIERS AND CURRENT MIRRORS	9 Periods
Differential A	Amplifiers –single Ended and Differential Operation, Basic Differential Pair, Common i	node response,
Differential l	Pair with MOS loads, Gilbert Cell. Basic Current Mirrors, Cascode Current M	firrors, Active
Current Mirr	ors.	
UNIT – III	FREQUENCY AND NOISE CHARACTERISTICS OF MOS AMPLIFIERS	9 Periods
Frequency R	esponse of Amplifiers: Miller's effect, Common Source Stage, Source Followers, Com	mon Gate Stage,
Cascode Stag	eNoise: Types of Noise, Representation of Noise in circuits, Noise in single stage am	olifiers, Noise in
cascade stage	e, Noise in current mirrors, Noise power trade-off, Noise bandwidth.	
UNIT – IV	CMOS OPERATIONAL AMPLIFIERS	9 Periods
Properties of	f feedback circuits – Effect of feedback on noise -Operational Amplifiers – General	Considerations,
One Stage Op	o Amps- design procedure, Two Stage Op Amps, Common-Mode Feedback, Input Ra	nge limitations,
Slew Rate, Po	ower Supply Rejection, Noise in Op Amps. Concept of Stability and Frequency Comp	ensation in Op.
Amps- Basic	PLL Topology- Dynamics of Simple PLL - Problem of Lock Acquisition- Charge Pump)- Basic Charge-
Pump PLL.		
UNIT – V	D/A AND A/D CONVERTERS	9 Periods
Ideal A/D ar	nd D/A converters, Quantization noise, Signed codes, Performance limitations. Ny	quist Rate D/A
converters: I	Decoder based Binary scaled, Current mode and hybrid D /A converters - Nyquist A	A/D Converters:
Integrating ty	ype, Successive approximation type, Algorithmic type, Interpolating, Pipelined, Time	interleaved A/D
converters, H	ligh performance A/D converters.	
Contact Peri	ade:	

REFERENCES:

Lecture: 45 Periods

1	Behzad Razavi, " Design of Analog CMOS Integrated circuits" , McGraw Hill Education, 2 nd edition, 2016.
2	David Johns, Ken Martin, " Analog Integrated circuit design" , Wiley, 2 nd edition, 2013.
3	Paul R. Gray, Paul J.Hurst, Stephen H.Lewis, and Robert G. Meyer, "Analysis and Design of Analog Integrated
	circuits", Wiley, 5th edition, 2009.
4	R. Jacob Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley, 3 rd edition, 2010.

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

COUR	COURSE OUTCOMES:	
Upon	Upon completion of the course, the students will be able to:	
		Mapped
CO1	Explain and analyze the MOS device models for different configurations.	КЗ
CO2	Design various MOS amplifiers and Current mirror circuits,	K4
CO3	Discuss the effects of frequency on MOS amplifier characteristics	К3
CO4	Discuss the effects of feedback and noise in CMOS Operational amplifiers and explain	K2
	the operation of PLL	
CO5	Reproduce and explain the operation of various Nyquist rate data converters	K2

COURSE ARTICULA	ATION MATRIX	K				
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	1	-	1	-	1
CO2	3	1	-	1	-	1
CO3	3	1	2000	1	-	1
CO4	3	1	2235	1	-	1
CO5	3	1		1	-	1
23AEPE06	3	1	X	1	-	1
1 – Slight, 2 – Modei	rate, 3 – Substa	ntial	(23)			

1 3 2

ASSESSMENT PATTI	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remember ing (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	30%	20%			100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	30%	20%			100%
ESE	30%	30%	20%	20%			100%

23AEPE07	EMI AND COMPATIBILITY	SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	The students will be able to gain broad conceptual understanding of the variable.	ious						
Objective	aspects of electromagnetic (EM) interference and compatibility							
UNIT – I	INTRODUCTION & SOURCES OF EM INTERFERENCE	9 Periods						
Introduction - C	lassification of sources - Natural sources - Man-made sources - Survey of the	·						
electromagnetic	environment.							
UNIT - II	EM SHIELDING	9 Periods						
Introduction - S	hielding effectiveness - Far-field sources - Near-field sources - Low-frequency,	magnetic						
field shielding - 1	Effects of apertures							
UNIT – III	INTERFERENCE CONTROL TECHNIQUES	9 Periods						
Equipment scre	ening - Cable screening - grounding - Power-line filters - Isolation - Balancing -	Signal-line						
filters - Nonlinea	r protective devices.							
UNIT – IV	EMC STANDARDS, MEASUREMENTS AND TESTING	9 Periods						
Need for standar	ds - The international framework - Human exposure limits to EM fields –EMC measur	ement						
techniques - Mea	surement tools - Test environments.							
UNIT – V	EMC CONSIDERATIONS IN WIRELESS AND BROADBAND	9 Periods						
	TECHNOLOGIES							
Efficient use of	frequency spectrum - EMC, interoperability and coexistence - Specifications an	d alliances -						
Transmission of	high-frequency signals over telephone and power networks - EMC and digital subs	criber lines -						
EMC and power l	ine telecommunications.							
Contact Periods	:							
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	Christopoulos C, Principles and Techniques of Electromagnetic Compatibility , CRC Press, Second Edition,
1	Indian Edition, 2013.
2	Paul C R, Introduction to Electromagnetic Compatibility, Wiley India, Second Edition, 2008.
3	Kodali V P, Engineering Electromagnetic Compatibility , Wiley India, Second Edition,2010.
4	Henry W Ott, Electromagnetic Compatibility Engineering , John Wiley & Sons Inc,Newyork,2009.
_	Scott Bennett W, Control and Measurement of Unintentional Electromagnetic Radiation, JohnWiley
5	& Sons Inc., Wiley Interscience Series, 2007.

COURSE OUT	COURSE OUTCOMES:	
Upon completion	Upon completion of the course, students will be able to/have:	
CO1	Discuss the various sources of electromagnetic interference	К2
CO2	Explain the EMI mitigation techniques of shielding and grounding	K2
CO3	Recall the controlling mechanism of electro-magnetic interference.	К2
CO4	Explain the need for standards and EMC measurement methods	K2
CO5	Discuss about the EM compliance considerations in wireless systems.	K2

COs/POs	P01	P02	PO3	P04	PO5	P06
CO1	3	1	-	1	-	1
CO2	3	1	-	1	-	1
CO3	3	1	-	1	-	1
CO4	3	1	provide pulsaria.	1	-	1
CO5	3	1	722765330	1	-	1
23AEPE07	3	1	William Control	1	-	1
1 – Slight, 2 – Mod	erate, 3 – Subs	tantial	7/			

ASSESSMENT P	PATTERN – T	HEORY	3	1			
Test / Bloom's	Rememb ering	Understan ding (K2)	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*	(K1) %	%					
CAT1	50%	50%					100%
CAT2	50%	50%					100%
Individual	50%	50%					100%
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual	50%	50%					100%
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE	50%	50%					100%

23AEPE08	ADVANCED COMMUNICATION SYSTEMS	SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
Digital Communication, Wireless Communication	PE	3	0	0	3

Course	To acquire Imperulades about the univeless abound above storistics	Dirrogaity to abnique			
	To acquire knowledge about the wireless channel characteristics, Marries MIMO Million to Warre Communication P2D and 5 Communication.	Diversity techniques,			
Objective	Massive MIMO, Millimeter Wave Communication, D2D and 5G.				
UNIT – I	WIRELESS CHANNELS	9 Periods			
Radio wave propagation, Physical modeling for wireless channels, Path loss and Shadowing, outage probability					
under path loss ar	nd shadowing, time and frequency coherence, Statistical multipath channe	l models, narrowband			
fading models, wi	deband fading models, Discrete-time model, Space-time channel models.				
UNIT – II	MIMO DIVERSITY AND SPATIAL MULTIPLEXING	9 Periods			
Sources and types	of diversity, analysis under Rayleigh fading, Diversity and channel know	wledge. Alamouti space			
time code. MIMO s	patial multiplexing: Space time receivers, ML, ZF, MMSE and Spheredecodin	ng, BLAST receivers and			
Diversity multiple:	xing trade - off.				
UNIT – III	MASSIVE MIMO SYSTEM	9 Periods			
Introduction - MI	MO for LTE, capacity of massive MIMO, Pilot Design for massive MIMO,	Resource allocation and			
transceivers desig	n, Base band and RF implementation, Channel Models.				
UNIT – IV	MILLIMETER WAVE COMMUNICATION AND	9 Periods			
	DEVICE-to-DEVICE COMMUNICATION				
Millimeter-wave (Communications - spectrum regulations, deployment scenarios, beam-fo	rming, physical layer			
techniques, interfe	erence and mobility management. Device-to-device (D2D) and machine	e-to-machine (M2M)			
type communicati	ons - Extension of 4G D2Dstandardization to 5G, radio resource man	agement for mobile			
broadband D2D,	multi-hop and multi-operator D2D communications.				
UNIT – V	TRANSMISSION AND DESIGN TECHNIQUES FOR 5G	9 Periods			
Basic requirement	s of transmission over 5G, Modulation Techniques – Orthogonal frequency	division multiplexing			
(OFDM), generalized frequency division multiplexing (GFDM), filter bank multi-carriers (FBMC) and universal					
filtered multi-carrier (UFMC), Multiple Accesses Techniques - orthogonal frequency division multiple accesses					
(OFDMA), generalized frequency division multiple accesses (GFDMA), non-orthogonal multiple accesses (NOMA).					
Contact Periods:					
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

- 1. Theodore S.Rappaport, Robert W.Heath, Robert C.Danials, James N.Murdock "Millimeter WaveWireless Communications", Prentice Hall Communications.
- 2. Hamid Jafarkhani, "Space Time Coding: Theory and Practices", Cambridge University Press2005.
- 3. Wei Xiang, Kan Zheng, Xuemin (Sherman) Shen, "5G Mobile Communications", Springer,2017.

4	David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press 2005
5	Afif Osseiran, Jose F. Monserrat and Patrick Marsch, - "5G Mobile and Wireles Communications Technology",
	CambridgeUniversity Press, 2016.
6	Athanasios G.Kanatos, Konstantina S.Nikita, Panagiotis Mathiopoulos, "New Directions inWireless
	Communication Systems from Mobile to 5G", CRC Press.
7	Keith Q. T. Zhang, " Wireless Communications: Principles, Theory and Methodology" JohnWiley & Sons,
	1st Edition, 2016.
8	Mischa Dohler, Jose F. Monserrat Afif Osseiran "5G Mobile and Wireless CommunicationTechnology",
	Cambridge University Press 2016.

COURSE	COURSE OUTCOMES:		
Upon co	Taxonomy Mapped		
CO1	To identify the various wireless channels	K2	
CO2	To apply various Diversity techniques in Wireless Communication	K2	
CO3	To differentiate MIMO and Massive MIMO concepts	K2	
CO4	To understand Device to device communication and millimeter wave communication	K2	
CO5	To understand the Design techniques to implement 5G	K2	

COURSE ARTICU	LATION MAT	RIX		7		
COs/POs	P01	P02	P03	P04	P05	P06
CO1	3		2	à -	-	1
CO2	3	- 933	2	ž -	-	1
CO3	3	- 000	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
23AEPE08	3	-	2	-	-	1
1 – Slight, 2 – Moder	rate, 3 – Substa	ntial			·	

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creatin	Total %
Category*	(K1) %	(K2) %	(K3)	(K4) %	(K5) %	g (K6)	
			%			%	
CAT1	50%	50%					100%
CAT2	50%	50%					
Individual	50%	50%					
/Assignment							
1/case							
study/seminar							
1/Project 1							
Individual	50%		50%				100%
/Assignment							
2/case							
study/seminar							
2/Project 2							
ESE	50%	50%	"32==a				100%

23AEPE09 MEMS AND NEMS SEMESTER II	
------------------------------------	--

PREREQUISITES	CATEGORY	L	T	P	С
Nil	PE	3	0	0	3

Course Objective

• To familiarize the concepts of fabrication process of Microsystems, micro sensors, Micro actuators and quantum mechanics and Nano systems.

UNIT - I OVERVIEW OF MEMS AND NEMS

9 Periods

New trends in Engineering and Science: Micro and Nanoscale systems, Introduction to Design of MEMS and NEMS, MEMS and NEMS – Applications, Devices and structures. Materials for MEMS: Silicon, silicon compounds, polymers, metals.

UNIT - II MEMS FABRICATION TECHNOLOGIES

9 Periods

Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect- Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential

packaging technologies, Selection of packaging materials

UNIT – III MICRO SENSORS

9 Periods

MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these Micro sensors. Case study: Piezo-resistive pressure sensor.

UNIT - IV MICRO ACTUATORS

9 Periods

Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators.

UNIT – V NANOSYSTEMS AND QUANTUM MECHANICS

9 Periods

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Schrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits .

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REF	REFERENCES:						
1	Chang Liu, "Foundations of MEMS" , Pearson education India limited, 2006.						
2	Marc Madou, "Fundamentals of Microfabrication", CRC press 1997.						
3	Sergey Edward Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures" CRCPress, 2002.						
4	Stephen D. Senturia, "Micro system Design", Kluwer Academic Publishers,2001						
5	Tai Ran Hsu ," MEMS and Microsystems Design and Manufacture" ,Tata Mcraw Hill, 2002.						

COURSE O	COURSE OUTCOMES:		
Upon com	Upon completion of the course, students will be able to/have:		
CO1	Explain MEMS, NEMS and its applications	K2	
CO2	Understand MEMS fabrication technologies	K2	
CO3	Acquire knowledge on micro sensors	K2	
CO4	Design micro actuators	К3	
CO5	Outline Nano systems and Quantum mechanics	К3	

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
CO1	3	-	2	-	-	1		
CO2	3	-	2	-	-	1		
CO3	3	-	2	-	-	1		
CO4	3		2			1		
CO5	3		2			1		
23AEPE09	3	-	2.	ion.	-	1		
1 – Slight, 2 – Moder	– Slight, 2 – Moderate, 3 – Substantial							

Test /	Remembe	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	ring	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*	(K1) %	4	1 8 1	3/4			
CAT1	50%	20%	30%				100%
CAT2	50%	20%	30%	287			100%
Individual	50%	40%	10%				100%
/Assignment							
1/case							
study/semin							
ar 1/Project							
1							
Individual	50%	25%	25%				100%
/Assignment							
2/case							
study/seminar							
2/Project 2							
ESE	50%	20%	30%				100%

22	AEI	111	\mathbf{a}
- / 3	AHF	/H I	.,
			··

SOFT COMPUTING AND OPTIMIZATION TECHNIQUES

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course Objective

 To gain knowledge in neural networks, fuzzy logic, genetic algorithm, neuro- fuzzy modeling and the various conventional optimization techniques

UNIT-I FUZZY LOGIC 9 Periods

Introduction to Fuzzy logic –Fuzzy sets and membership functions – Operations on Fuzzy sets-Fuzzy relations, rules, propositions, implications, and inferences – Defuzzification techniques -Fuzzy logic controller design-Some applications of Fuzzy logic.

UNIT -II ARTIFICIAL NEURAL NETWORKS

9 Periods

Supervised Learning: Introduction and how brain works, Neuron as a simple computing element, The perceptron, Back propagation networks: architecture, multilayer perceptron, back propagation learning-input layer, accelerated learning in multilayer perceptron, The Hopfield network, Bidirectional associative memories(BAM),RBF Neural Network. Unsupervised Learning: Hebbian Learning, Generalized Hebbian learning algorithm, Competitive learning, Self-Organizing Computational Maps: Kohonen Network.

UNIT -III GENETIC ALGORITHM

9 Periods

Genetic algorithm – Introduction – biological background –traditional optimization and search techniques-Genetic basic concepts- operators–Encoding scheme–Fitness evaluation– crossover - mutation-Travelling Salesman Problem, Particle swam optimization, Ant colony optimization.

UNIT -IV NEURO-FUZZY MODELING

9 Periods

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) – architecture - Coactive Neuro-Fuzzy Modeling, framework, neuron functions for adaptive networks–Data Clustering Algorithms–Rule base Structure Identification –Neuro-Fuzzy Control –the inverted pendulum system.

UNIT -V CONVENTIONAL OPTIMIZATION TECHNIQUES

9 Periods

Introduction to optimization techniques, Statement of an optimization problem, classification, Unconstrained optimization- gradient search method - Gradient of a function, steepest gradient-conjugate gradient, Newton's Method, Marquardt Method, Constrained optimization—sequential linear programming, Interior penalty function method, external penalty function method.

Contact Periods:

Lecture:45 Periods

Tutorial:0Periods

Practical:0Periods

Total:45 Periods

- 1. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995.
- 2. James A. Freeman and David. M. Skapura, "Neural Networks Algorithms, Applications and Programming Techniques", Pearson Edn., 2003.
- 3. S.Rajasekaran, G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications", PHI Learning Pvt.Ltd., 2017.
- 4. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.

- 5. Singiresu S. Rao, "Engineering optimization Theory and practice", John Wiley & sons, inc, Fourth Edition, 2009
- 6. J.S.R.Jang, C.T.Sunand, E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI/Pearson Education, 2004.
- 7. David. E.Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Addison wesley, 2009.

	COURSEOUTCOMES: Upon completion of the course, students will be able to/		
CO1	Understand Fuzzy logic concepts	Mapped K2	
CO2	Interpret the mathematical background of supervised learning and unsupervised learning in artificial neural networks	К3	
CO3	Understand the mathematical background of Genetic algorithm	K2	
CO4	Understand Neuro- fuzzy modeling	K2	
CO5	Solve Unconstrained optimization and constrained optimization problems	К3	

COs/POs	P01	P02	PO3	P04	P05	P06
CO1	3	- 75%	2	-	-	1
CO2	3	- 74	2	-	-	1
CO3	3	- 1	2	-	-	1
CO4	3	- 1	2	-	-	1
CO5	3	- 1/- 3	2	-	-	1
23AEPE10	3	- (1)	2	-	-	1

ASSESSMENT PATTERN - THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %				
Category*										
CAT1	40%	40%	20%				100%			
CAT2	40%	40%	20%				100%			
Individual		50%	50%				100%			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual		50%	50%				100%			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE	40%	40%	20%				100%			

23AEPE11	MODELING AND SYNTHESIS WITH HDL	SEMESTER III

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course Objective

• To understand the language features of Verilog HDL, levels of modeling and synthesis of combinational and sequential circuits in digital logic design.

UNIT - I INTRODUCTION TO LOGIC DESIGN WITH VERILOG

9 Periods

Overview of Digital Design with Verilog HDL - Hierarchical Modeling Concepts: Top-down and bottom-up design methodology, differences between modules and module instances, parts of a simulation, design block, stimulus block - Basic Concept- Modules and Ports: Module definition-port declaration-connecting portshierarchical name referencing. Tasks and Functions.

UNIT - II LEVELS OF MODELING

9 Periods

Gate Level Modeling: Modeling using basic Verilog gate primitives, description of and/or and buf/not type gates, rise, fall and turn-off delays, min, max, and typical delays. Dataflow Modeling: Continuous assignments, delay specification, expressions, operators, operands, operator types. Behavioral Modeling: Structured procedures, initial and always, blocking and nonblocking statements, delay control, generate statement, event control, conditional statements, multiway branching, loops, sequential and parallel blocks.

UNIT - III DESIGN OF DIGITAL LOGIC USING HDL

9 Periods

Design of combinational logic: adders-multiplexers, de-multiplexers, encoders and decoders-comparators-multipliers - Design of Sequential logic: Flip-flops-synchronous and Asynchronous counters-shift registers-Universal shift register-FSM and LFSR. (Using various Levels of Modeling).

UNIT - IV LOGIC SYNTHESIS AND DESIGN FLOW

9 Periods

Logic Synthesis with verilog HDL-Synthesis Design flow, RTL and Test Bench Modeling Techniques and Timing and Path Delay Modeling, Timing Checks, Switch Level Modeling.

UNIT - V PROGRAMMABLE LOGIC DEVICES

9 Periods

Programmable logic devices, storage devices, programmable logic array- programmable array logic-programmability of PLDs and CPLDs.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

1	Samir Palnitkar - Verilog HDL, 2nd edition, Pearson Education, 2003.
2	Michael D Ciletti - Advanced Digital Design with the VERILOG HDL, 2ND Edition,PHI, 2009.
3	Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.
4	Stephen Brown and Zvonko Vranesic - Fundamentals of Digital Logic with Verilog, 2ndEdition,
	TMH, 2008.
5	Charles H Roth Larry I. Kinney - Fundamentals of Logic Design 2015

COURSE	COURSE OUTCOMES:			
Upon co	Upon completion of the course, students will be able to/have:			
CO1	Knowledge on logic design with Verilog HDL	K2		
CO2	Explain different levels of modelling digital systems	K2		
CO3	Understand Design of combinational logic with HDL	К3		
CO4	Understand logic synthesis and design flow	К3		
CO5	Knowledge on programmable logic devises	K2		

COURSE ARTICULATION MATRIX:								
COs/POs	P01	P02	P03	P04	P05	P06		
CO1	2	2	-	-	-	-		
CO2	3	2	-	2	-	-		
CO3	3	2	-	2	-	-		
CO4	3	2	-	2	-	-		
CO5	2	2		-	-	-		
23AEPE11	2	2	16000000	2	-	-		
1 – Slight, 2 – Mode	rate, 3 – Sub	stantial		5000		•		

Singing 2 Moun	crate, 5 – Substar	itiai	Section of the last of the las	6			
		7	T.	(
ASSESSMENT PA	ATTERN - THEO	RY	:	1			
Test / Bloom's	Remembering	Understandi	Applying	Analyzing	Evaluating	Creating	Total %
Category*	(K1) %	ng (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
CAT1	20%	40%	40%				100%
CAT2	20%	40%	40%				100%
Assignment 1	10%	40%	50%				100%
Assignment 2	10%	40%	50%				100%
Quiz1	30%	30%	40%				100%
Quiz 2	30%	30%	40%				100%
ESE	20%	40%	40%				100%

RF SYSTEM DESIGN SEMESTER III
RF SYSTEM DESIGN SEMESTER III

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	Upon completion of this course, the students will be familiar with:			
Course	 Issues with RF components and design of micro strip line, RF Filters, R 	F amplifiers, Low		
Objective	Noise Amplifiers, RF Oscillators, Mixers and RF Front end components.			
UNIT – I	RF ISSUES, MICROSTRIP LINE DESIGN	9 Periods		
Issues in RF system design - RF behavior of passive components: High Frequency Resistors - High Frequency				

Issues in RF system design - RF behavior of passive components: High Frequency Resistors - High Frequency Capacitors - High Frequency Inductors- Chip Resistors-Chip Capacitors-Surface Mounted Inductors- Micro strip Transmission line design -Short circuit transmission line - Open circuit transmission line-Quarter-wave Transmission Line-Sourced & Loaded Transmission Line-Scattering Parameters - Smith chart based Impedance Matching using Two-Discrete Components.

UNIT - II RF FILTER DESIGN

Basic Resonator and Filter configurations - Filter characteristics - Filter design based on Insertion Loss Method - Butterworth and Chebyshev filters - Prototype filter design and normalization - LPF, HPF, BPF and BSF - Filter Implementation - Kuroda's Identities - Micro strip realization of filters

UNIT - III RF AMPLIFIER DESIGN

9 Periods

9 Periods

Characteristics of RF Amplifiers – Transducer Power gain - Unilateral power gain - Available power gain - Stability - Stability Circles - Tests for unconditional stability - Single Stage Transistor Amplifier Design: Design for maximum gain, Design for constant gain & Low noise amplifier design.

UNIT - IV RF OSCILLATOR DESIGN

9 Periods

Basic Oscillator Model - Negative Resistance oscillator - Feedback oscillator design: Hartley, Colpiit's and Clapp Oscillators for RF Systems-High Frequency oscillator: Fixed frequency Oscillator - Voltage controlled oscillator.

UNIT - V MIXERS & RF FRONT END DESIGN

9 Periods

Mixers: Basic Characteristics of Mixers - Single Ended mixer design, Single Balanced Mixer - Double Balanced Mixer - Image Reject Mixer. RF Front End and Tuner building blocks- RF directional couplers and hybrid couplers - Complete RF Tuner design considerations.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFE	RENCES:
1	Reinhold Ludwig and Gene Bogdanov, "RF Circuit Design – Theory and Applications",Prentice Hall, 2009.
2	David M. Pozar, "Microwave Engineering", John Wiley and Sons, 2009.
3	David M. Pozar, "Microwave and RF Wireless Systems", Wiley, 2001.
4	Harvey Lehpamer, " Transmission System Design Handbook for Wireless Networks ", Artech House,
	2002.
5	Stephan A Mass, "Non-Linear Microwave and RF circuits", Artech House, Second Edition,2003.

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Explain issues of passive components at RF and analyze micro strip line	K2
CO2	Design RF filters for the filter configurations	К3
CO3	Design RF amplifiers for given specifications	К3
CO4	Design and explain various types of mixer circuits.	КЗ
CO5	Design and explain the RF front end components and mixers.	К3

COURSE AR	TICULATION M	ATRIX:				
COs/POs	P01	P02	PO3	P04	P05	P06
CO1	2	2	1	1	-	1
CO2	2	2	1	1	-	1
CO3	2	2	1	1	-	1
CO4	2	2	1	1	-	1
CO5	2	2	1	1	-	1
23AEPE12	2	2	0274	1	-	1
1 – Slight, 2 – M	loderate, 3 – Su	bstantial	WASHING.	200		•
				I		

ASSESSMENT	PATTERN - THE	ORY		9			
Test / Bloom's Category *	Remembering (K1)%	Understand ing (K2) %	Applyin g(K3) %	Analyzing (K4)%	Evaluatin g (K5) %	Creating (K6)%	Tota 1%
CAT1	20%	50%	30%				100 %
CAT2	20%	50%	30%				100
Individual /Assignme nt 1/case study/semi nar 1/Project 1	20%	50%	30%				100 %
Individual /Assignment 2/case study/seminar 2/Project 2	20%	50%	30%				100 %
ESE	20%	50%	30%				100 %

23AEPE13	ADVANCED COMPUTER ARCHITECTURE ANDPARALLEL	SEMESTER III
	PROCESSING	

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To understand the difference between the pipeline and parallel concerns.	epts, various					
Objective	types of architectures and the importance of scalable architectures, memories and						
	optimization of memory.						
UNIT - I	COMPUTER DESIGN AND PERFORMANCE MEASURES	9 Periods					
Fundamentals of	Computer Design - Parallel and Scalable Architectures - Multiprocessors - N	Multivector					
and SIMD archite	ctures – Multithreaded architectures – Data-flow architectures - Performance Mea	asures					
UNIT – II	PARALLEL PROCESSING, PIPELINING AND ILP	9 Periods					
Instruction Level	Parallelism and Its Exploitation - Concepts and Challenges - Overcoming DataHa	azards with					
Dynamic Schedul	ing – Dynamic Branch Prediction - Speculation - Multiple Issue Processors - Per	formance					
and Efficiency in A	Advanced Multiple Issue Processors						
UNIT – III	MEMORY HIERARCHY DESIGN	9 Periods					
Memory Hierarch	y - Memory Technology and Optimizations - Cache memory - Optimizations of C	ache					
Performance - Me	emory Protection and Virtual Memory - Design of Memory Hierarchies						
UNIT – IV	MULTIPROCESSORS	9 Periods					
Symmetric and d	istributed shared memory architectures – Cache coherence issues - Performa	nce Issues –					
Synchronization	ssues – Models of Memory Consistency - Interconnection networks – Buses, o	crossbar and					
multi-stage switch	nes.						
UNIT - V	MULTI-CORE ARCHITECTURES	9 Periods					
Software and har	dware multithreading - SMT and CMP architectures - Design issues - Cases	studies –					
Intel Multi-core a	rchitecture – SUN CMP architecture – IBM cell architecture – hp architecture.						
Contact Periods :							
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

Kai Hwang, "Advanced Computer Architecture", McGraw Hill International, 2001.
 William Stallings, "Computer Organization and Architecture - Designing for Performance", Pearson Education, Seventh Edition, 2006.
 John P. Hayes, "Computer Architecture and Organization", McGraw Hill.
 John L. Hennessey and David A. Patterson, "Computer Architecture - A quantitative approach", Morgan Kaufmann / Elsevier, 4th. edition, 2007.

COUR	SE OUTCOMES:	Bloom's Taxonomy
		Mapped
Upon	completion of the course, the students will be able to:	
CO1	Understand the Computer design and its performance measures.	K2
CO2	Discuss the limitations and Applications of ILP.	К3
CO3	Identify issues related to memory hierarchy and suggest solutions	K2
CO4	Understand the different multiprocessor and its real time applications	K2
CO5	Illustrate various techniques used in multicore architecture	K2

COURSE ARTICULATION		1	1	T	ı	1
COs/POs	P01	PO2	PO3	P04	PO5	P06
CO1	3	1	-	3	-	1
CO2	3	1	-	3	-	1
CO3	3	1	-	3	-	2
CO4	3	1	-	3	-	2
CO5	3	1	-	3	-	2
23AEPE13	3	1	-	3	-	2
l – Slight, 2 – Moderate, 3 –	Substantial	0.00	44			•
		744-55	16555			
		940 Sec.				

ASSESSMENT	PATTERN - THE	ORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*				, , .	(1) / 10		70
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual /Assignmen t 1/case study/semi nar 1/Project 1		50%	50%				100%
Individual /Assignment 2/case study/seminar 2/Project 2		50%	50%				100%
ESE	40%	40%	20%				100%

23AEPE14	EMBEDDED PROCESSORS	SEMESTER III
201121 221	ENDED DED I NO GEOGRAG	

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To learn the basic concepts of MSP430 microcontroller and inter-	rfacingconcepts and		
Objective	also ARM processor and its instruction set.			
UNIT – I	EMBEDDED SOFTWARE TOOLS	9 Periods		
Software develop	ment tools- editor, assembler, compiler, cross-compiler and simulator, Har	dware development		
tools- developme	nt board, device programmer, in-circuit emulator and debuggers. Embedo	led C Programming,		
	riables, data type modifiers, storage Class modifiers, C statements, structures, in-line assembly programming, optimizing and testing embedded C pro	=		
UNIT - II	MSP430 CONTROLLER	9 Periods		
MSP430 - Intro	duction to Architecture - Embedded C Programming in MSP430	- GPIO Pins &		
Configuration Tim	ers, Capture, & PWM DAC- ADCs –Memory System-Flash Memory-DMA.			
UNIT – III	INTERFACING WITH MSP430	9 Periods		
USCI Port -SPI me	ode - I2C Mode-UART Mode & RS232 Low Power Mode Operation- Interfa	acing- Input Devices-		
Output Devices-D	C Motor-Stepper Motor- Alarm interface- AC Devices.			
UNIT – IV	ARM PROCESSOR FUNDAMENTALS	9 Periods		
The RISC design	philosophy-ARM design philosophy-Embedded system hardware- A	MBA bus protocol,		
Embedded systen	n software-Applications-ARM core data flow model-Registers- CPSR- Pipe	line-Characteristics-		
ARM 3 stage Pipe	line and 5 stage Pipeline-ARM instruction execution- Exceptions, Interrup	ts and Vector Table.		
UNIT – V	ARM AND THUMB INSTRUCTION SET	9 Periods		
ARM Instruction-	Data processing instructions, Branch instructions, Load Store instructio	ns, SWI instruction-		
Loading Instructions-Conditional Execution. Thumb Instruction-Thumb Registers-ARM Thumb Interworking-				
Branch instruction, Data processing instruction, Single/multiple load store instruction, Stack instruction, SWI				
instruction.				
Contact Periods :				
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	3		

REFERENCE

1	Steven Barrett, Daniel Pack, "Microcontroller Programming and Interfacing TI MSP430, Part 1",
	Morgan and Claypool, 2011.
2	Brock J. LaMeres, "Embedded Systems Design Using the MSP430FR2355 LaunchPadTM", Springer International Publishing, 2020.
3	John H. Davies, "MSP430 Microcontrollers Basics", Elsevier Limited 2008.
4	Andrew N. Sloss Dominic Symes Chris Wright, "ARM System Developer's Guide Designing and Optimizing System Software", 1st edition Elsevier Inc 2010.
5	Steve Furber, "ARM system on chip architecture" , Second Edition, Pearson Education, 2015.

COURSE	OUTCOMES:	Bloom's
Upon con	pletion of the course, the students will be able to:	Taxonomy
		Mapped
C01	Interpret the various embedded software tools.	K2
CO2	Exploit the fundamental blocks of MSP430 microcontroller.	K2
CO3	Interface Peripherals with MSP430 microcontroller.	К3
CO4	Exploit the basic concepts of ARM processor.	K2
CO5	Summarize the ARM and THUMB instruction set.	К3

COs/POs	P01	P02	P03	P04	PO5	P06
CO1	3	1	2	2	1	
CO2	3	1	2	2	1	
CO3	3	1	2	2	1	
CO4	3	1	2	2	1	
CO5	3	1.25	2	2	1	
23AEPE14	3	1	2	2	1	

ASSESSMENT I	PATTERN - THEO	RY	SAME OF	70			
Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30%	30%	40%				100%
CAT2	30%	30%	40%				100%
Individual /Assignment 1/case study/semina r 1/Project 1	30%	30%	40%				100%
Individual /Assignment 2/case study/semina r 2/Project 2	20%	30%	50%				100%
ESE	30%	30%	40%				100%

23AEPE15	BIO-MEDICAL IMAGE PROCESSING	SEMESTER III
----------	------------------------------	--------------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	This course aims to provide an insight to the Medical imaging mo	dalities and
Objective	reconstruction techniques.	
UNIT - I	IMAGE CHARACTERISTICS AND QUALITY METRICS	9 Periods

Real and mental images -Reflected, transmitted and emitted light images-noise-Signal to Noise Ratio-Contrast Optimum contrast-Sharpness-Transfer functions-Resolution-line pairs and MTF. Image quality metrics for digital systems-Global parameter assessment, Spatial frequency assessment, Image processing assessment, Observer assessment.

UNIT – II RADIOGRAPHIC IMAGE

9 Periods

Unsharpness-Geomentric, photographic, motional-identifying the causes of Unsharpness-Over and under penetration-Radiographic contrast -fogging-Graininess-mottle-Image artefacts-Distortion- foreshortening-elongation- Double images Image subtraction techniques-Digital subtraction.

UNIT – III TOMOGRAPHIC IMAGING

9 Periods

Over view of Computerized tomography as an image device-Scanner design-Reconstruction techniques-Reconstruction techniques-CT image quality-Other artefacts in CT-Multislice CT-CT Scanner Performance.

UNIT – IV MAGNETIC RESONANCE IMAGING

9 Periods

Basic principles of Magnetic Resonance Imaging-Block diagram of MR Scanner components- Common artefacts-image reconstruction-imaging equations-image quality-Resolution-Noise-Signal to Noise Ratio-Artefacts-Functional MRI.

UNIT - V 3D ULTRASOUND IMAGING

9 Periods

Limitations of 3D Ultrasound imaging-3D Ultrasound scanning techniques-Reconstruction and 3D Ultrasound images-effects of errors in 3D image reconstruction-Viewing of 3D Ultrasound images- 3-D Ultrasound system performance.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Richard L. Van Metter, Jacob Beutel, Harold L. Kundel, "Handbook of Medical Imaging, Volume"
 1. Physics and Psychophysics, SPIE, 2000.
- 2 | Chesney D. N., Chesney M. O. "Radio graphic imaging", CBS Publications, New Delhi, 1989
- 3 Donald W. McRobbice, Elizabeth A. Moore, Martin J. Grave and Martin R. **Prince "MRI from Picture to proton"**, Cambridge University press, second edition, New York 2007.
- 4 Frederick W Kremkau," **Diagnostic Ultrasound Principles & Instruments**", Saunders Elsevier,2005.
- 5 Jerry L. Prince, Jnathan M. Links, "Medical Imaging Signals and Systems"- Pearson Education Inc. 2014.
- 6 Peggy, W., Roger D. Ferimarch, "**MRI for Technologists**", McGraw Hill, New York, second edition, 2000.

COURSE O Upon comp	Bloom's Taxonomy Mapped	
CO1	Assess the characteristics and quality of the image.	K2
CO2	Demonstrate Principles of Radiography.	K2
CO3	Explain the image acquisition using CT.	КЗ
CO4	Demonstrate the applications of magnetic field in the field of medicine.	К3
CO5	Explain the principles of 3D Ultrasound imaging.	КЗ

COURSE ARTICULATION MATRIX:								
COs/POs	P01	P02	P03	P04	P05	P06		
CO1	3	1	2	2	1	-		
CO2	3	1	2	2	1	-		
CO3	3	1	2	2	1	-		
CO4	3	1	2	2	1	-		
CO5	3	1	2	2	1	-		
23AEPE15	3	1	2	2	1	-		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT I	PATTERN - THEO	1000	10				
Test / Bloom's	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		22	Sec. 19	28			
CAT1	30%	50%	20%				100%
CAT2	30%	50%	20%				100%
Individual /Assignment 1/case study/semina r 1/Project 1	30%	50%	20%				100%
Individual /Assignment 2/case study/semina r 2/Project 2	30%	50%	20%				100%
ESE	30%	50%	20%				100%

T

23AEPE16	LOW POWER IC DESIGN	
Z3AEPE10	(Common to Applied Electronics & VLSI Design)	SEMESTER IV

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To acquire knowledge in low power CMOS designs and optimization.					
Objective						
UNIT – I	INTRODUCTION TO LOW POWER DESIGN	9 Periods				
Physics of Powe	er Dissipation in CMOS FET Devices-Sources of power consumptionBasic Prir	iciples of Low				
Power Design.	Sources of Power dissipation in Ultra Deep Submicron CMOS Circuits – Static,	Dynamic and				
Short circuit co	omponents Effects of scaling on power consumption- Low power design flow	- Normalized				
Figure of Merit	– PDP& EDP.					
UNIT – II	POWER DISSIPATION IN CMOS	9 Periods				
SPICE circuit si	mulation-Gate level Analysis, Architecture level Analysis, Data Correlation Ana	alysis, Monte-				
	on, Probabilistic Power Analysis. Statistical Techniques - Estimation of Glitc	-				
	ysis - Circuit Reliability - Power Estimation at the circuit level - High level Powe	_				
=	eory based approaches - Estimation of maximum power.					
UNIT – III	7	O Dorioda				
	POWER OPTIMIZATION TECHNIQUES	9 Periods				
	- Transistor and Gate Sizing, Equivalent Pin Ordering, Network Restr	_				
_	Special Latches and Flip Flops, Low Power Digital Cell Library, Adjustable Dev	ice Threshold				
	e current in deep sub micrometer transistors.					
UNIT – IV	SPECIAL TECHNIQUES	9 Periods				
_	cation, Signal Gating, Logic Encoding, State Machine Encoding, Precomput	_				
	nd System Level – Power and Performance Management, Switching Activi	=				
Parallel Archite	cture with Voltage Reduction, Flow Graph Transformation. Advanced Technique	ues- Adiabatic				
Computation, F	ass Transistor Logic Synthesis, Asynchronous Circuits, Low power bus – lo	w swing bus,				
charge recycling	charge recycling bus, delay balancing.					
UNIT – V	LOW POWER MEMORIES	9 Periods				
Basics of ROM,	Low power ROM Technology, Basics of SRAM-Memory Cell-Low Power SRAM	Technology-				
Precharge and	Equalization Circuit-Basics of DRAM-Low Power DRAM Technology. Convent	ional BiCMOS				
Logic- BiCMOS	Logic Family-Low Voltage BiCMOS Logic family-Low Voltage BiCMOS Application	ıs.				
Contact Domina	le:					
Contact Period						

1	Kaushik Roy and Sharat C Prasad ," Low Power CMOS VLSI circuit Design ", John Wiley and Sons, 2010.				
2	Soudris, Dimitrios, Christrian Pignet, Goutis, Costas, "Designing CMOS circuits for low power",				
	Springer US, First Edition, 2011.				
3	Gary B Yeap K, "Practical Low Power Digital VLSI Design", Springer US, First Edition 2010.				
4	AjitPal , "Low Power VLSI circuits and Systems", Springer India, First Edition, 2014.				
5	Jan M.Rabaey, Massoud Pedram, "Low power Design methodologies", SpringerUS, First Edition, 2014.				

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

	OURSE OUTCOMES: Upon completion of the course, the students will be able to:		
CO1	Understand low power design in CMOS	K2	
CO2	Analyze various sources of power dissipation in CMOS circuits	K2	
CO3	Reduce the power consumption by optimizing the circuit structures	К3	
CO4	Design CMOS low power circuits using various special techniques.	КЗ	
CO5	Understand low power memories	K2	

COs/POs	P01	P02	P03	P04	P05	P06
CO1	3	1	3	-	-	1
CO2	3	1	3	-	-	1
CO3	3	1	1	-	-	1
CO4	3	1	1	-	-	1
CO5	3	1	1	-	-	1
23AEPE16	3	1	3	-	-	1
1 – Slight, 2 – Mode	erate, 3 – Subs	tantial	A Rema			

ASSESSMENT PA	ATTERN - THE	EORY	1	in the second			
Test / Bloom's Category*	Remember ing (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creati ng (K6) %	Total %
CAT1	40%	40%	20%	4			100%
CAT2	40%	40%	20%	3			100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	40%	40%	20%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40%	40%	20%				100%
ESE	40%	40%	20%				100%

23AEPE17

VLSI SIGNAL PROCESSING

(Common to Applied Electronics & VLSI Design)

SEMESTER IV

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To increase the performance of the DSP systems in terms of power consumption,				
Objective	speed and area				
UNIT – I	INTRODUCTION TO DSP SYSTEMS, PIPELINING AND PARALLEL	9 Periods			
	PROCESSING OF FIRFILTERS				

Introduction to DSP systems - Typical DSP algorithms, Data flow and Dependence graphs - Critical path-Loop bound- Iteration bound, Longest path matrix algorithm, Pipelining and Parallel processing of FIR filters, Pipelining and Parallel processing for low power.

UNIT - II RETIMING, ALGORITHMIC STRENGTH REDUCTION, RANK ORDER 9 Periods FILTERS

Retiming – Definitions and properties, Unfolding – An algorithm for Unfolding- properties of unfolding-Sample period reduction and parallel processing application, Systolic Architecture Design-Algorithmic strength reduction in filters and transforms – 2-parallel FIR filter, 2-parallel fast FIR filter, DCT architecture, Rank-order filters, Odd- Even merge-sort architecture, Parallel rank-order filters

UNIT - III FAST CONVOLUTION, PIPELINING AND PARALLEL PROCESSING OF IIR FILTERS. 9 Periods

Fast convolution – Cook-Toom algorithm, modified Cook-Toom algorithm, Pipelined and parallel recursive filters, Look-Ahead pipelining in first-order IIR filters, Look-Ahead pipelining with power-of- 2 decomposition, Clustered look-ahead pipelining, Parallel processing of IIR filters, Combined pipelining and parallel processing of IIR filters- Low-power IIR Filter design using pipelining and parallel processing-Pipelined Adaptive digital filters.

UNIT - IV BIT-LEVEL ARITHMETIC ARCHITECTURES 9 Periods

Scaling and Round off Noise Computations -Bit-level arithmetic architectures – parallel multipliers with sign extension, parallel carry-ripple and carry-save multipliers, Design of Lyon's bit-serial multipliers using Horner's rule, bit-serial FIR filter, CSD representation, CSD multiplication using Horner's rule for precision improvement, Distributed Arithmetic fundamentals and FIR filters.

UNIT - V NUMERICAL STRENGTH REDUCTION, CLOCKING STYLES, SYNCHRONOUS, ASYNCHRONOUS AND WAVE PIPELINING 9 Periods

Numerical strength reduction – subexpression elimination - multiple constant multiplication- iterative matching, synchronous pipelining and clocking styles - clock skew in edge-triggered single phase clocking, two-phase clocking, wave pipelining, Asynchronous pipelining, Programmable Digital signal processors.

Contact Periods:

Lecture: 45 Periods Tutorial: - 0 Periods Practical: -0 Periods Total: 45 Periods

1	Keshab K. Parhi, " VLSI Digital Signal Processing Systems, Design and implementation ", Wiley,
	Interscience, 2007.
2	U. Meyer – Baese, " Digital Signal Processing with Field Programmable Gate Arrays", Springer,

3	Kung S. Y, H. J. While House, T. Kailath, "VLSI and Modern Signal Processing", Prentice				
	Hall,1985.				
4	Jose E. France, Yannis Tsividis" Design of Analog - Digital VLSI Circuits for Telecommunications and				
	Signal Processing", Prentice Hall, 1994.				
5	Medisetti V. K, "VLSI Digital Signal Processing", IEEE Press (NY), USA,1995.				

COURSE Upon con	Bloom's Taxonomy Mapped	
CO1	Increase the performance of the FIR filter structures in terms of	К3
	power consumption, speed and area.	
CO2	Reduce the complexity of DSP algorithms in VLSI hardware.	К3
CO3	Increase the performance of the IIR filter structures in terms of	К3
	power consumption, speed and area.	
CO4	Improve the performance of bit level architectures in DSP systems.	K2
CO5	Understand clocking styles, wave pipelining and complexity	K1
	reduction in computations.	

COs/POs	P01	P02	P03	P04	P05	P06
CO1	2	3	W. S.	1	-	-
CO2	2	3	7	7 1	-	-
CO3	2	3	1	1	-	-
CO4	2	3	7 7(383)	1	-	-
CO5	2	1	9 -	-	-	-
23AEPE17	2	3	1 1/2	1	-	-
1 – Slight, 2 – Mo	oderate, 3 – Su	bstantial		9)		

ASSESSMENT P	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remember ing (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	40%	40%				100%
CAT2	20%	40%	40%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	20%	40%	40%				100%

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To Design and acquire knowledge on principles of ASIC design flow	r. fundamentals of
Objective	logic cells and concepts of various programming technology, high	
Objective	synthesis and ASIC Construction.	
UNIT – I	FUNDAMENTALS OF ASICs, CMOS LOGIC AND ASIC LIBRARY DESIGN	9 Periods
		2 2 0110 010
Types of ASICs	- Design flow-CMOS Transistors CMOS Design Rules - Combinational Logic	: Cell - Sequentia
Logic cell - Dat	a path Logic Cell -Transistors as Resistors -Transistor Parasitic Capacitanc	e -Logical effort
Library Cell Des	sign-Library Architecture.	
UNIT – II	PROGRAMMABLE ASICs	9 Periods
Anti fuse - Stati	c RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - X	Kilinx LCA - Altera
FLEX - Altera M	AX DC and AC inputs and outputs - Clock and Power inputs - Xilinx I/O block	S.
UNIT - III	PROGRAMMABLE ASIC INTERCONNECT, DESIGN SOFTWARE AND	9 Periods
	LOW LEVEL DESIGN ENTRY	
Actel ACT - Xili	nx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Alte	era FLEX - Desigi
Systems - Logic	: Synthesis - Half gate ASIC - Schematic entry - Low level design language -	PLA tools - EDIF
CFI design repr	esentation.	
UNIT – IV	LOGIC SYNTHESIS - SIMULATION AND TESTING	9 Periods
Verilog and Log	gic Synthesis -VHDL and Logic Synthesis - Types of Simulation - Boundary	Scan Test - Faul
simulation - Au	tomatic Test Pattern Generation.	
UNIT – V	ASIC CONSTRUCTION	9 Periods
System partitio	n - FPGA partitioning - Partitioning methods - Floor planning - placement	- Physical Desig
Flow - Global Ro	outing - Detailed Routing - Special Routing - Circuit extraction – DRC.	
Contact Period	lç,	
Contact I errou	i.i.	

1	Smith M.J.S.,"Application Specific Integrated Circuits", Addison, Wesley Longman Inc., 1997.
2	Farzad Nekoogar and Faranak Nekoogar, "From ASICs to SoCs - A Practical Approach", Prentice Hall, 2003.
3	Wayne Wolf, " FPGA-Based System Design ", Prentice Hall, 2004.
4	Rajsuman R., "System-on-a-Chip Design and Test", Santa Clara, CA, Artech House Publishers, 2000.
5	Nekoogar F., " Timing Verification of Application-Specific Integrated Circuits ", Prentice Hall, 1999

	Upon completion of the course, the students will be able to:		
C01	Design sequential and combinational logic cells and analyze Programmable ASICs	K2	
CO2	Explain the memory technologies and architecture of Programmable ASIC s.	K2	
CO3	Understand the ASIC interconnects and design entry.	К3	
CO4	Explain and execute the Logic synthesis of ASIC	К3	
CO5	Construct an ASIC using the described methods.	К3	

COURSE ARTICULA	TION MATR	IX				
COs/POs	P01	PO2	PO3	P04	P05	P06
CO1	3	3	-	1	-	2
CO2	3	3	-	1	-	2
CO3	3	3	-	2	-	2
CO4	3	3	-	2	-	2
CO5	3	3	-	1	-	2
23AEPE18	3	3	-	1		2
		1 – Slight, 2 – l	Moderate, 3 – S	ubstantial		

ASSESSMENT P	ATTERN - THE	ORY	all o Dame	0			
Test / Bloom's	Remember ing (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*			X				
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%	3			100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	40%	40%	20%				100%

23AEPE19	REAL TIME OPERATING SYSTEM	SEMESTER IV
----------	----------------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	С
Operating System.	PE	3	0	0	3

Course	The students will be able to acquire knowledge about the basic concepts.	of Real time		
Objective	Operating System, various uniprocessor and multiprocessor scheduling n	nechanisms and		
	Real time communication protocols and databases.			
UNIT – I	INTRODUCTION TO REAL TIME OPERATING	9 Periods		
	SYSTEM			
Introduction to Real time computing Concepts, Example of real time applications-Structure of a real				
time system-Cl	naracterization of real time systems and tasks- Hard and Soft timing con	nstraints -Design		
challenges- Pe	erformance metrics -Prediction of Execution time: Source code an	alysis, Micro -		
architecture le	vel analysis, Cache and pipeline issues –Programming Languages for Rea	al -Time System.		
UNIT – II	REVIEW OF RTOS	9 Periods		
Real time OS	-Threads and Tasks-Structure of Microkernel-Time Services-Schedul	ing Mechanisms		
Communication	n and Synchronization-Event Notification and Software interrupt.			
UNIT – III	TASK SCHEDULING AND ALGORITHMS	9 Periods		
Task assignme	ent and Scheduling -Task allocation algorithms- Single processor a	nd Multiprocessor		
task scheduling	g- Clock driven and Priority based scheduling algorithms –Fault tolerant Sc	heduling.		
UNIT – IV	REAL TIME PROTOCOLS	9 Periods		
Real Time Com	munication Network-Topologies and architecture issues-protocols-conten	ision based,		
token based, p	olled bus, deadline-based protocol, Fault tolerant routing.RTP and RTCP.			
UNIT – V	REAL TIME DATABASES	9 Periods		
Real time Dat	cabases-Transaction priorities-Concurrency control issues-Disk sched	luling algorithms-		
Two phase app	roach to improve predictability			
Contact Period	ds:			
Lecture: 45 Po	eriods Tutorial:0 Periods Practical: 0Periods Total: 45 Perio	ods		

1	Jane W.S. Liu, "Real Time Operating Systems", Pearson Education India, 2000.
2	Philip A. Laplante and Seppo J. Ovaska, "Real Time Operating Systems Design and
	Analysis: Tools for the Practitioner" IV Edition IEEE Press, Wiley. 2013.
3	C.M. Krishna, Kang G. Shin – "Real Time Operating Systems" , International Edition,
	McGraw Hill Companies, Inc., New York, 2013
4	Abraham Silberschatz, Peter B. Galvin, Greg Gagre, "Operating System concepts", 8thedition,
	Wiley, 2008.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
CO1	Explain various real time operating system and its design challenges.	K2		
CO2	Reproduce and explain the operation of various threads and Tasks	K2		
CO3	Design and analyze various real time task scheduling algorithms.	К3		
CO4	Illustrate the different real time communication protocols.	K2		
CO5	Describe the concept of real time database.	K2		

COs/POs	P01	PO2	P03	P04	P05	P06
CO1	2	-	3	1	-	-
CO2	2	-	3	1	-	-
CO3	2	-	3	1	-	-
CO4	2	-	3	1	-	-
CO5	2	-	3	1	-	-
23AEPE19	2	-	3	1	-	-
1 – Slight, 2 – Mo	derate, 3 – Subs	stantial	T. B.	ico.		
		80		(3)		
			No.	9		

ASSESSMENT I	PATTERN – T	HEORY	YOUN				
Test / Bloom's Category*	Remembe ring (K1) %	Understandi ng (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creati ng (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	30%	40%	30%				100%

23AEPE20	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	PE	3	0	0	3

Course Objective

• Study heuristic search techniques, Machine Learning, supervised and deep learning algorithms

UNIT - I PROBLEM SOLVING

9 Periods

Introduction to AI - AI Applications - Problem solving agents - search algorithms - uninformed search strategies - Heuristic search strategies - Local search and optimization problems -adversarial search - constraint satisfaction problems (CSP).

UNIT - II PROBABILISTIC REASONING

9 Period

Acting under uncertainty – Bayesian inference – naïve bayes models. Probabilistic reasoning – Bayesian networks – exact inference in BN – approximate inference in BN – causal networks.

UNIT – III SUPERVISED LEARNING

9 Periods

Introduction to machine learning – Linear Regression Models: Least squares, single & multiple variables, Bayesian linear regression, gradient descent, Linear Classification Models: Discriminant function – Probabilistic discriminative model - Logistic regression, Probabilistic generative model - Naive Bayes, Maximum margin classifier – Support vector machine, Decision Tree, Random forests.

UNIT - IV ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

9 Periods

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting, stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and Expectation maximization.

UNIT - V NEURAL NETWORKS

9 Periods

Perceptron - Multilayer perceptron, activation functions, network training - gradient descent optimization - stochastic gradient descent, error backpropagation, from shallow networks to deep networks -Unit saturation (aka the vanishing gradient problem) - ReLU, hyperparameter tuning, batch normalization, regularization, dropout.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

1	Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", Pearson
	Education,2007
2	Stuart Russell and Peter Norvig, "Artificial Intelligence - A Modern Approach", FourthEdition,
	Pearson Education, 2021.
3	Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008
4	Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006
5	Deepak Khemani, "Artificial Intelligence", Tata McGraw Hill Education, 2013(http://nptel.ac.in/)
6	Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
7	Tom Mitchell, " Machine Learning ", McGraw Hill, 3rd Edition,1997.

8	Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014
9	Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of MachineLearning",
	MIT Press, 2012.
10	Ian Goodfellow, Yoshua Bengio, Aaron Courville, " Deep Learning ", MIT Press, 2016

	SE OUTCOMES: completion of the course, students will be able to/have:	Bloom's Taxonomy Mapped
CO1	Use appropriate search algorithms for problem solving	K2
CO2	Apply reasoning under uncertainty	K2
CO3	Build supervised learning models	K2
CO4	Build ensembling and unsupervised models	К3
CO5	Build deep learning neural network models	K2

COs/POs	P01	P02	P03	PO4	P05	P06
CO1	2	-	3	1	-	-
CO2	2		3	1	-	-
CO3	2	- 75%	3	S 1	-	-
CO4	2	- 7	3	1	-	-
CO5	2	- 1	3	1	-	-
23AEPE20	2	- 10	3	1	-	-

ASSESSMENT P	ATTERN – THI	EORY					
Test / Bloom's	Remember ing (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	30%	30%	40%				100%

22650501	BUILDING BYE-LAWS AND CODES OF PRACTICE
23SE0E01	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	 To impart knowledge on the building bye –laws and to empha 	isize the
Objective	significance of codes of practice in construction sector.	
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods
Introduction t	o Building Bye Laws and regulation, their need and relevance, General	definitions such
as building he	eight, building line, FAR, Ground Coverage, set back line. Introduction	n to Master Plan
and understar	nding various land uses like institutional, residential etc Terminolo	ogies of Building
bye-laws.		
UNIT – II	ROLE OF STATUTORY BODIES	9 Periods
Role of variou	s statutory bodies governing building works like development autho	rities, municipal
corporations	etc. Local Planning Authority, Town and Country planning organisa	tion, Ministry of
urban develop	oment.	-
UNIT – III	APPLICATION OF BUILDING BYE-LAWS	9 Periods
Interpretation	of information given in bye laws including ongoing changes as sh	nown in various
annexure and	appendices. Application of Bye-laws like structural safety, fire safety	fety, earthquake
safety, baseme	ent, electricity, water, and communication lines in various building type	es.
UNIT – IV	INTRODUCTION TO CODES OF PRACTICE	9 Periods
Introduction t	o various building codes in professional practice - Codes, regulations	to protect public
health, safety	and welfare - Codes, regulations to ensure compliance with the local a	uthority.
UNIT – V	APPLICATION OF CODES OF PRACTICE	9 Periods
Applications of	f various codes as per various building types. Bureau of Indian Standa	ards, Eurocode –
Introduction t	o other international codes.	
Contact Perio	ods:	
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total	: 45 Periods

1	"National Building Code of India 2016 - SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) - 2016", Town and Country Planning Organization, Ministry
	of Housing and Urban Affairs, Government of India.
3	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the building bye-laws in planning, design and construction works.	К3
CO2	Familiarize with the role of various statutory bodies.	K2
CO3	Execute safety related work practices in the construction sector.	К3
CO4	Ensure compliance with the rules and regulations in design and construction	К3
	practices.	
CO5	Perform design and construction practices based on national and	К3
	international codal provisions.	

COURSE ARTICULATION	ON MATRIX					
COs/POs	P01	P02	PO3	P04	P05	P06
CO1	1	3	1	1	2	3
CO2	1	3	1	1	2	3
CO3	1	3	1	1	2	3
CO4	2	3	1	1	2	3
CO5	2	3	1	1	2	3
23SEOE01	2	3	1	1	2	3
1 - Slight, 2 - Moderate	, 3 – Substantia	l				

ASSESSMENT PAT	TERN - THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /			James A.				
Case Study 1/		9,575	1				
Seminar 1 /		900					
Project1			77				
Individual	40	40	20	-	-	-	100
Assessment 2 /		1 2	3637				
Case Study 2/		1 8					
Seminar 2 /		2	32				
Project 2		43.33					
ESE	40	40	20	-	-	-	100

22550502	PLANNING OF SMART CITIES
23SEOE02	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

	NIL	OE	3	U	U	3
Course	 To have an exposure on planning of 	smart cities with	ı consi	dera	tion of	f the
Objective	recent challenges and to addre	ss the importa	ance (of s	ustain	able
	development of urban area.					
UNIT - I	SMART CITIES DEVELOPMENT POTENTIAL	LS AND CHALLE	NGES	9	Perio	ds
Perspectives of	Smart Cities: Introduction and Overvie	w - Implemen	ıtation	Cha	allenge	es -
	issues - Spatial distribution of startup cities					
Implementation	Challenges for Establishing Smart Urban Info	rmation and Kno	owledg	ge Ma	anagen	nent
System.						
UNIT - II	SUSTAINABLE URBAN PLANNING			9	Perio	ds
Optimising Gree	n Spaces for Sustainable Urban Planning -	3D City Models	for Ex	tract	ing Ur	rban
Environmental Q	Quality Indicators - Assessing the Rainwater Ha	arvesting Potenti	al - The	e Stra	ategic l	Role
of Green Spaces -	- Monitoring Urban Expansion.					
UNIT – III	ENERGY MANAGEMENT AND SUSTAINABL	<u>E DEVELOPMEN</u>	IT	9	Perio	ds
	Energy Stressed Cities - Social Acceptability					
Management - U	Irban Dynamics and Resource Consumption -	Issues and Chal	llenges	of S	ustain	able
Tourism - Green	Buildings: Eco-friendly Technique for Modern	Cities.				
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMAR	RT CITIES		9	Perio	ds
	Domestic Water Use Practices - Issue of G					
Assessment of	Water Consumption at Urban Household L	evel - Water St	ustaina	abilit	y - Sc	cio-
economic Detern	ninants and Reproductive Healthcare System -	Problems and D	evelop	men	t of Slu	ıms.
UNIT – V	INTELLIGENT TRANSPORT SYSTEM			9	Perio	ds
Introduction to	Intelligent Transport Systems (ITS) - The	Range of ITS A	pplicat	ions	-Netw	vork
	Sensing Traffic using Virtual Detectors - \					
information - Th	ne Smart Car - Commercial Routing and Deliv	very - Electronic	Toll C	collec	tion -	The
Smart Card -	Dynamic Assignment - Traffic Enforcement	ent. Urban Mol	oility a	and	Econo	mic
Development.						
Contact Periods	5:					
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0	Periods To	tal: 45	5 Per	iods	

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.

- 2 | Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva", 2016.
- 3 Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies, Standards", and Driving Factors-Springer International Publishing, 2018.
- 4 Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems And Smart Cities", Springer, 2015.
- 5 Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	К3
CO3	Choose appropriate energy conservation system for smart cities.	К3
CO4	Identify the proper method of water management system.	К3
CO5	Apply Intelligent Transport System concepts in planning of smart city.	К3

COs/POs	P01	P02	P03	P04	P05	P06
CO1	1	-	2	3	1	1
CO2	1	1	1	3	2	1
CO3	1	1		2	2	1
CO4	1	-	1	2	1	1
CO5	1	-	1	3	1	-
23SEOE02	1	1	2	3	2	1
l – Slight, 2 – Moderate	, 3 – Substant	al	Acres 10			

ASSESSMENT PAT	TERN - THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	nalyzing Evaluating Creating		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	45	30	9 -	-	-	100
CAT2	25	45	30	-	-	-	100
Individual	15	40	45	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	10	45	45	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	40	40	-	-	-	100

23SEOE03 GREEN BUILDI (Common to all Bra	
--	--

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	 To introduce the different concepts of energy efficient l 	buildings, indoor
Objective	environmental quality management, green buildings and its d	lesign.
UNIT – I	INTRODUCTION	9 Periods
Life cycle impacts	of materials and products - sustainable design concepts - strategies	s of design for the
Environment -The	sun-earth relationship and the energy balance on the earth's surfac	e, climate, wind -
Solar radiation an	d solar temperature - Sun shading and solar radiation on surfaces -	Energy impact or
the shape and orie	entation of buildings – Thermal properties of building materials.	
UNIT – II	ENERGY EFFICIENT BUILDINGS	9 Periods
Passive cooling a	nd day lighting – Active solar and photovoltaic- Building energy a	nalysis methods
Building energy	simulation- Building energy efficiency standards-Lighting system	design- Lighting
economics and a	nesthetics- Impacts of lighting efficiency - Energy audit and e	energy targeting
Technological opt	ions for energy management.	
UNIT - III	INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods
Psychrometry- Co	omfort conditions- Thermal comfort- Ventilation and air quality	-Air conditioning
requirement- Visu	al perception- Illumination requirement- Auditory requirement- End	ergy managemen ^e
	litioning systems- Energy conservation in pumps- Fans and blowe	ers- Refrigerating
machines- Heat re	jection equipment- Energy efficient motors- Insulation.	
UNIT – IV	GREEN BUILDING CONCEPTS	9 Periods
Green building c	oncept- Green building rating tools- Leeds and IGBC codes. – M	√aterial selection
Embodied energy	y- Operating energy- Façade systems- Ventilation systems-Trans	portation- Water
treatment systems	s- Water efficiency- Building economics	
UNIT – V	GREEN BUILDING DESIGN - CASE STUDY	9 Periods
Case studies - B	uilding form, orientation and site considerations; conservation r	neasures; energy
	system and fuel choices; renewable energy systems; material choices	ces - construction
budget		
Contact Periods:		
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 P	'eriods

	REFERENCES.
1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery ", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

	empletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
_	, *	маррец
CO1	Apply the concepts of sustainable design in building construction.	К3
CO2	Execute green building techniques including energy efficiency management in	К3
	the building design.	
CO3	Establish indoor environmental quality in green building.	К3
CO4	Perform the green building rating using various tools.	К3
CO5	Create drawings and models of green buildings.	К3

COURSE ARTICULATION	N MATRIX					
COs/POs PO1 PO2 PO3 PO4 PO5 PO						P06
CO1	3	3	2	3	3	3
CO2	3	3	2	3	3	3
CO3	2	2	2	2	3	3
CO4	2	3	1	3	3	3
CO5	3	3	1	3	3	3
23SE0E03	3	3	2	3	3	3
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSME	NT PATTERN – T	HEORY	provide and				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /		1.6	11				
Case Study 1/							
Seminar 1 /		4333					
Project1			office Con-				
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

22550504	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT
23EE0E04	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

PREREQUIS	I I ES	CATEGURY	L	I	Р	L
	NIL	OE	3	0	0	3
Course	 To impart knowledge on occupational h 	ealth hazards, s	afety	, me	easu	res at
Objective	work place, accident prevention, safety r	nanagement and	d saf	ety	mea	sures
in industries.						
UNIT – I	OCCUPATIONAL HEALTH HAZARDS			9 I	Peri	ods
Occupation,	Health and Hazards - Safety Health and Managem	ent: Occupation	al H	ealtł	ı Ha	zards
- Ergonomic	s - Importance of Industrial Safety - Radiation ar	ıd Industrial Ha	zaro	ls: T	' уре	s and
effects - Vibr	ation - Industrial Hygiene - Different air pollutan	ts in industries	and	thei	r eff	ects -
Electrical, fir	e and Other Hazards.					
UNIT – II	SAFETY AT WORKPLACE			9 I	Peri	ods
Safety at Wo	rkplace - Safe use of Machines and Tools: Safety	in use of differ	ent	typ	es o	f unit
operations -	Ergonomics of Machine guarding - working in c	lifferent workpl	aces	s - C)per	ation,
Inspection a	nd maintenance - Housekeeping, Industrial lighting	g, Vibration and	Nois	se.		
UNIT – III	ACCIDENT PREVENTION			9 I	Peri	ods
Accident Pre	vention Techniques - Principles of accident preve	ntion - Hazard	iden	tific	atio	n and
analysis, Eve	ent tree analysis, Hazop studies, Job safety analy	sis - Theories	and	Pri	ncip	les of
Accident cau	sation - First Aid: Body structure and functions - I	Fracture and Di	sloca	atior	ı, In	juries
to various bo	dy parts.					
UNIT – IV	SAFETY MANAGEMENT			9 I	Peri	ods
	gement System and Law - Legislative measures ir					
safety, Health and Environment Management, Bureau of Indian Standards on Health and Safety,						
IS 14489 standards - OSHA, Process safety management (PSM) and its principles - EPA						
standards						
UNIT – V	GENERAL SAFETY MEASURES			9 I	eri(ods
Plant Layout for Safety - design and location, distance between hazardous units, lighting, colour						
coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines -						
	System - Significance of Documentation - Case stu					
UNIT - V Plant Layout	10% 250 KB 100 MB 100 M			ghtii	ng, c	olour

health and safety measures in Industries.

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods **Total: 45 Periods**

1	"Physical Hazaras of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019

- "Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
- "Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao PharmaMed Press, 1st edition, 2021.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon	ompletion of the course, the students will be able to:	Mapped
CO1	Identify the occupational health hazards.	К3
CO2	Execute various safety measures at workplace.	К3
CO3	Analyze and execute accident prevention techniques.	К3
CO4	Implement safety management as per various standards.	К3
CO5	Develop awareness on safety measures in Industries.	К3

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	P03	P04	P05	P06
CO1	1	2	2	2	3	2
CO2	2	2	2	1	2	2
CO3	2	3	2	1	2	2
CO4	1	1	1	2	2	2
CO5	1	1	1	1	1	2
23EE0E04	1	2	2	1	2	2
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA	TTERN - THEOF	RY					
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23EE0E05

CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective	 To understand the Earth's climate system, changes and their earth, identifying the impacts, adaptation, mitigation of clim for gaining knowledge on clean technology, carbon trading energy sources. 	nate change and
UNIT – I	EARTH'S CLIMATE SYSTEM	9 Periods

Introduction-Climate in the spotlight - The Earth's Climate Machine - Climate Classification- Global Wind Systems - Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation and Monsoon Rains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effect - Solar Radiation - The Earth's Natural Green House Effect - Green House Gases and Global Warming - Carbon Cycle.

UNIT – II OBSERVED CHANGES AND ITS CAUSES

9 Periods

Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling.

UNIT - III IMPACTS OF CLIMATE CHANGE

9 Periods

Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNIT - IV CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES

9 Periods

Adaptation Strategy/Options in various sectors – Water – Agriculture –- Infrastructure and Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply – Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) – Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.

UNIT - V CLEAN TECHNOLOGY AND ENERGY

9 Periods

Clean Development Mechanism – Carbon Trading - examples of future Clean Technology –Biodiesel – Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels– Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0Periods

Practical: 0 Periods

Total:45 Periods

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report -Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report - Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Classify the Earths climatic system and factors causing climate change and global warming.	K2
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and Observed effects of Climate Changes	K2
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible changes.	К3
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	К3
CO5	Discover clean technologies and alternate energy source for sustainable growth.	К3

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
CO1	2	2	3	2	3	1
CO2	3	2	2	2	3	2
CO3	2	2	2	2	3	2
CO4	3	2	2	2	2	2
CO5	3	3	2	3	3	3
23EE0E05	3	3	3	3	3	3
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMEN	T PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100
ESE	25	30	35	10	-	-	100

23EE0E06	WASTE TO ENERGY (Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

NIL OE				0	3	
• To classify waste as fuel, introduce conversion devices, gain knowledge about Biomass Pyrolysis, demonstrate methods, factors for biomass gasification, and acquire knowledge about biogas and its development in India.						
UNIT - I INTRODUCTION			9 Pe	riod	ls	
Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, Gasifiers, Digestors.					due,	
UNIT - II BIOMASS PYROLYSIS				riod	ls	
Biomass Pyrolysis: Pyrolysis - Types, Slow Pyrolysis, Fast Pyrolysis – Yields and Applications – Manufacture of Pyrolytic oils and gases, Yi			al –	Metl	hods	
UNIT - III BIOMASS GASIFICATION		9 Periods			ls	
Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Construction and Operation – Gasifier burner arrangement for tarrangement and electrical power – Equilibrium and Kinetic Consideration	thermal heating –	Gas	sifier	En	•	
UNIT - IV BIOMASS COMBUSTION			9 Pe	riod	ls	
Biomass Combustion – Biomass Stoves – Improved Chullahs, types, some exotic designs, Fixed bed combustors, types – Inclined grate combustors – Fluidized bed combustors, design, construction and operation of all the above biomass combustors.						
UNIT - V BIOENERGY SYSTEM			9 Pe	riod	ls	
Biogas: Properties of biogas (Calorific value and composition) – Bioga energy system – Design and constructional features – Biomass r Biomass conversion processes – Thermo chemical conversion gasification – pyrolysis and liquefaction – biochemical conversion biogas plants – Applications – Alcohol production from biomass – B to energy conversion – Biomass energy programme in India. Contact Periods:	resources and the - Direct combust - anaerobic dige	r cla stion stion	assif - n - '	icati bior Гуре	ion - mass es of	

Lecture: 45 Periods Tutorial: 0 Periods

	I ENERGES.
1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P
	Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste - to - Energy: Technologies and project Implementations", Marc J Rogoff, Francois
	Screve,ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated
	Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", Prabir ELSEVIER Publications,
	2010.

Practical: 0 Periods Total: 45 Periods

Upon co	Bloom's Taxonomy Mapped	
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	К3
CO3	Demonstrate methods and factors considered for biomass gasification.	К3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	PO4	P05	P06	
CO1	2	3	3	2	3	1	
CO2	3	2	2	2	3	1	
CO3	3	3	2	3	2	1	
CO4	3	2	2	3	3	1	
CO5	2	3	3	3	2	1	
23EE0E06	3	3	3	3	3	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMEN	ASSESSMENT PATTERN – THEORY						
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*			1 1				
CAT1	10	20	20	25	15	10	100
CAT2	10	25	20	10	25	10	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	35	50	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100
ESE	10	25	25	20	10	10	100

22050507	ENERGY IN BUILT ENVIRONMENT
23GEOE07	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

		1 - 1 - 1 -						
Course	To understand constructional energy requirements of buildin	gs, energy						
Objective	audit methods and conservation of energy.							
UNIT-I	INTRODUCTION	9 Periods						
Indoor activitie	s and environmental control - Internal and external factors on	energy use –						
Characteristics of	of energy use and its management -Macro aspect of energy use in dwo	ellings and its						
implications -T	hermal comfort-Ventilation and air quality-Air-conditioning requir	ement-Visual						
perception-Illun	nination requirement-Auditory requirement.							
UNIT-II LIGHTING REQUIREMENTS IN BUILDING 9 Periods								
The sun-earth r	elationship - Climate, wind, solar radiation and temperature - Sun	shading and						
solar radiation (on surfaces-Energy impact on the shape and orientation of buildings	-Lighting and						
day lighting :Ch	aracteristics and estimation, methods of day-lighting–Architectural c	onsiderations						
for day-lighting.								
UNIT-III	ENERGY REQUIREMENTS IN BUILDING	9 Periods						
Steady and un	steady heat transfer through wall and glazed window-Standards	for thermal						
performance of	building envelope- Evaluation of the overall thermal transfer- Ther	mal gain and						
net heat gain-Er	nd-Use energy requirements-Status of energy use in buildings-Estimat	tion of energy						
use in a building								
UNIT-IV	ENERGY AUDIT	9 Periods						
Energy audit	and energy targeting-Technological options for energy managemer	nt-Natural and						
forced ventilation	on–Indoor environment and air quality-Air flow and air pressure on l	ouildings-Flow						
due to Stack effe	due to Stack effect.							
UNIT-V	COOLING IN BUILT ENVIRONMENT	9 Periods						
Passive building architecture-Radiative cooling-Solar cooling techniques-Solar desiccant								
dehumidification	n for ventilation-Natural and active cooling with adaptive comfor	t-Evaporative						
cooling –Zero er	nergy building concept.							
Contact Period	s:							
Lecture: 45 Per	riods Tutorial: 0 Period Practical: 0 Period Total: 45 Pe	riods						

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE,"Hand book of Fundamentals",ASHRAE,Atlanta,GA.,2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COUR	COURSE OUTCOMES:				
Upon	Upon completion of the course, the students will be able to:				
CO1	Understand energy and its usage	K2			
CO2	Know lighting to be given to a building	K1			
CO3	Analyse the energy requirements in a building	КЗ			
CO4	Apply the energy audit concepts.	КЗ			
CO5	Study architectural specifications of a building	K1			

COs/POs	PO1	PO2	PO3	PO4	PO5	P06
CO1	2	-	3	1	2	1
CO2	2	-	3	1	2	1
CO3	2	-	3	1	2	1
CO4	2	-	3	1	2	1
CO5	2	-	3	1	2	1
23GEOE07	2	-	3	1	2	1
-Slight, 2–Modera	te, 3–Substant	tial	100000			l .

ASSESSMENT P	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	e -	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	•	-	-	-	100
ESE	40	40	20	-	-	-	100

23GEOE08	EARTH AND ITS ENVIRONMENT
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	•]	Γο know about the planet earth, the geosystems and the	resources like
Objective		ground water and air and to learn about the Environmental A	
	S	sustainability.	
UNIT-I	EVOLU	ITION OF EARTH	9 Periods
Evolution of ear	th as hal	bitable planet-Evolution of continents-oceans and landforms-	evolution of life
through geologi	ical time	s - Exploring the earth's interior - thermal and chemical struc	cture - origin of
gravitational an	ıd magne	etic fields.	
UNIT-II GEOSYSTEMS			9 Periods
Plate tectonics	- workin	g and shaping the earth - Internal geosystems – earthquake	es – volcanoes -
climatic excurs	sions th	rough time - Basic Geological processes - igneous, se	edimentation –
metamorphic p	rocesses.		
UNIT-III		GROUND WATER GEOLOGY	9 Periods
	und wat	GROUND WATER GEOLOGY er occurrence –recharge process-Ground water movement	
Geology of gro		ALCOHOLDS & JOSEPH AL	Ground water
Geology of grod	catchmer	er occurrence -recharge process-Ground water movement	Ground water
Geology of grod	catchmer	er occurrence –recharge process-Ground water movement nt hydrology – Ground water as a resource - Natural ground	Ground water
Geology of grodischarge and contaminat	catchmer ion-Mod	ter occurrence –recharge process-Ground water movement nt hydrology – Ground water as a resource - Natural ground elling and managing ground water systems.	d water quality 9 Periods
Geology of groundischarge and contaminate UNIT-IV Engineering and	catchmer ion-Mod d sustair	ter occurrence –recharge process-Ground water movement nt hydrology – Ground water as a resource - Natural ground elling and managing ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	d water quality 9 Periods micals and finite
Geology of grod discharge and contaminat UNIT-IV Engineering an resources - wat	catchmer ion-Mod d sustair ter scarc	ter occurrence –recharge process-Ground water movement in thydrology – Ground water as a resource - Natural ground elling and managing ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY mable development - population and urbanization - toxic cher	d water quality 9 Periods micals and finite
Geology of grod discharge and contaminat UNIT-IV Engineering an resources - wat	catchmer ion-Mod d sustair ter scarc	ter occurrence –recharge process-Ground water movement in hydrology – Ground water as a resource - Natural ground elling and managing ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY mable development - population and urbanization - toxic cherity and conflict - Environmental risk - risk assessment and ch	d water quality 9 Periods micals and finite
Geology of groundischarge and contaminate UNIT-IV Engineering and resources - water hazard assessment UNIT-V	catchmer ion-Mod d sustair ter scarc nent-expo	ter occurrence –recharge process-Ground water movement in thydrology – Ground water as a resource - Natural ground elling and managing ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY mable development - population and urbanization - toxic cherity and conflict - Environmental risk - risk assessment and chosure assessment.	-Ground water d water quality 9 Periods micals and finite aracterization – 9 Periods
Geology of groundischarge and contaminate UNIT-IV Engineering and resources - wath hazard assessment UNIT-V Air resources e	d sustainter scarci	ter occurrence –recharge process-Ground water movement in hydrology – Ground water as a resource - Natural ground elling and managing ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY mable development - population and urbanization - toxic cherity and conflict - Environmental risk - risk assessment and chosure assessment. AIR AND SOLIDWASTE	-Ground water d water quality 9 Periods micals and finite aracterization – 9 Periods

1	John Grotzinger and Thomas H.Jordan, " Understanding Earth", Sixth Edition, W.H.Freeman, 2010.							
2	Younger,P.L., "Ground water in the Environment: An introduction", Blackwell Publishing,2007.							
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,							
	Sustainability and Design", Wiley, NJ, 2010.							

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period

Total: 45 Periods

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K2
	the Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	К3
	water and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	К3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COs/POs	PO1	P02	PO3	P04	PO5	P06
CO1	1	-	-	2	2	-
CO2	3	-	3	3	-	3
CO3	2	-	-	-	-	-
CO4	-	2	Ca Domin	-	1	-
CO5	2	2		1	-	-
23GEOE08	2	2	3	3	2	3
1–Slight, 2–Moderate	, 3–Substant	ial				l .

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	1	•	100			
ESE	40	40	20	-	-	-	100			

23GEOE09 NATURAL HAZARDS AND MITIGATION (Common to all Branches)

PREREQUISITES:	CATEGORY	L	Т	P	С
NIL	OE	3	0	0	3

Course	To get idea on the causes, effects and mitigation measures	of different types of			
Objective	hazards with case studies.	71			
UNIT-I	EARTH QUAKES	9 Periods			
Definitions and	basic concepts-different kinds of hazards-causes-Geologic	Hazards-Earthquakes-			
causes of eartl	nquakes-effects-plate tectonics-seismic waves-measures of	size of earthquakes-			
earthquake resis	tant design concepts.				
UNIT-II	SLOPE STABILITY	9 Periods			
Slope stability and landslides-causes of landslides-principles of stability analysis-remedial and corrective measures for slope stabilization.					
UNIT-III	FLOODS	9 Periods			
	s–Floods-causes of flooding-regional flood frequency analysis–od forecasting-warning systems.	flood control measures-			
UNIT-IV	DROUGHTS	9 Periods			
Droughts -cause	s - types of droughts -effects of drought -hazard assessment -	decision making-Use of			
GIS in natural ha	zard assessment-mitigation-management.				
UNIT-V	TSUNAMI	9 Periods			
	-effects-under sea earthquakes-landslides-volcanic eruptions dial measures-precautions-case studies.	-impact of sea			
Contact Periods Lecture: 45 Per	San Control of Control of Control	otal: 45 Periods			

	REFERENCES
1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole
	Cengage Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press,2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley &
	Sons, Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley
	& Sons,Inc,2008

	OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Learn the basic concepts of earthquakes and the design concepts of earthquake Resistant buildings.	К2
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	К3
CO3	As certain the causes and control measures of flood.	К3
CO4	Know the types, causes and mitigation of droughts.	K2
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	P04	P05	P06			
CO1	3	1	-	3	2	3			
CO2	3	1	2	3	3	3			
CO3	3	2	3	-	-	3			
CO4	3		and of the	3	2	3			
CO5	3	- 72	2	2	-	3			
23GEOE09	3	1	2	3	2	3			
1–Slight, 2–N	1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT F	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20	-	-	-	100			

23ED0E10	BUSINESS ANALYTICS
ZSEDUEIU	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	 To study modeling for uncertainty and statistical inference. To apprehend analytics the usage of Hadoop and Map Reduce frameworks. 			
	To acquire insight on other analytical frameworks.			
UNIT - I	BUSINESS ANALYTICS AND PROCESS	9 Periods		

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling andestimation methods overview.

UNIT - II REGRESSION ANALYSIS

9 Periods

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT – III STRUCTURE OF BUSINESS ANALYTICS

9 Periods

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

UNIT - IV FORECASTING TECHNIQUES

9 Periods

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT - V DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS 9 Periods ANALYTICS

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.Recent Trends: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak , "Business Analytics Using R - A Practical
	Approach",Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge
	University Press, 2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.
	Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making",
	Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the real world business problems and model with analytical	K4
	solutions.	
CO2	Solve analytical problem with relevant mathematics background	K4
	knowledge.	
CO3	Convert any real world decision making problem to hypothesis and apply	K4
	suitable statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics using	K4
	Hadoop and Map Reduce	
CO5	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	PO4	P05				
CO1	1	2	1	2	1				
CO2	1	1	1	2	1				
CO3	2	2	1	1	-				
CO4	2	2	1	-	-				
CO5	1	2	-	-	-				
23ED0E10	1	2	1	2	1				
1 – Slight, 2 – Moderate,	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN - THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E11

INTRODUCTION TO INDUSTRIAL SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objectives • Summarize basics of industrial safety. • Describe fundamentals of maintenance engineering. • Explain wear and corrosion. • Illustrate fault tracing. • Identify preventive and periodic maintenance. UNIT - I INTRODUCTION 9 Periods

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT – II FUNDAMENTALS OF MAINTENANCE ENGINEERING

9 Periods

Definition and aim of maintenance engineering, Primary and secondary functions andresponsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT – III WEAR AND CORROSION AND THEIR PREVENTION

9 Periods

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications,

Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT – IV FAULT TRACING

9 Periods

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT - V PERIODIC AND PREVENTIVE MAINTENANCE

9 Periods

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

1	Hans F. Winterkorn, "Foundation Engineering Handbook" , Chapman & Hall London,2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers,
	2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition
	,2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COUR	COURSE OUTCOMES:		
II. o. o. o. o.	somelation of the source the students will be able to	Taxonomy	
Upon (completion of the course, the students will be able to:	Mapped	
CO1	Ability to summarize basics of industrial safety	K4	
CO2	Ability to describe fundamentals of maintenance engineering	K4	
CO3	Ability to explain wear and corrosion	K4	
CO4	Ability to illustrate fault tracing	K4	
CO5	Ability to identify preventive and periodic maintenance	K4	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	PO3	P04	P05		
C01	2	17	1	-	-		
CO2	2	2	1	-	1		
CO3	1	2	1	1	1		
CO4	2	1	1	1	1		
C05	2	1	2	1	1		
23ED0E11	2	1	1	1	1		
1 – Slight, 2 – Moderate, 3 –	Substantial			1	ı		

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	25	25	25			100		
CAT2	20	25	25	30			100		
Assignment 1	25	30	25	20			100		
Assignment 2	30	20	30	20			100		
ESE	20	30	20	30			100		

23ED0E12	OPERATIONS RESEARCH
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Solve linear programming problem and solve using graphical meth	nod.					
Objectives	Solve LPP using simplex method.						
	Solve transportation, assignment problems.						
	Solve project management problems.						
	Solve scheduling problems.						
UNIT – I	INTRODUCTION	9 Periods					
Optimization	Techniques, Model Formulation, models, General L.R Formulation, Sin	nplex Techniques,					
Sensitivity Ana	alysis, Inventory Control Models						
UNIT – II	LINEAR PROGRAMMING PROBLEM	9 Periods					
Formulation of	f a LPP - Graphical solution revised simplex method - duality theory - dual	simplex method -					
sensitivity ana	llysis - parametric programming						
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM	9 Periods					
Nonlinear pro	gramming problem - Kuhn-Tucker conditions min cost flow problem - m	ax flow problem -					
CPM/PERT	and the second						
UNIT – IV	SEQUENCING AND INVENTORY MODEL	9 Periods					
Scheduling an	d sequencing - single server and multiple server models - deterministic in	nventory models -					
Probabilistic i	Probabilistic inventory control models - Geometric Programming.						
UNIT – V	GAME THEORY	9 Periods					
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow							
in Networks, F	Elementary Graph Theory, Game Theory Simulation						
Contact Per	iods:						
Lecture: 45 I	Periods Tutorial: 0 Period Practical: 0 Period Total:	45 Periods					

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", Anup Goel, Ruchi Agarwal, Technical Publications, Jan 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy		
		Mapped		
Upon	completion of the course, the students will be able to:			
CO1	Formulate linear programming problem and solve using graphical	K4		
	method.			
CO2	Solve LPP using simplex method.	K4		
CO3	Formulate and solve transportation, assignment problems.	K4		
CO4	Solve project management problems.	K4		
CO5	Solve scheduling problems	K4		

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	PO5		
CO1	2	1	1	-	-		
CO2	2	2	1	-	-		
CO3	1	1	2	1	1		
CO4	1	1	-	-	-		
CO5	2	1	-	-	-		
23EDOE12	2	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	25	25	25			100		
CAT2	20	25	25	30			100		
Assignment 1	25	30	25	20			100		
Assignment 2	30	20	30	20			100		
ESE	20	30	20	30			100		

23MF0E13

OCCUPATIONAL HEALTH AND SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	• To gain knowledge about occupational health hazard and safe	ety measures at				
Objectives	work place.					
	To learn about accident prevention and safety management.					
	 To learn about general safety measures in industries. 					
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS	9 Periods				

Safety-History and development, National Safety Policy-Occupational Health Hazards - Ergonomics - Importance of Industrial Safety Radiation and Industrial Hazards- Machine Guards and its types, Automation.

UNIT - II SAFETY AT WORKPLACE

9 Periods

Safety at Workplace - Safe use of Machines and Tools: Safety in use of different types of unit operations -

Ergonomics of Machine guarding - working in different workplaces - Operation, Inspection and maintenance, Plant Design and Housekeeping, Industrial lighting, Vibration and Noise Case studies.

UNIT - III ACCIDENT PREVENTION

9 Periods

Accident Prevention Techniques - Principles of accident prevention - Definitions, Theories, Principles - Hazard identification and analysis, Event tree analysis, Hazop studies, Job safety analysis - Theories and Principles of Accident causation - First Aid : Body structure and functions - Fracture and Dislocation, Injuries to various body parts.

UNIT – IV SAFETY MANAGEMENT

9 Periods

Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards- Safety Management: Organisational & Safety Committee - its structure and functions.

UNIT - V GENERAL SAFETY MEASURES

9 Periods

Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System: Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health and safety measures in Industries.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

- 1 Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
- 2 Danuta Koradecka, **Handbook of Occupational Health and Safety**, CRC, 2010.
- 3 Dr. Siddhartha Ray, **Maintenance Engineering**, New Age International (P) Ltd., Publishers, 2017
- 4 Deshmukh. L.M., **Industrial Safety Management**, 3rd Edition, Tata McGraw Hill, New Delhi, 2008.
- 5 https://nptel.ac.in/courses/110105094

6 https://archive.nptel.ac.in/courses/110/105/110105094/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures	К3
	at work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in	К3
	industries.	
CO4	Know various laws, standards and legislations.	K2
CO5	Implement safety and proper management of industries.	K4

COURSE ARTICULATION MATRIX:						
Cos/Pos	P01	PO2	PO3	P04	P05	
CO1	2	1	1	1	1	
CO2	2	2	1	1	1	
CO3	1	2	1	1	1	
CO4	2	L. Post	1	1	1	
CO5	2	1	2	1	1	
23MF0E13	2	1-7	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA	TTERN - TH	HEORY	1				
Test / Bloom's Category*	Rememb ering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creating (K6) %	Tota 1%
CAT1	(112) /0	50	50				100
CAT2		50	30	20			100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50	50				100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50	30	20			100
ESE		40	40	20			100

23MF0E14	COST MANAGEMENT OF ENGINE (Common to all Bran	•	rs .			
PREREQUISITES	PREREQUISITES CATEGORY L T P C					С
NIL OE 3 0 0 3						3

IINIT _ I	INTRODUCTION TO COSTING CONCEPTS 9 Periods
	To familiarize with quantitative techniques in cost management.
	budgetary control techniques.
	To develop knowledge of costing techniques in service sector and various
	To gain the knowledge in costing concepts with project execution.
	selection.
Objectives	To acquire the project management concepts and their various aspects in
Course	To understand the costing concepts and their role in decision making.

Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making.

UNIT – II PROJECT PLANNING ACTIVITIES

9 Periods

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

UNIT – III COST ANALYSIS

9 Periods

Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

UNIT – IV PRICING STRATEGIES AND BUDGETORY CONTROL

9 Periods

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Justin -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT - V TQM AND OPERATIONS REASEARCH TOOLS

9 Periods

Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management , John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall
	of India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the costing concepts and their role in decision making.	К3
CO2	Apply the project management concepts and analyze their various aspects	K4
	in selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various	К2
	budgetary control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	К3

COs/Pos	P01	PO2	PO3	P04	P05
C01	1	1	2	1	1
CO2	2	1	1	1	-
CO3	2	2	2	-	-
CO4	1	1	1	1	1
CO5	1	2	1	1	-
23MF0E14	1	1	1	1	1

ASSESSMENT PA	ATTERN - THEOR	Y					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			40	60			100
CAT2		30	30	40			100
Individual			40	60			100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual		30	30	40			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE		20	40	40			100

23MF0F15	COMPOSITE MATERIALS
ZSMFUEIS	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	1. To summarize the characteristics of composite materials	and effect of
Objectives	reinforcement in composite materials.	
	2. To identify the various reinforcements used in composite material	
	3. To compare the manufacturing process of metal matrix composite	
	4. To understand the manufacturing processes of polymer matrix co	mposites.
	5. To analyze the strength of composite materials.	
UNIT – I	INTRODUCTION	9 Periods
Definition - Cl	assification and characteristics of Composite materials. Advantages and	d application of
	unctional requirements of reinforcement and matrix. Effect of rei	nforcement on
overall compo	site performance.	
UNIT – II	REINFORCEMENT	9 Periods
Preparation-la	yup, curing, properties and applications of glass fibers, carbon fiber	s, Kevlar fibers
	pers. Properties and applications of whiskers, particle reinforcemen	
Behavior of	composites: Rule of mixtures, Inverse rule of mixtures.	Isostrain and
Isosterescond	itions.	
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods
	id State diffusion technique, Cladding - Hot isostatic pressing- Ma	
Ceramic Matr	ix Composites: Liquid Metal Infiltration – Liquid phase sintering–Ma	anufacturing of
Carbon – Carb	on composites: Knitting, Braiding, Weaving- Properties and application	S.
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods
Preparation o	f Moulding compounds and prepregs - hand layup method - Autoc	clave method -
Filament wind	ling method - Compression moulding - Reaction injection moulding.	Properties and
applications.		
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	9 Periods
Laminar Fail	ure Criteria-strength ratio, maximum stress criteria, maximum	strain criteria,
interacting fa	ilure criteria, hygrothermal failure. Laminate first play failure-in	sight strength;
Laminate stre	ngth-ply discount truncated maximum strain criterion; strength design	gn using caplet
plots; stress co	oncentrations.	
Contact Per	iods:	
Lecture: 45 F	Periods Tutorial: 0 Period Practical: 0 Period Total: 45	Periods

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials , Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz, 2013.
5	https://nptel.ac.in/courses/112104168

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon completion of the course, the students will be able to:					
CO1	Know the characteristics of composite materials and effect of reinforcement in	K2			
	composite materials.				
CO2	Know the various reinforcements used in composite materials.	K2			
CO3	Understand and apply the manufacturing processes of metal matrix	К3			
	composites				
CO4	Understand and apply the manufacturing processes of polymer matrix	К3			
	composites.				
CO5	Analyze the strength of composite materials.	K4			

COs/Pos	P01	PO2	PO3	P04	P05
C01	1	2	1	1	1
CO2	2	2	1	1	2
C03	2	1	2	1	1
CO4	1	2	2	2	1
CO5	1 %	2	1	1	1
23MF0E15	1	2	2	1	1
1 – Slight, 2 – Moderate, 3 – 3	Substantial	77		1	

ASSESSMENT PATTERN - THEORY										
Test /	Rememberi	Understandin	Applying	Analyzin	Evaluatin	Creating	Tota			
Bloom's	ng (K1) %	g (K2) %	(K3) %	g (K4) %	g (K5) %	(K6) %	l %			
Category*		40%	September 1							
CAT1		60	40				100			
CAT2			60	40			100			
Individual		60	40				100			
Assessment										
1 /Case										
Study 1/										
Seminar 1 /										
Project1										
Individual			60	40			100			
Assessment										
2 /Case										
Study 2/										
Seminar 2 /										
Project 2										
ESE		40	40	20			100			

23TE0E16

GLOBAL WARMING SCIENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	• To make the students learn about the material consequ	ongog of glimato					
	To make the students learn about the material consequence of the property						
Objective	change, sea level change due to increase in the emission of						
	and to examine the science behind mitigation and adaptation	proposals.					
UNIT – I	INTRODUCTION	9 Periods					
Terminology	Terminology relating to atmospheric particles – Aerosols - Types, characteristics, measurements –						
Particle mass	spectrometry - Anthropogenic-sources, effects on humans.						
UNIT – II	UNIT - II CLIMATE MODELS 9 Periods						
General clima	te modeling- Atmospheric general circulation model - Oceanic ge	eneral circulation					
model, sea ice	model, land model concept, paleo-climate - Weather prediction by n	umerical process.					
Impacts of clin	nate change - Climate Sensitivity - Forcing and feedback.						
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods					
Carbon cycle-	process, importance, advantages - Carbon on earth - Global car	bon reservoirs -					
Interactions b	etween human activities and carbon cycle - Geologic time scales -	Fossil fuels and					
energy - Pertu	rbed carbon cycle.						
UNIT - IV	GREENHOUSE GASES	9 Periods					
Blackbody rac	liation - Layer model - Earth's atmospheric composition and Green ho	ouse gases effects					
on weather an	d climate - Radioactive equilibrium - Earth's energy balance.						
UNIT - V	UNIT - V GEO ENGINEERING 9 Periods						
Solar mitigati	Solar mitigation - Strategies - Carbon dioxide removal - Solar radiation management - Recent						
observed trends in global warming for sea level rise, drought, glacier extent.							
Contact Periods:							
Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods							

1/1	TERENCES.
1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and
	Its Consequences", Princeton University Press, 1st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th
	Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions
	for Global Warming", Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout	К2
COI	the earth.	ΚZ
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil	К2
603	fuels.	KΖ
CO4	Know about current issues, including impact from society, environment,	К4
604	economy as well as ecology related to greenhouse gases.	IVT
CO5	Know the safety measures and precautions regarding global warming.	K5

	ulation Matri	I	1			1		
COs/POs	P01	PO2	P03	PO4	PO5	P06		
CO1	2	1	2	1	1	2		
CO2	1	1	2	1	1	1		
CO3	1	2	1	1	1	2		
CO4	1	1	1	1	1	2		
CO5	2	1 🧖	2	50 I	1	2		
23TEOE16	1	1	1	1	1	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

Assessment pa	ttern – theory	4 3	30), \				
Test / Bloom's	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		9.50					
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	25	20	20	35	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	20	20	35	15	10	-	100
ESE	25	20	25	20	10	-	100

23TEOE17

INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	 To make the students provide strong, essential, importa 	int methods and				
Objective	foundations of quantum mechanics and apply quantum	n mechanics on				
	engineering fields.					
UNIT – I	INTRODUCTION	9 Periods				
Particles and V	Waves - Operators in quantum mechanics - The Postulates of quantum	n mechanics - The				
Schrodinger e	quation values and wave packet Solutions - Ehrenfest's Theorem.					
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods				
Atoms- The Hy	ydrogen Atom - Many-Electron Atoms – Pseudopotentials, Nuclear Stru	ıcture, Molecules,				
Crystals - Tra	nslational motion - Penetration through barriers - Particle in a bo	x - Two terminal				
quantum dot o	levices - Two terminal quantum wire devices.					
UNIT – III	SCATTERING THEORY	9 Periods				
The formulati	on of scattering events - Scattering cross section - Stationary scatter	ing state - Partial				
wave stationa	ry scattering events - multi-channel scattering - Solution for Schro	dinger equation-				
Radial and wa	ve equation - Greens' function.					
UNIT – IV	CLASSICAL STATISTICS	9 Periods				
Probabilities a	and microscopic behaviours - Kinetic theory and transport processes ir	n gases - Magnetic				
properties of r	naterials - The partition function.					
UNIT – V	QUANTUM STATISTICS	9 Periods				
Statistical med	Statistical mechanics - Basic Concepts - Statistical models applied to metals and semiconductors - The					
thermal properties of solids- The electrical properties of materials - Black body radiation - Low						
temperatures and degenerate systems.						
Contact Perio	ods:					
Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods						

	1	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to Nanoelectronics:
		Science, Nanotechnology, Engineering, and Applications", Cambridge University Press, 1st Edition,
		2007.
- 1		

- Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis", Routledge, 1st Edition, 2020.
- 3 George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States Edition, 2007
- 4 Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
- 5 Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian Edition, 2009.
- 6 Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum Statistical Mechanics", Wiley, 2004.

7 A.	F. J. Levi, "Applied Quantum Mechanics" , 2 nd Edition, Cambridge, 2012.					
COUR	SE OUTCOMES:	Bloom's				
		Taxonomy				
Upon	Upon completion of the course, the students will be able to:					
CO1	Understand the postulates of quantum mechanics.	K2				
CO2	Know about nano electronic systems and building blocks.	K2				
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4				
CO4	Learn the concepts involved in kinetic theory of gases.	K2				
CO5	Know about statistical models applies to metals and semiconductor.	К3				

COs/POs	PO1	PO2	PO3	P04	PO5	P06
CO1	1	1	1	1	1	1
CO2	2	2	1	1	1	1
CO3	2	2	2	1	1	1
CO4	1	1	1	1	1	1
CO5	1	1	1	1	1	1
23TEOE17	1	1 (530 1	1	1
1 – Slight, 2 –	Moderate, 3 -	Substantial		(B)		•

ASSESSMENT	PATTERN - THEO	RY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*			32				
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual							
Assessment 1							
/ Case Study	35	25	20	20	-	-	100
1 / Seminar 1							
/ Project 1							
Individual							
Assessment 2							
/ Case Study	30	25	20	25	-	-	100
2 / Seminar 2							
/ Project 2							
ESE	20	30	30	20	-	-	100

22TEOE18

GREEN SUPPLY CHAIN MANAGEMENT

(Common to all Branches)

PRE REQUISI	TES	CATEGORY	L	Т	P	С
NIL		OE	3	0	0	3

NIL		OE	3	0	0	3			
Course	To make the students learn and focus of	on the fundame	ntal s	trategi	es tod	ols and			
Objective	techniques required to analyze and des			_					
o b,ccci v c	chain systems.	ngn envn omne	itairy	Justai	nabic	Supply			
UNIT – I	INTRODUCTION			() Perio	ods			
	- complexity in SCM, Facility location - Logistics	– Aim activitie	s imi						
	current trends - Integrating logistics with an organization.								
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEME	NT		() Perio				
Basic concepts of supply chain management - Supply chain operations – Planning and sourcing - Making									
_			_		_	_			
UNIT - III	and delivering - Supply chain coordination and use of technology - Developing supply chain systems. UNIT - III PLANNING THE SUPPLY CHAIN 9 Periods								
	sions – strategic, tactical, operational - Logistics	stratogies impl	omon						
	ources – types, capacity, schedule, controlling ma			_					
performance.	urces - types, capacity, schedule, controlling ma	iteriai ilow, ilie	asuii	ng an	u mip	TOVING			
	ACTIVITIES IN THE SUDDI VOLLAIN				\ D!				
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN) Peri				
	– cycle, types of purchase – Framework of e-procui		-	_		-			
	nand and safety stock, stock control - Material h		_						
ownership, la	ownership, layout, packaging - Transport - mode, ownership, vehicle routing and scheduling models-								
Travelling sale	Travelling salesman problems - Exact and heuristic methods.								
UNIT – V	UNIT - V SUPPLY CHAIN MANAGEMENT STRATEGIES 9 Periods								
Five key conf	iguration components - Four criteria of good sup	ply chain strat	egies	- Nex	t gene	eration			
strategies- Ne	w roles for end-to-end supply chain management - l	Evolution of sup	ply c	hain o	rganiz	ation –			
International	issues in SCM – Regional differences in logistics.								
Comtact David	da.								

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain
	Management", Routledge, 1st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle
	Approach",McGraw-Hill Education, 1st Edition, 2011.
3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management" , Routledge, 1stEdition, 2017.
4	Arunachalam Rajagopal,"Green Supply Chain Management: A Practical Approach", Replica,
	2021.
5	Mehmood Khan, Matloub Hussain and Mian M. Ajmal," Green Supply Chain Management for
	Sustainable Business Practice", IGI Global, 1st Edition, 2016.

6	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.
7	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction",
	Routledge, 1 st Edition, 2017.

COURSE	OUTCOMES:	Bloom's	
		Taxonomy	
Upon cor	npletion of the course, the students will be able to:	Mapped	
CO1	Integrate logistics with an organization.	К2	
CO2	Evaluate complex qualitative and quantitative data to support strategic and	K5	
	operational decisions.	KS	
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	КЗ	
CO4	Analyze inventory management models and dynamics of supply chain.	K4	
CO5	Identify issues in international supply chain management and outsources strategies.	КЗ	

OURSE ARTICULAT	ION MATRIX	No.	and the same of th			
COs/POs	P01	PO2	P03	P04	P05	P06
CO1	1	1	1	1	1	3
CO2	2	2	T	1	1	1
CO3	2	1	2	1	1	1
CO4	2	2	1	1	2	2
CO5	1	1	2	1	1	3
23TEOE18	2	1 🚐	1	1	1	2
– Slight, 2 – Moderat	e, 3 – Substanti	al				

ASSESSMENT PAT	TTERN - THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	25	30	10	10	-	100
CAT2	30	40	20	10	-	-	100
Individual							
Assessment 1 /							
Case Study 1 /	30	20	25	15	10	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2 /							
Case Study 2 /	35	30	25	10	-	-	100
Seminar 2 /							
Project 2							
ESE	30	30	20	10	10	-	100

23PSOE19	DISTRIBUTION AUTOMATION SYSTEM
23P3UE19	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To study about the distributed automation and economic evaluation so	chemes of
Objective	power network	
UNIT – I	INTRODUCTION	9 Periods
Introduction to	Distribution Automation (DA) - Control system interfaces- Control and data re	quirements-
Centralized (vs	e) decentralized control- DA system-DA hardware-DAS software.	
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods
DA capabilitie	es - Automation system computer facilities- Management processes-	Information
management- S	System reliability management- System efficiency management- Voltage manag	ement- Load
management.		
UNIT – III	COMMUNICATION SYSTEMS	9 Periods
	n requirements - reliability- Cost effectiveness- Data requirements- Two way	
	n during outages and faults - Ease of operation and maintenance- Conform	
	flow. Distribution line carrier- Ripple control-Zero crossing technique- Telepholdcast, FM SCA,VHF radio, microwave satellite, fiber optics-Hybrid communicate	
used in field te	, 14Ph-0467-522-64-07Ph-07-47-07-4-07-4-07-4-07-4-07-4-07-4-07	lon systems
UNIT - IV	ECONOMIC EVALUATION METHODS	9 Periods
		l .
	and evaluation of alternate plans- select study area – Select study period- p alternatives- Calculate operating and maintenance costs-Evaluate alternatives	
UNIT - V	ECONOMIC COMPARISON	9 Periods
Economic com	parison of alternate plans-Classification of expenses - capital expenditures-Co	mparison of
revenue requir	rements of alternative plans-Book life and continuing plant analysis- Year by y	ear revenue
requirement a	nalysis, Short term analysis- End of study adjustment-Break even analysis	, sensitivity
analysis - Com	outational aids.	
Contact Perio	ds:	
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications, Ltd., 2010.
 Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design",

Springer Science & Business Media, 21-Mar-2013

3 IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988

4 Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	К3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COs/Pos	P01	PO2	PO3	PO4			
CO1	2	-	1	3			
CO2	3	-	3	2			
CO3	3	-	3	2			
CO4	3	-	3	1			
CO5	2	-	1	2			
23PS0E19	3	-	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT	PATTERN - THI	EORY	ment.	6			
Test /	Rememberin	Understandin	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	g (K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		V.					
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	10%	30%	20%	20%	-	100%
Assessment1		100	Shelling Con				
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	10%	20%	20%	-	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	20%	20%	20%	10%	-	100%

23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS
23P3UE2U	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	NIL	OE	3	0	0	3	
Course	 To acquire expertise on Electric supply and 	l demand of Indian	Grid, g	ain e	xpos	sure	
Objective	on energy trading in the Indian marke	et and infer the e	electrici	ty a	cts	and	
	regulatory authorities.						
UNIT – I	ENERGY DEMAND			9	Peri	ods	
Basic concepts	in Economics - Descriptive Analysis of Energy D	emand - Decompo	sition	Analy	ysis	and	
Parametric Ap	proach - Demand Side Management - Load Manag	gement - Demand	Side M	anag	eme	nt -	
Energy Efficien	cy - Rebound Effect						
UNIT – II	ENERGY SUPPLY			9	Peri	ods	
Supply Behavio	or of a Producer - Energy Investment - Economics of	Non-renewable Res	sources	- Ec	onon	nics	
of Renewable I	Energy Supply Setting the context - Economics of Re	newable Energy Su	pply - I	Econ	omic	s of	
Electricity Supp	oly						
UNIT – III	ENERGY MARKET			9	Peri	ods	
Perfect Compe	tition as a Market Form - Why is the Energy Mark	et not Perfectly Co	mpetiti	ve? -	Maı	rket	
Failure and Mo	nopoly - Oil Market: Pre OPEC Era I - Oil Market: Pre	OPEC Era II - Oil M	arket: (PEC			
UNIT – IV	LAW ON ELECTRICITY			9	Peri	ods	
Introduction o	f the Electricity Law; Constitutional Design - Evo	olution of Laws or	ı Electi	icity	Sal	ient	
Features of Ele	ctricity Act, 2003 - Evolution of Laws on Electricity	- Salient Features of	of the E	lectr	icity	Act	
2003	T /						
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY	ACT		9	Peri	ods	
Regulatory Con	nmissions - Appellate Tribunal - Other Institutions u	nder the Act - Elect	ricity (Amei	ndme	ent)	
Bill 2020/2021	Bill 2020/2021. A Critical Comment - Renewable Energy - Role of Civil Society; Comments on Draft						
Renewable Ene	ergy Act, 2015						
Contact Period	ds:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Period	ls Total: 45 Perio	ods				

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy", Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws" , LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India" , Kluwer Law International, 3rd Edn, The Netherlands,
	2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	Practices" , Cambridge Univesity Press, 2014.

COURS	COURSE OUTCOMES:			
Upon c	ompletion of the course, the students will be able to:	Mapped		
CO1	Describe electric supply and demand of power grid	K1		
CO2	Summarize various energy trading strategies	K2		
CO3	Relate the electricity acts practically	К3		
CO4	Cite the electricity regulatory authorities	K2		
CO5	Analyze/check the existing power grid for its technical and economical	K4		
	sustainability			

COURSE ARTICULATION MATRIX									
COs/Pos	P01	PO2	P03	P04					
CO1	3	-	3	3					
CO2	3	-	1	1					
CO3	3	-	2	2					
CO4	3	-	1	2					
CO5	3	-	3	3					
23PSOE20	3	-	2	2					
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	PATTERN - THE	ORY	ment.				
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		7 0					
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1 / Case study1/ Seminar 1/Project1	20%	30%	30%	20%	-	-	100%
Individual Assessment2 / Case study2/ Seminar 2 / Project2	20%	30%	-	20%	-	40%	100%
ESE	30%	30%	-	20%	20%	-	100%

23PSOE21	MODERN AUTOMOTIVE SYSTEMS
	(Common to all Branches)

PRE REQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	_							
Course	•	To expose the s	tudents wi	th theory and app	olica	tions of Autom	otive E	lectrical and
Objective		Electronic Syst	ems.					
UNIT – I	INTRO	DUCTION TO M	IODERN A	UTOMOTIVE ELE	ECTF	RONICS		9 Period
Introduction t	o modern	automotive sy	stems and	need for electron	nics	in automobiles	s- Role	of electronic
and microcon	trollers-	Sensors and a	actuators-	Possibilities and	l ch	allenges in a	utomot	ive industry
Enabling techr	nologies a	nd industry tre	nds.					
UNIT – II	SENSO	RS AND ACTUA	TORS					9 Period
Introduction-	basic ser	sor arrangeme	nt- Types	of sensors- Oxyg	gen	sensor, engine	crank	shaft angula
				ture sensor- Engi				
-				essure Sensor- Li		_		
				Speed and Accele			nock se	nsor- Torqu
sensor- Yaw ra				ctuators - Stepper				
UNIT – III				MS IN AUTOMOE				9 Period
				ne control systen				
	•		* 1.8%_percent	cceleration- Detor		-		trol - Exhaus
				s- Future automo		powertrain sy	stems.	
UNIT – IV				NIENCE SYSTEM				9 Period
		_		action and Stabi	ility	control- Airb	ag cor	ıtrol system
Suspension co		ering control- H						
UNIT – V		RONIC CONTRO						9 Period
				for ECUs- Advan				
				U's- Architecture				
			sign of auto	omobile ECUs- Oi	n ch	ip peripherals,	, proto	col interfaces
analog and dig		aces.	0.03	owner.				
Contact Perio								
Lecture: 45 P	eriods	Tutorial: 0 Pe	eriods Pi	ractical: 0 Period	ds '	Total: 45 Peri	ods	

- 1 Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley and Sons, 2001.
- 2 M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.
- 3 Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
- 4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering applications	K4
CO4	Develop modern automotive control system for electrical and electronics systems	К6
CO5	Understand the function of sensors and actuators	K2

COURSE ARTICULATION MATRIX								
COs/Pos	P01	P02	P03	P04				
CO1	3	-	1	3				
CO2	3	-	3	2				
CO3	3	-	3	2				
CO4	2	-	3	1				
CO5	2	-	1	2				
23PS0E21	3	provide pul _{antin}	2	2				
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	T. T.	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	30%	20%	30%	-	-	100%		
CAT2	20%	20%	20%	20%	20%	-	100%		
Individual Assessment1 / Case study1/ Seminar 1/Project1	20%	30%		20%	-	30%	100%		
Individual Assessment2 / Case study2/ Seminar 2 / Project2	20%	30%	-	20%	-	40%	100%		
ESE	30%	30%	20%	20%	-	-	100%		

2200000	VIRTUAL INSTRUMENTATION
23PEOE22	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	 To comprehend the Virtual instrumentation programming concepts tow 	To comprehend the Virtual instrumentation programming concepts towards					
Objective	measurements and control and to instill knowledge on DAQ, signal cond	measurements and control and to instill knowledge on DAQ, signal conditioning and					
	its associated software tools						
UNIT – I	INTRODUCTION	7 Periods					
Introduction .	Introduction - advantages - Block diagram and architecture of a virtual instrument - Conventional						

Introduction - advantages - Block diagram and architecture of a virtual instrument - Conventional Instruments versus Traditional Instruments - Data-flow techniques, graphical programming in data flow, comparison with conventional programming.

UNIT - II GRAPHICAL PROGRAMMING AND LabVIEW

9 Periods

Concepts of graphical programming - LabVIEW software - Concept of VIs and sub VI - Display types - Digital - Analog - Chart and Graphs. Loops - structures - Arrays - Clusters- Local and global variables - String - Timers and dialog controls.

UNIT - III MANAGING FILES & DESIGN PATTERNS

11 Periods

High-level and low-level file I/O functions available in LabVIEW – Implementing File I/O functions to read and write data to files – Binary Files – TDMS – sequential programming – State machine programming – Communication between parallel loops –Race conditions – Notifiers & Queues – Producer Consumer design patterns

UNIT – IV PC BASED DATA ACQUISITION

9 Periods

Introduction to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, Resolution, - analog inputs and outputs - Single-ended and differential inputs - Digital I/O, counters and timers, DMA, Data acquisition interface requirements - Issues involved in selection of Data acquisition cards - Use of timer-counter and analog outputs on the universal DAQ card.

UNIT - V DATA ACQUISITION AND SIGNAL CONDITIONING

9 Periods

Components of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ hardware – Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation – Signal conditioning systems – Synchronizing measurements in single & multiple devices – Power quality analysis using Electrical Power Measurement tool kit.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd Edition), Prentice Hall, 2006.
- 2 | Jovitha Jerome, **"Virtual Instrumentation using LabVIEW",** PHI, 2010
- 3 Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional Publishing, 2019
- 4 Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.

5 Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newness, 2000

COURSE OUTCOMES:	was the students will be able to:	Bloom's Taxonomy Mapped
opon completion of the cot	rse, the students will be able to:	маррец
CO1 Describe the graphic	al programming techniques using LabVIEW software.	K2
CO2 Explore the basics of	programming and interfacing using related hardware.	K4
CO3 Analyse the aspects a interfaces.	and utilization of PC based data acquisition and Instrument	K4
CO4 Create programs a application.	nd Select proper instrument interface for a specific	К6
CO5 Familiarize and expe	riment with DAQ and Signal Conditioning	К3

COs/POs	P01	PO2	PO3	PO4	P05
CO1	3	-9° * 32-	3	2	1
CO2	3	Victor in the second	3	2	1
CO3	3		2	2	2
CO4	3	1 1	3	3	1
CO5	3	1	3	3	2
23PE0E22	3	1	3	2	1

ASSESSMENT P	ATTERN - THEOR	Y	SERVER CO.				
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	40	15	15	-	-	100
CAT2	15	10	25	30	20	-	100
Individual	10	10	20	30	20	10	100
Assessment1/							
Case study1/							
Seminar							
1/Project1							
Individual	25	40	20	15	-	-	100
Assessment2/							
Case study2/							
Seminar 2							
/Project2							
ESE	30	25	15	20	5	5	100

22050522	ENERGY MANAGEMENT SYSTEMS
23PEOE23	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

-						
	NIL	OE	3	0	0	3
Course	 To Comprehend energy management scheme 	es, perform energ	y au	dit a	nd e	xecute
Objective	economic analysis and load management in el	ectrical systems.				
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANA	GEMENT			9 P	eriods
Energy Conser	vation Act 2001 and policies – Eight National Missio	ns - Basics of E	nergy	y an	d its	forms
(Thermal and	Electrical) - Energy Management and Audit - Energy	Managers and A	udito	ors -	Тур	es and
Methodology A	Methodology Audit Report - Material and energy balance diagramsEnergy Monitoring and Targeting.					
UNIT - II STUDY OF BOILERS, FURNACES AND COGENERATION						eriods
Boiler Systems	- Types - Performance Evaluation of boilers - Energ	y Conservation C)ppo	rtun	ity -	Steam
Distribution - I	Efficient Steam Utilisation - Furnaces:types and classifi	ication - Perform	ance	eva	luati	on of a
typical fuel fire	typical fuel fired furnace. Cogeneration: Need - Principle - Technical options - classification - Technical					
parameters and	d factors influencing cogeneration choice - Prime Move	rs - Trigeneratior	1.			
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS				9 P	eriods
_	ng – Electricity load management - Maximum Demand				-	
	ts - pf controllers - capacitors - Energy efficient tr					
_	l other factors influencing energy efficiency - Star		_		_	
	ansformers and IM - Analysis of distribution losses - de	emand side manaş	geme	ent -	harı	monics
- filters - VFD a	and its selection.					
UNIT – IV	STUDY OF ELECTRICAL UTILITIES				-	eriods
	pes - Performance - Air system components - Efficient o	-			-	
	apacity assessment - HVAC: psychrometrics and air					
refrigeration s	ystem - Compressor types and applications - Perfo	ormance assessm	ent	of re	efrige	eration
plants - Lightin	plants - Lighting Systems: Energy efficient lighting controls - design of interior lighting - Case study.					
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMENT					eriods
	nancial analysis: Fixed and variable costs – Payback	•				
affecting analys	sis. Energy Performance Assessment: Heat exchangers	s - Fans and Blow	ers -	Pun	nps.	Energy
Conservation in	Conservation in buildings and ECBC.					

Conservation in buildings and ECBC.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES:

1 | Murphy W.R. and G.Mckay Butter worth, "Energy Management", Heinemann Publications, 2007 2 | Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River Publishers, 2012. 3 Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second edition, Technical Publications, 2019. S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali Prakashan Publications, 2021.

5 www.em-ea.org/gbook1.asp

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	КЗ
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

COs/POs	P01	PO2	PO3	P04	P05
CO1	3	2	2	1	1
CO2	3	2	2	1	1
CO3	3	2	2	1	1
CO4	3	2	2	1	1
CO5	3	2	2	1	1
23PE0E23	3	2	2	1	1

ASSESSMENT	PATTERN - THE	ORY	(20X)				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1 / Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100
Individual Assessment2 / Case study2/ Seminar 2 / Project2	-	30	30	20	20	•	100
ESE	10	30	30	20	10	-	100

23PE0E24

ADVANCED ENERGY STORAGE TECHNOLOGY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To explore the fundamentals, technologies and applications of energy s	storage
Objective		
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND	9 Periods
	CHANGES	

Storage Needs- Variations in Energy Demand- Variations in Energy Supply- Interruptions in Energy Supply- Transmission Congestion - Demand for Portable Energy-Demand and scale requirements - Environmental and sustainability issues-conventional energy storage methods: battery-types.

UNIT - II TECHNICAL METHODS OF STORAGE

9 Periods

Introduction: Energy and Energy Transformations, Potential energy (pumped hydro, compressed air, springs)- Kinetic energy (mechanical flywheels)- Thermal energy without phase change passive (adobe) and active (water)-Thermal energy with phase change (ice, molten salts, steam)- Chemical energy (hydrogen, methane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electrostatic energy (capacitors), Electromagnetic energy (superconducting magnets)- Different Types of Energy Storage Systems.

UNIT – III PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS

9 Periods

Energy capture rate and efficiency- Discharge rate and efficiency- Dispatch ability and load flowing characteristics, scale flexibility, durability – Cycle lifetime, mass and safety – Risks of fire, explosion, toxicity- Ease of materials, recycling and recovery- Environmental consideration and recycling, Merits and demerits of different types of Storage.

UNIT - IV APPLICATION CONSIDERATION

9 Periods

Comparing Storage Technologies- Technology options- Performance factors and metrics- Efficiency of Energy Systems- Energy Recovery - Battery Storage System: Introduction with focus on Lead Acid and Lithium- Chemistry of Battery Operation, Power storage calculations, Reversible reactions, Charging patterns, Battery Management systems, System Performance, Areas of Application of Energy Storage: Waste heat recovery, Solar energy storage, Green house heating, Power plant applications, Drying and heating for process industries, energy storage in automotive applications in hybrid and electric vehicles.

UNIT - V HYDROGEN FUEL CELLS AND FLOW BATTERIES

9 Periods

Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage: Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
- 2 Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.
- 3 Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
- 4 Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

COUR	COURSE OUTCOMES:			
Upon	completion of the course, the students will be able to:	Mapped		
CO1	Recollect the historical perspective and technical methods of energy storage.	K1		
CO2	Explain the basics of different storage methods.	K2		
CO3	Determine the performance factors of energy storage systems.	K2		
CO4	Identify applications for renewable energy systems.	K4		
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2		

COURSE ARTICULATION MATRIX					
COs/POs	P01	P02	PO3	P04	P05
CO1	3	27.1	3	3	3
CO2	3	1	3	3	3
CO3	3	1 -	3	3	3
CO4	3	1	3	3	3
CO5	3	1	3	3	3
23PE0E24	3	0 1	3	3	3
1 – Slight, 2 – Moderate, 3 -	- Substantial		2		

CONTRACTOR OF THE PARTY OF THE

ASSESSMENT	PATTERN - THE	ORY	SECTION .				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

22450525	DESIGN OF DIGITAL SYSTEMS
23AE0E25	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective

• To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential circuits, PLD's and the basic concepts of testing in VLSI circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart -ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Asynchronous Sequential Circuits - Races in ASC - Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table - Design of ASC - Static and Dynamic Hazards - Essential Hazards - Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

9 Periods

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) –Design of combinational and sequential circuits using PLDs–Complex PLDs (CPLDs).

UNIT-IV INTRODUCTION TO VHDL

9 Periods

Design flow -Software tools – VHDL: Data Objects-Data types – Operators –Entities and Architectures – Components and Configurations – Signal Assignment – Concurrent and Sequential statements ––Behavioral, Dataflow and Structural modeling– Transport and Inertial delays –Delta delays-Attributes - Generics–Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

9 Periods

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods:

Lecture:45Periods Tutorial:0Periods Practical: 0Periods Total: 45Periods

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni,"Circuit Design withVHDL",PHILearning,2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", Academic Press, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage 2nd Edition 2012.
6	NripendraN.Biswas," Logic Design Theory "PrenticeHallofIndia,2001.

COUR	SEOUTCOMES:	Bloom's Taxonomy
Upon	completion of the course ,students will be able to/have:	Mapped
CO1	To design synchronous sequential circuits based on specifications.	К3
CO2	To design asynchronous sequential circuits based on specifications	К3
CO3	Ability to illustrate digital design implementation using PLDs.	K2
CO4	To develop algorithm and VHDL code for design of digital circuits.	К3
CO5	Understand the different testing methods for combinational and sequential	K2
	circuits.	

COs/POs	P01	PO2	P03	P04	P05	P06
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
23AE0E25	3	-	2	-	-	1
– Slight, 2 – Mode	rate, 3 – Subs	tantial	The second	200		ı

ASSESSMENT PA	ATTERN - THEOR	Y					
Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	0			100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	20%	45%	35%				100%

23AE0E26

BASICS OF NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective

 The students will be able to acquire knowledge about nano device fabrication technology, nano structures, nano technology for memory devices and applications of nano electronics in data transmission.

UNIT - I TECHNOLOGY AND ANALYSIS

9 Periods

Fundamentals: Dielectric, Ferroelectric and Optical properties - Film Deposition Methods – Lithography Material removing techniques - Etching and Chemical Mechanical Polishing - Scanning Probe Techniques.

UNIT - II CARBON NANO STRUCTURES

9 Periods

Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechanical and Vibration Properties - Applications of Carbon Nano tubes.

UNIT - III LOGIC DEVICES

9 Periods

Silicon MOSFET's: Novel materials and alternative concepts - Single electron devices for logic applications - Super conductor digital electronics - Carbon Nano tubes for data processing.

UNIT - IV MEMORY DEVICES AND MASS STORAGE DEVICES

9 Periods

Flash memories - Capacitor based Random Access Memories - Magnetic Random Access Memories - Information storage based on phase change materials - Resistive Random Access Memories - Holographic Data storage.

UNIT - V DATA TRANSMISSION AND INTERFACING DISPLAYS

9 Period

Total: 45 Periods

Photonic Networks - RF and Microwave Communication System - Liquid Crystal Displays - Organic Light emitting diodes.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, students will be able to/have:	Mapped
CO1	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
CO4	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COs/POs	P01	PO2	PO3	P04	P05	P06	
C01	3	-	2	-	-	1	
CO2	3	-	2	-	-	1	
CO3	3	-	2	-	-	1	
CO4	3	-	2	-	-	1	
CO5	3	-	2	-	-	1	
23AE0E26	3	-	2	-	-	1	
– Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creati ng (K6) %	Total %	
CAT1	50%	25%	25%				100%	
CAT2	50%	25%	25%				100%	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%				100%	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%	
ESE	50%	25%	25%				100%	

23AE0E27	ADVANCED PROCESSORS
	(Common to all Branches)

PRE REQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT - I MICROPROCESSOR ARCHITECTURE

9 Periods

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISC versus CISC – RISC properties – RISC evaluation.

UNIT - II HIGH PERFORMANCE CISC ARCHITECTURE -PENTIUM

9 Periods

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – Theinstruction and caches – Floating point unit – Programming the Pentium processor.

UNIT - III HIGH PERFORMANCE CISC ARCHITECTURE - PENTIUM INTERFACE

9 Periods

Protected mode operation – Segmentation – paging – Protection – multitasking – Exception and interrupts - Input /Output – Virtual 8086 model – Interrupt processing.

UNIT - IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

9 Periods

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT - V SPECIAL PURPOSE PROCESSORS

9 Periods

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System -On -Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, " The Intel Microprocessors Architecture, Programming and Interfacing ", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	COURSE OUTCOMES:						
Upon	Upon completion of the course, students will be able to						
CO1	Describe the fundamentals of various processor architecture.	K2					
CO2	Interpret and understand the high performance features in CISC	K2					
	architecture.						
CO3	Describe the concepts of Exception and interrupt processing.	K2					
CO4	Develop programming skill for ARM processor.	К3					
CO5	Explain various special purpose processor	K2					

COs/POs	P01	P02	PO3	P04	P05	P06
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
23AE0E27	3	-	2	-	-	1
- Slight, 2 – Moderat	e, 3 – Substant	tial	Secretary and the second		•	

ASSESSMENT PA	TTERN - THEO	RY	E TOTAL PARTY				
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	30%	40%	30%				100%

23VL0E28	HDL PROGRAMMING LANGUAGES
ZSVEOLZO	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To gode and simulate any digital function in Verilog HDL and	understand the				
	To code and simulate any digital function in Verilog HDL and difference by the simulate any digital function in Verilog HDL and difference by the simulate any digital function in Verilog HDL and difference by the simulate any digital function in Verilog HDL and					
Objective	difference between synthesizable and non-synthesizable code	1				
UNIT – I	VERILOG INTRODUCTION AND MODELING	9 Periods				
Introduction t	l o Verilog HDL, Language Constructs and Conventions, Gate Level Mod	eling, Modeling				
at Dataflow I	at Dataflow Level, Behavioral Modeling, Switch Level Modeling, System Tasks, Functions and					
Compiler Dire	ctives.					
UNIT – II	SEQUENTIAL MODELING AND TESTING	9 Periods				
=	dels - Feedback Model, Capacitive Model, Implicit Model, Basic Memor	-				
Functional Re	egister, Static Machine Coding, Sequential Synthesis. Test Bench -	Combinational				
Circuits Testin	ng, Sequential Circuit Testing, Test Bench Techniques, Design Verifica	ation, Assertion				
Verification.						
UNIT – III	SYSTEM VERILOG	9 Periods				
	System Verilog declaration spaces, System Verilog Literal Values an					
	Verilog User-Defined and Enumerated Types, system Verilog Arrays,	Structures and				
Unions, systen	n verilog Procedural Blocks, Tasks and Functions.					
UNIT – IV	SYSTEM VERILOG MODELING	9 Periods				
System Verilo	g Procedural Statements, Modeling Finite State Machines with Sys	stem Verilog,				
	g Design Hierarchy.					
UNIT – V	INTERFACES AND DESIGN MODEL	9 Periods				
=	og Interfaces, A Complete Design Modeled with System Verilog, I	Behavioral and				
Transaction Le	evel Modeling.					
Contact Perio	ods:					
Lecture: 45 P	eriods Tutorial:0 Periods Practical:0 Periods Total: 45 Perio	ods				

1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL" ,Wiley 2009.						
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, " System Verilog						
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and						
	Modelling", Springer 2006.						
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.						
4	ZainalabdienNavabi," Verilog Digital System Design" ,TMH,2ndEdition,2005.						
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004						
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of						
	Projects on FPGAs and ASICs Using Verilog", Springer, 2007.						
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language						
	Features", Springer 2006.						
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to						
	Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003						

COUR	SE OUTCOMES:	Bloom's			
	Taxonomy				
Upon	Mapped				
CO1	CO1 Explain the verilog coding and simulate any digital function using				
	Verilog HDL				
CO2	Develop sequential modeling based Verilog HDL code and develop	К3			
	the test bench for the modeling				
CO3	Explain the system verilog modeling	K2			
CO4	Differentiate the synthesizable and non-synthesizable code	К3			
CO5	Apply good coding techniques on system verilog interfaces and	К3			
	complete design model				

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3		2		2
CO2	3	3		2		2
CO3	3	3		2		2
CO4	3	3		2		2
CO5	3	3		2		2
23VLOE28	3	3	GENNAND	2		2
1 – Slight, 2 – Mod	erate, 3 – Subs	stantial	202	7		· ·

ASSESSMEN'	T PATTERN – THE	ORY	Van N				
Test / Bloom's	Remembering (K1) %	Understandin g (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	40%	40%	20%	§ -	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

	CMOC VI SI DESIGN
23VL0E29	CMOS VLSI DESIGN
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective To gain knowledge on CMOS Circuits with its characterization and to design CMOS logic and sub-system with low power WNIT - I INTRODUCTION TO MOS CIRCUITS MOS Transistor Theory -Introduction MOS Device Design Equations -MOS Transistor as a Switches - Pass Transistor - CMOS Transmission Gate -Complementary CMOS Inverter - Static Load MOS Inverters - Inverters with NMOS loads - Differential Inverter - Tri State Inverter - BiCMOS Inverter. UNIT - II CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION 9 Periods Delay Estimation, Logical Effort and Transistor Sizing, Power Dissipation, Sizing Routing Conductors, Charge Sharing, Design Margin and Reliability. UNIT - III CMOS CIRCUIT AND LOGIC DESIGN 9 Periods CMOS Logic Gate Design, Physical Design of CMOS Gate, Designing with Transmission Gates, CMOS Logic Structures, Clocking Strategies, I/O Structures. UNIT - IV CMOS SUBSYSTEM DESIGN 9 Periods DataPath Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods Lecture: 45 Periods Tutorial: O Periods Practical: O Periods Total: 45 Periods										
UNIT - I INTRODUCTION TO MOS CIRCUITS MOS Transistor Theory -Introduction MOS Device Design Equations -MOS Transistor as a Switches - Pass Transistor - CMOS Transmission Gate -Complementary CMOS Inverter - Static Load MOS Inverters - Inverters with NMOS loads - Differential Inverter - Tri State Inverter - BiCMOS Inverter. UNIT - II CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION 9 Periods Delay Estimation, Logical Effort and Transistor Sizing, Power Dissipation, Sizing Routing Conductors, Charge Sharing, Design Margin and Reliability. UNIT - III CMOS CIRCUIT AND LOGIC DESIGN 9 Periods CMOS Logic Gate Design, Physical Design of CMOS Gate, Designing with Transmission Gates, CMOS Logic Structures, Clocking Strategies, I/O Structures. UNIT - IV CMOS SUBSYSTEM DESIGN 9 Periods DataPath Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	Course	To gain knowledge on CMOS Circuits with its characterization	and to design							
MOS Transistor Theory -Introduction MOS Device Design Equations -MOS Transistor as a Switches - Pass Transistor - CMOS Transmission Gate -Complementary CMOS Inverter - Static Load MOS Inverters - Inverters with NMOS loads - Differential Inverter - Tri State Inverter - BiCMOS Inverter. UNIT - II	Objective	Objective CMOS logic and sub-system with low power								
MOS Transistor Theory -Introduction MOS Device Design Equations -MOS Transistor as a Switches - Pass Transistor - CMOS Transmission Gate -Complementary CMOS Inverter - Static Load MOS Inverters - Inverters with NMOS loads - Differential Inverter - Tri State Inverter - BiCMOS Inverter. UNIT - II										
Pass Transistor - CMOS Transmission Gate -Complementary CMOS Inverter - Static Load MOS Inverters - Inverters with NMOS loads - Differential Inverter - Tri State Inverter - BicMOS Inverter. UNIT - II	UNIT - I INTRODUCTION TO MOS CIRCUITS 9 Periods									
Inverters - Inverters with NMOS loads - Differential Inverter - Tri State Inverter - BiCMOS Inverter. UNIT - II	MOS Transisto	r Theory -Introduction MOS Device Design Equations -MOS Transistor a	s a Switches -							
Delay Estimation, Logical Effort and Transistor Sizing, Power Dissipation, Sizing Routing Conductors, Charge Sharing, Design Margin and Reliability. UNIT - III CMOS CIRCUIT AND LOGIC DESIGN 9 Periods CMOS Logic Gate Design, Physical Design of CMOS Gate, Designing with Transmission Gates, CMOS Logic Structures, Clocking Strategies, I/O Structures. UNIT - IV CMOS SUBSYSTEM DESIGN 9 Periods DataPath Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	Pass Transisto	or - CMOS Transmission Gate -Complementary CMOS Inverter - Stat	ic Load MOS							
Delay Estimation, Logical Effort and Transistor Sizing, Power Dissipation, Sizing Routing Conductors, Charge Sharing, Design Margin and Reliability. UNIT - III CMOS CIRCUIT AND LOGIC DESIGN 9 Periods CMOS Logic Gate Design, Physical Design of CMOS Gate, Designing with Transmission Gates, CMOS Logic Structures, Clocking Strategies, I/O Structures. UNIT - IV CMOS SUBSYSTEM DESIGN 9 Periods DataPath Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	Inverters - Inve	erters with NMOS loads - Differential Inverter - Tri State Inverter - BiCM	OS Inverter.							
Conductors, Charge Sharing, Design Margin and Reliability. UNIT - III	UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Periods							
UNIT - III CMOS CIRCUIT AND LOGIC DESIGN 9 Periods CMOS Logic Gate Design, Physical Design of CMOS Gate, Designing with Transmission Gates, CMOS Logic Structures, Clocking Strategies, I/O Structures. UNIT - IV CMOS SUBSYSTEM DESIGN 9 Periods DataPath Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizir	ng Routing							
CMOS Logic Gate Design, Physical Design of CMOS Gate, Designing with Transmission Gates, CMOS Logic Structures, Clocking Strategies, I/O Structures. UNIT - IV CMOS SUBSYSTEM DESIGN 9 Periods DataPath Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	Conductors, Charge Sharing, Design Margin and Reliability.									
CMOS Logic Structures, Clocking Strategies, I/O Structures. UNIT - IV	UNIT - III CMOS CIRCUIT AND LOGIC DESIGN 9 Periods									
UNIT - IV CMOS SUBSYSTEM DESIGN 9 Periods DataPath Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	CMOS Logic Gate Design, Physical Design of CMOS Gate, Designing with Transmission Gates,									
DataPath Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	CMOS Logic Structures, Clocking Strategies, I/O Structures.									
Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods							
Implementation. UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	DataPath Oper	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,							
UNIT - V LOW POWER CMOS VLSI DESIGN 9 Periods Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach - Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	1790. 30. 0 //									
Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in CMOS, Low-Power Design through Voltage Scaling – VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach – Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:										
CMOS, Low-Power Design through Voltage Scaling – VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach – Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	UNIT – V	LOW POWER CMOS VLSI DESIGN	9 Periods							
Architectural Level Approach – Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design. Contact Periods:	Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in									
CMOS Gate and Adder Design. Contact Periods:										
Contact Periods:	ZAV ME TO AZ									
	CMOS Gate and									
	Contact Perio	de								
			is							

	A LIKE TODO!
1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-
	Graw Hill, 2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley,1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo,Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Ian M.Rabaev. "Diaital Integrated Circuits: A Design Perspective". Pearson Education, 2003.

COUF	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
C01	Explain the MOS circuits and Transmission gates	K2		
CO2	Illustrate the CMOS Circuits with its characterization	K2		
CO3	Design CMOS logic circuits	К3		
CO4	Design CMOS sub-system	КЗ		
CO5	Discuss low power CMOS VLSI Design	K2		

CO1 2 1 - 2 - 3 CO2 2 1 - 2 - 3 CO3 2 1 - 2 - 3 CO4 3 1 - 2 - 3 CO5 3 1 - 2 - 3	COURSE ARTICULATION MATRIX								
CO2 2 1 - 2 - 3 CO3 2 1 - 2 - 3 CO4 3 1 - 2 - 3 CO5 3 1 - 2 - 3	COs/POs	P01	P02	P03	P04	P05	P06		
CO3 2 1 - 2 - 3 CO4 3 1 - 2 - 3 CO5 3 1 - 2 - 3	CO1	2	1	-	2	-	3		
CO4 3 1 - 2 - 3 CO5 3 1 - 2 - 3	CO2	2	1	-	2	-	3		
CO5 3 1 - 2 - 3	CO3 2 1 - 2 - 3								
	CO4	3	1	-	2	-	3		
23VL0E29 3 1 - 2 - 3	CO5	3	1	-	2	-	3		
	23VLOE29	3	1	Common .	2	•	3		
1 – Slight, 2 – Moderate, 3 – Substantial	1 – Slight, 2 – Mod	erate, 3 – Sub	stantial		50		1		

ASSESSMENT	PATTERN - TH	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		(A)		à.			
CAT1	40%	40%	20%	9	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

23VL0E30	HIGH LEVEL SYNTHESIS
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	 To provide students with foundations in High level synthes 	sis, verification						
Objective and CAD Tools								
UNIT – I	()							
Overview HLS	flow, Scheduling Techniques, Resource sharing and Binding Techniq	ues, Data-path						
and Controller	Generation Techniques.							
UNIT – II	HIGH LEVEL SYNTHESIS	9 Periods						
Introduction to	o HDL, HDL to DFG, operation scheduling: constrained and unconstrair	ned scheduling,						
ASAP, ALAP, I	ist scheduling, Force directed Scheduling, operator binding, Static Ti	ming Analysis:						
Delay models,	setup time, hold time, cycle time, critical paths, Topological mvs.	Logical timing						
analysis, False	analysis, False paths, Arrival time (AT), Required arrival Time (RAT), Slacks.							
UNIT - III HIGH-LEVEL SYNTHESIS VERIFICATION 9 Periods								
Simulation based verification - Formal Verification of digital systems- BDD based approaches,								
functional equ	ivalence, finite state automata, ω-automata, FSM verification.							
UNIT – IV	CAD TOOLS FOR SYNTHESIS	9 Periods						
CAD tools for synthesis, optimization, simulation and verification of design at various levels as well								
as for special	realizations and structures such as microprogrammes, PLAs, ga	te arrays etc.						
Technology mapping for FPGAs. Low power issues in high level synthesis and logic synthesis.								
UNIT - V ADVANCED TOPICS 9 Periods								
Relative Scheduling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling								
modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level								
Synthesis for FPGA.								
Contact Perio	ds:							
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

Erences:
Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
Springer, 2008.
Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
Synchronization Constraints", Kluwer Academic Publishers, 1992.
K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999,
Wiley.
Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System
Design and Analysis ", Springer,2006.

	completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the fundamentals of High level synthesis	K2
CO2	Synthesis the HDL for operation scheduling	K2
CO3	Simulate and verify any digital systems	K2
CO4	Apply CAD tools for synthesis	K2
CO5	Have knowledge on various scheduling modes	К2

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	P05	P06
CO1	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VLOE30	2	2	-	2	2	-

ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50%	50%	N. X.	-	-	-	100%
CAT2	50%	50%	V (1)	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	50%	50%		-	-	-	100%

ARTIFICIAL INTELLIGENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Identify and apply AI techniques in the design of system	ems that act intelligently,				
Objective	making automatic decisions and learn from experience.	Ç ,				
UNIT - I	SEARCH STRATEGIES	9 Periods				
Uninformed S	Uninformed Strategies - BFS, DFS, Djisktra, Informed Strategies - A* search, Heuristic functions, Hill					
Climbing, Adv	ersarial Search – Min-max algorithm, Alpha-beta Pruning					
UNIT – II	PLANNING AND REASONING	9 Periods				
State Space se	earch, Planning Graphs, Partial order planning, Uncertain Reasoning	- Probabilistic Reasoning,				
Bayesian Netv	vorks, Dempster Shafer Theory, Fuzzy logic					
UNIT – III	PROBABILISTIC REASONING	9 Periods				
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dyn	namic Bayesian Networks.				
Knowledge Ro	epresentations – Ontological Engineering, Semantic Networks and d	escription logics.				
UNIT – IV	DECISION MAKING	9 Periods				
Utility Theory	y, Utility Functions, Decision Networks – Sequential Decision Proble	ems – Partially Observable				
MDPs - Game	Theory.					
UNIT – V	REINFORCEMENT LEARNING	9 Periods				
Reinforcement Learning - Passive and active reinforcement learning - Generations in Reinforcement						
Learning - Policy Search - Deep Reinforcement Learning.						
Contact Perio	Contact Periods:					
Lecture: 45 F	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010.
4	Elaine Rich,Kevin Knight,Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,
	2009.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	К3
CO3	Examine data using statistical codes and solve complex AI problems	K6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	К6

COURSE ARTICULATION MATRIX							
COs/POs	PO 1	P02	PO 3	PO 4	P05	P06	
CO1	3		2		3	3	
CO2	3		2		3	3	
CO3	3		3		3	3	
CO4	3		3		3	3	
CO5	3		3		3	3	
23CSOE31	3		3		3	3	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT	ASSESSMENT PATTERN - THEORY								
Test /	Remembering		Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1		20	40	20	20		100		
CAT2		10	20	40	10	20	100		
Individual									
Assessment									
1/ Case		0.00	R. Ban		50	50	100		
study 1/		7.5%		3	30	30	100		
Seminar 1/		7/4	The state of the						
Project 1			7	7					
Individual) "							
Assessment		9	169631.						
2/ Case		f :	0		50	50	100		
study 2/		(A).	F	à.	30	30	100		
Seminar 2/		(20		9					
Project 2		73							
ESE	30	30	40				100		

23CSOE32

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	 After the completion of the course, the students will be 	able to understand the			
Objective	concept of layering in networks, functions of protocols of each layer of TCP/IP				
	protocol suite, concepts related to network addressing and routing and build				
	simple LANs, perform basic configurations for route				
	implement IPv4 and IPv6 addressing schemes using Cisco	Packet Tracer.			
UNIT – I	INTRODUCTION AND APPLICATION LAYER	9 Periods			
<u> </u>	k – Network Edge and Core – Layered Architecture – OSI Model				
	rking Devices: Hubs, Bridges, Switches, Routers, and Gateways –				
	rking - Introduction to Sockets - Application Layer protocols	- HTTP - FTP Email			
Protocols – DNS.					
UNIT – II	TRANSPORT LAYER AND ROUTING	9 Periods			
	functions –User Datagram Protocol – Transmission Control Pro				
	Strategies - Congestion Control - Routing Principles - Distance				
_	RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case	Study: Configuring RIP,			
OSPF BGP using					
UNIT - III	NETWORK LAYER	9 Periods			
	Switching concepts – Internet Protocol – IPV4 Packet Format – IP A	9			
	Domain Routing (CIDR) – Variable Length Subnet Mask (VLSM) –				
	tion (NAT) – ICMP – Concept of SDN.Case Study: Configuring V	LAN, DHCP, NAT using			
Packet tracer		0.7.1.1			
UNIT - IV	INTERNETWORK MANAGEMENT	9 Periods			
	the Cisco IOS - Router User Interface – CLI - Router and Switch Ad				
	es - Viewing, Saving, and Erasing Configurations - Switching				
	ging Configuration Registers - Backing Up and Restoring IOS - Ba	- ·			
	n - Using Discovery Protocol (CDP) - Checking Network Connectivi				
UNIT - V	TRAFFIC MANAGEMENT AND WAN PROTOCOLS	9 Periods			
0 0	with Access Lists: Introduction to Access Lists - Standard Access				
	Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to				
Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol -					
Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated					
Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR Contact Periods:					
Contact Periods); 				

REFERENCES:

Lecture: 45 Periods

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh
	Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

	OUTCOMES: upletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	КЗ
CO4	Build simple LANs, perform basic configurations for routers and switches	К6
CO5	Illustrate various WAN protocols	K2

		P02	P03	PO4	P05	P06
CO1	3		3		2	1
CO2	3		3		2	2
CO3	3		3		3	2
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE32	3	0.00	3		3	2
1 – Slight, 2 – Mode	erate, 3 – Sul	bstantial				

		V 2					
ASSESSMEN	Γ PATTERN – TH	EORY	110	c			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*	20	20	20	20			400
CAT1	30	30	20	20			100
CAT2		30	20	30	10	10	100
Individual	10	30	20	20	20		100
Assessment							
1 /Case							
Study 1 /							
Seminar 1 /							
Project 1							
Individual		20	20	20	20	20	100
Assessment							
2 / Case							
Study 2/							
Seminar 2/							
Project 2							
ESE	20	40	40				100

	BLOCKCHAIN TECHNOLOGIES
23CSOE33	(Common to all Branches)

PRE REQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	• The objective of the course is to explore basics of block ch	ain technology
Objective	and its application in various domain	
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	9 Periods
History of Blo	ockchain - Types of blockchain- CAP theorem and blockchain -	- benefits and
Limitations of	Blockchain - Decentalization using blockchain - Blockchain im	plementations-
Block chain in	practical use - Legal and Governance Use Cases	
UNIT – II	BITCOIN AND CRYPTOCURRENCY	9 Periods
Introduction to	Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	Developments,
	s, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM	-
	Problem, Blockchain and Digital Currency, Transactional Block	-
=	chnology on Cryptocurrency	, 1
	ETHEREUM	9 Periods
Introduction t	o Ethereum, Consensus Mechanisms, Metamask Setup, Ethereu	
	Receiving Ethers, Smart Contracts	, ,
	HYPERLEDGER AND SOLIDITY PROGRAMMING	9 Periods
	o Hyperledger, Distributed Ledger Technology & its Challenges,	
Dietributed I	angar Lachnology Hynarlangar Hanric Hynarlangar Lomnos	car Solidity -
	edger Technology, Hyperledger Fabric, Hyperledger Compos with solidity	ser. Solidity –
Programming [*]		
Programming VIVIT – V	with solidity BLOCKCHAIN APPLICATIONS	9 Periods
Programming UNIT - V Ten Steps to be	with solidity BLOCKCHAIN APPLICATIONS uild your Blockchain application – Application: Internet of Things, I	9 Periods
Programming UNIT - V Ten Steps to be	with solidity BLOCKCHAIN APPLICATIONS uild your Blockchain application – Application: Internet of Things, I ystem, Domain Name Service and Future of Blockchain, Alt Coins	9 Periods

- 1 Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
- 2 Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions", McGraw Hill Education ,2018.
- 3 Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016.
- 4 Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
- 5 Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018
- 6 NPTEL Course: Blockchain and its applications
 https://archive.nptel.ac.in/courses/106/105/106105235/

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:		
CO1	Comprehend the working of Blockchain technology	K2	
	Narrate working principle of smart contracts and create them using solidity for given scenario.	К3	
CO3	Comprehend the working of Hyperledger in an real time application	K2	
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	КЗ	
CO5	Develop applications on Blockchain	К3	

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	PO3	P04	P05	P06
CO1	2		3	2		3
CO2	2	3	3	3	2	3
CO3	3		3	2		3
CO4	3	3	3	3	2	3
CO5	3	3	3	3	2	3
23CSOE33	3	3	3	3	2	3
1 - Slight, 2 - Moderate, 3 - Substantial						

ACCECCMENT DAT	TTEDN THEODY						
ASSESSMENT PAT		720, 30	- 1		I	1	1
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
		1 27					
CAT1	20	40	40				100
CAT2	20	30	50				100
Individual Assessment 1		30	70				100
/Case Study 1/							
Seminar 1 /							
Project1							
Individual Assessment 2 /Case Study 2/		40	60				100
Seminar 2 / Project 2							
ESE	10	60	30				100

23AEACZ1

ENGLISH FOR RESEARCH PAPER WRITING

(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	 The objective of the course is to make the learners understand t 	the format and			
Objective	intricacies involved in writing a research paper.				
UNIT - I	PLANNING AND PREPARATION	6 Periods			
Need for publishin	g articles, Choosing the journal, Identifying a model journal paper, Crea	tion of files for			
each section, Expectations of Referees, Online Resources.					
UNIT – II	II SENTENCES AND PARAGRAPHS 6 Periods				
Basic word in En	glish, Word order in English and Vernacular, placing nouns, Verbs, A	Adjectives, and			
Adverb suitably in	Adverb suitably in a sentence, Using Short Sentences, Discourse Markers and Punctuations- Structure of a				
Paragraph, Breakir	ng up lengthy Paragraphs.				
UNIT - III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	6 Periods			
Accuracy, Brevity	and Clarity in Writing, Reducing the linking words, Avoiding redundance	cy, Appropriate			
use of Relative and	d Reflexive Pronouns, Monologophobia, verifying the journal style, Logic	cal Connections			
between others au	thor's findings and yours.				
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods			
Making your findi	ngs stand out, Using bullet points headings, Tables and Graphs- Availing	g non-experts			
opinions, Hedging,	Toning Down Verbs, Adjectives, Not over hedging, Limitations of your re	search.			
UNIT – V	SECTIONS OF A PAPER	6 Periods			
Titles, Abstracts,	Introduction, Review of Literature, Methods, Results, Discussion	, Conclusions,			
References.	W. X.				
Contact Periods:					
Lecture: 30 Perio	Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods				

1	rt R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book,
	1998.
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht
	Heidelberg London, 2011.

COURSE O	UTCOMES:	Bloom's
		Taxonomy
Upon comp	oletion of this course the learners will be able to	Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph	K4
	writing.	
CO3	Practice unambiguous writing.	К3
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	К3

COs/POs	P01	PO2	P03	P04	P05	P06	
CO1	3	3	1	1	1	1	
CO2	3	3	1	1	1	1	
CO3	3	3	1	1	1	1	
CO4	3	3	1	1	1	1	
CO5	3	3	~~~~ <u>1</u>	1	1	1	
23AEACZ1	3	3	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	TTERN - THEO	RY	1 J. (8)				
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applyin g (K3)	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6)	Tota 1%
dutegory	118 (111) /0	(1.2) /6	%	8 (111) /0	g (110) /0	%	1 70
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	-	50	50	-	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100
ESE	30	30	40	-	-	-	100

22 A E A C 72	DISASTER MANAGEMENT
23AEACZ2	(Common to all branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

	NIL			U	U	U
Course Objectives	ectives disaster and area of occurrence.					
	To know the various steps in disaster plan	•				
	To create awareness on disaster preparedness and management.					
UNIT – I	INTRODUCTION				Perio	
	, Factors and Significance; Difference between Hazard					
	e, Nature, Types and Magnitude. Areas proneto ,Earth	*	ughts	s, Lar	ıdsli	des ,
Avalanches ,Cyclon	e and Coastal Hazards with Special Reference to Tsuna	mi.				
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS 6 Perio				ods	
Economic Damage,	Loss of Human and Animal Life, Destruction of Ecosys	tem. Natural Disas	ters:	Eart	hqua	akes,
Volcanisms, Cyclon	es, Tsunamis, Floods, Droughts and Famines, Land	dslides and Avala	nche	s, M	lan-n	nade
disaster: Nuclear F	Reactor Meltdown, Industrial Accidents, Oil Slicks ar	nd Spills, Outbreal	ks of	Dis	ease	and
Epidemics, War and	Conflicts.					
UNIT – III	DISASTER PLANNING			61	Perio	ods
	Disaster Response Personnel roles and duties, Comm					aster
Mitigation Plan, Per	sonnel Training, Comprehensive Emergency Managem	ent, Early Warning	រូ Syst	tems		
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT			6 I	Perio	ods
Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of						
Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community						
Preparedness.						ļ
UNIT - V	RISK ASSESSMENT			61	Perio	ods
Disactor Pick Con	Disactor Pick: Concent and Flamente Disactor Pick Poduction Clobal and National Disactor Pick Situation					

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment, Strategies for Survival.

Contact Periods:

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies",
	New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India,
	New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep
	Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International
	Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann,
	2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUF	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	T.F.
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COs/POs	P01	PO2	P03	P04	PO5			
CO1	2	1	1	2	2			
CO2	1	2	1	1	1			
CO3	1	1	1	2	2			
CO4	1	1	1	2	2			
CO5	2	1	1	2	2			
23AEACZ2	1	1	1	2	2			
- Slight, 2 - Moderate, 3 - Substantial								

ASSESSMENT	Γ PATTERN – THE	EORY	-	7			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	The Man	24			100
CAT2		196	100	7			100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

22171272	VALUE EDUCATION
23AEACZ3	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	Value of education and self- development				
Objectives	Requirements of good values in students				
	Importance of character				
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods			
Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non-moral valuation. Standards and principles. Value judgements.					
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods			
Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious					
tolerance. UNIT – III	VALUES IN HUMAN LIFE	6 Periods			
	Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration.				
	liness. Honesty, Humanity. Power of faith, National Unity. Pat				
UNIT – IV	VALUES IN SOCIETY	6 Periods			
-	True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association andCooperation. Doing best for saving nature.				
UNIT – V	POSITIVE VALUES	6 Periods			
Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of					
reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your					
Mind, Self-control. H	onesty, Studying effectively.				
Contact Periods:					
Lecture: 30 Period:	s Tutorial: 0 Periods Practical: 0 Periods Total: 30 Perio	ods			

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University
	Press,New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education" , A.P.H Publishing Corporation,New Delhi,2010
3	R.P Shukla, "Value Education and Human Rights" , Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon completion of the course, the students will be able to:		Mapped		
CO1	Know the values and work ethics.	К3		
CO2	Enhance personality and 155ehavior development.	КЗ		
CO3	Apply the values in human life.	К3		
CO4	Gain Knowledge of values in society.	КЗ		
CO5	Learn the importance of positive values in human life.	К3		

COURSE ARTICULATION MAT	TRIX					
Cos/Pos	P01	P02	P03	P04	P05	P06
CO1	-	-	3	-	-	1
CO2	-	-	3	-	-	1
CO3	-	-	3	-	-	1
CO4	-	-	3	-	-	1
CO5	-	-	3	-	-	1
23AEACZ3	-	-	3	-	-	1
1 – Slight, 2 – Moderate, 3 – Sul	ostantial					

		9675		9			
ASSESSMENT PATTER	RN - THEORY	72	STORY OF	9			
Test / Bloom's Category*	Rememberin g (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%		-	-	100%
CAT2	20%	50%	30%	3 -	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23VLACZ4	CONSTITUTION OF INDIA (Common to all Branches)
1	

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

NIL	NIL AC 2 0								
Course	To address the importance of constitutional rig To formiliaring about Indian recommendations and leading and the constitution of the constit								
Objectives	 To familiarize about Indian governance and loc To know about the functions of election commit 								
UNIT – I	INDIAN CONSTITUTION			6	Per	iods			
•	History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working) - Philosophy of the Indian Constitution: Preamble Salient Features.								
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES			6	Per	iods			
Right against l	Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.								
UNIT – III	UNIT - III ORGANS OF GOVERNANCE 6 Periods								
Functions, Exe	Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.								
UNIT – IV	UNIT - IV LOCAL ADMINISTRATION 6 Periods								
Introduction, N Introduction, F role. Block leve Appointed office	Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.								
UNIT – V	UNIT - V ELECTION COMMISSION 6 Periods								
Election Comm	Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.								
		ds Total: 30 Pe	erio	is	Contact Periods:				

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	K2
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
CO1	-	-	1	1	1	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	-	1	1	1	1
CO5	-	-	1	1	1	1
23AEACZ4	-	-	1	1	1	1
1 – Slight, 2 – Moder	1 – Slight, 2 – Moderate, 3 – Substantial					

.

000000

ASSESSMENT	Γ PATTERN – TH	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	· -	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23VLACZ5 PEDAGOGY STUDIES (Common to all Branches)	PEDAGOGY STUDIES
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	AC	2	0	0	0

Course Objectives	 To understand of various theories of learning, prevailing practices and design of curriculum in engineering studies. Application of knowledge in modification of curriculum, its and introduction of innovation in teaching methodology. 	1 00					
UNIT – I	INTRODUCTION	6 Periods					
Introduction	Introduction and Mathodology, Aims and rationals, Policy background, Concentual framework						

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT - II PEDAGOGICAL PRACTICES 6 Per

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education. Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included studies.

UNIT - III PEDAGOGICAL APPROACHES

6 Periods

How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teacher's attitudes and beliefs and Pedagogic strategies.

UNIT - IV PROFESSIONAL DEVELOPMENT

6 Periods

Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes.

UNIT - V CURRICULUM AND ASSESSMENT

6 Periods

Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.

Contact Periods:

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

- 1 Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
- 2 Alexander RJ ,Culture and pedagogy: International comparisons in primary education.
 Oxford and Boston: Blackwell, 2001
- 3 Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
- 4 Agrawal M ,Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379, 2004

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the concept of curriculum, formal and informal education systems and teacher education.	К3
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	К3
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	P04	PO5	P06			
CO1	-	-	1	1	2	1			
CO2	-	-	1	1	1	2			
CO3	-	-	1	1	2	1			
CO4	-	-	1	1	2	1			
23AEACZ5	-			1	2	1			
1 – Slight, 2 – Mode	rate, 3 – Subst	antial	721765327						

ASSESSME	NT PATTERN - '	THEORY	N T	7			
Test / Bloom's Category	Rememberi ng (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	57 -	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23AEACZ6	STRESS MANAGEMENT BY YOGA (Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	AC	2	0	0	0

Course	To create awareness on the benefits of yoga and meditation. The advertised the circles are all Properties.	
Objectives	To understand the significance of Asana and Pranayama.	
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS	6 Periods
Yoga - Physica	l structure, Importance of physical exercise, Rules and regulation of sin	mplified physical
exercises, han	d exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, m	naharasana, body
massage, acup	ressure, body relaxation.	
UNIT – II	YOGA TERMINOLOGIES	6 Periods
Yamas - Ahims	sa, satya, astheya, bramhacharya, aparigraha	•
	cha, santosha, tapas, svadhyaya, Ishvara pranidhana.	
UNIT – III	ASANA	6 Periods
Asana - Rules	& Regulations – Types & Benefits	
UNIT - IV	PRANAYAMA	6 Periods
Regularization	of breathing techniques and its effects-Types of pranayama	·
UNIT - V	MIND	6 Periods
Bio magnetism	n& mind - imprinting & magnifying - eight essential factors of livin	g beings, Mental
frequency and	d ten stages of mind, benefits of meditation, such as perspicacit aptability, creativity.	
<u> </u>		
Contact Perio		20 David Ja
Lecture: 30 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	: 30 Periods

1	Janardan Swami Yogabhyasi Mandal , "Yogic Asanas for Group Training-Part-I" , Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama
	(Publication Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation",
	New Dawn Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New
	Delhi, 2007.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Practice physical exercises and maintain good health.	K3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	K3
CO4	Practice breathing techniques in a precise manner.	K3
CO5	Attain emotional stability and higher level of consciousness.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	-	-	-	-	2
CO2	-	-	-	_	3
CO3	-	-	-	-	2
CO4	-	-	-	-	1
CO5	-	-	-	-	1
23AEACZ6	-	-	-	-	2
1 - Slight, 2 - Moderate, 3 - Moderate	– Substantial	Tributal C			

ASSESSMEN	T PATTERN –	THEORY	7)			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	30%	30%	-	-	-	100%
CAT2	30%	40%	30%	<u>-</u>	-	-	100%
Individual Assessment1/ Case study1/ Seminar 1/Project1	40%	40%	20%	1	,	-	100%
Individual Assessment2/ Case study2/ Seminar 2 /Project2	30%	30%	40%	-	-	_	100%
ESE	30%	30%	40%	-	-	-	100%

23AEACZ7

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

(Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	 To familiar with Techniques to achieve the highest go 	oal in life.						
Objectives	 To become a person with stable mind, ple 	asing personality and						
	determination.							
IINIT I		(David da						
UNIT – I		6 Periods						
Neetisatakam-I	Neetisatakam-Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verses29,31,32							
(pride & herois	m)-Verses- 26,28,6.							
UNIT – II		6 Periods						
Verses- 52,53,5	59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to	day work and duties						
	vadGeeta - Chapter 2-Verses 41, 47,48,	,						
UNIT – III		6 Periods						
Shrimad Bhagv	vadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses	5,13,17, 23, 35,- Chapter						
18-Verses 45, 4	6, 48.							
UNIT – IV		6 Periods						
Statements of l	basic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses	56, 62, 68 -Chapter 12 -						
Verses 13, 14, 1	.5, 16,17, 18-Personality of Role model.							
UNIT - V		6 Periods						
Shrimad Bhagw	vadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Cha	apter 4-Verses 18, 38,39-						
Chapter18 – Ve	Chapter18 - Verses 37,38,63.							
Contact Period	Contact Periods:							
Lecture: 30 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total:	: 30 Periods						

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001

COUR	Bloom's Taxonomy		
Upon	Upon completion of the course, the students will be able to:		
CO1	Apply the Holistic development in life	K4	
CO2	Effective Planning of day to day work and duties	K4	
CO3	Identify mankind to peace and prosperity	K4	
CO4	Develop versatile personality.	K4	
CO5	Awakening wisdom in life	K4	

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	PO3	P04	PO5	P06			
CO1	-	-	1	-	-	-			
CO2	-	-	1	-	-	-			
CO3	-	-	1	-	-	-			
CO4	-	-	1	-	-	-			
CO5	-	-	1	-	-	-			
23AEACZ7	-	-	1	-	-	-			
1 – Slight, 2 – Mo	oderate, 3 – S	Substantial	Carried St.	rates					
TAX 7									

ASSESSMEN	NT PATTERN – T	HEORY	1(80)	1			
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	U -	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

221/1 4.070	SANSKRIT FOR TECHNICAL KNOWLEDGE
23VLACZ8	(Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives	 To get a working knowledge in illustrious Sanskrit, the scientific language in the world. Learning of Sanskrit to improve brain functioning. 						
	 Enhancing the memory power. Learning of Sanskrit to develop the logic in mathematics, science & other subjects. 						
UNIT – I	BASICS OF SANSKRIT	6 Periods					
Alphabets in	Sanskrit, Past/Present/Future Tense.						
UNIT – II	SENTENCES AND ROOTS	6 Periods					
Simple Senter	nces - Order, Introduction of roots						
UNIT - III	SANSKRIT LITERATURE	6 Periods					
Technical info	ormation about Sanskrit Literature	l					
UNIT - IV	TECHNICAL CONCEPTS -1	6 Periods					
Technical con	ncepts of Engineering-Electrical, Mechanical	l					
UNIT - V	TECHNICAL CONCEPTS -2	6 Periods					
Technical con	ncepts of Engineering-Architecture, Mathematics	I					
Contact Period Lecture: 30 I		al: 30 Periods					

1	Dr.Vishwas,	"Abhyaspustakam	", Samskrita -Bharti	Publication, N	ew Delhi, 2020.
---	-------------	-----------------	-----------------------------	----------------	-----------------

- 2 Prathama Deeksha Vempati Kutumbshastri, "**Teach Yourself Sanskrit**", Rashtriya Sanskrit Sansthanam, New Delhi, Publication, 2009.
- 3 Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi, 2006.

	E OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Recognize ancient literature and their basics	К3
CO2	Formulate the sentences with order and understand the roots of Sanskrit	K2
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	К3
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K2
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
204				4				
CO1	-	-	-	1	2	1		
CO2	-	-	-	1	2	-		
CO3	-	-	-	1	1	1		
CO4	-	-	-	2	1	1		
CO5	-	-	-	1	2	1		
23AEACZ8	-	-	-	1	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

Total / Demonstration Understanding Applying Applying Evoluting Constinue Total							
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	M	-	-	100%
CAT2	20%	50%	30%	5	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	_	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
/ 110,000 =							