

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum For

Post Graduate M. E. Computer Science and Engineering

(Full Time)

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 FAX: +91 0422 - 2433355 E.mail: coegct@gmail.com

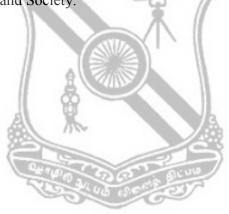
VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.


VISION AND MISSION OF THE DEPARTMENT

VISION

To be in the frontier of Computer Science and Engineering and to produce globally competent graduates with moral values committed to build a vibrant nation.

MISSION

- To strengthen the core competence in Computer Science and Engineering through analytical learning.
- To produce successful graduates with personal and professional responsibilities and commitment to lifelong learning.
- To uplift innovative research in Computer Science and Engineering to serve the needs of Industry, Government and Society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Programme Educational Objectives of M.E. Computer Science and Engineering programme are:

- **PEO 1:** Graduates will be employed in computing profession as experts in providing solutions to complex design problems by their depth of knowledge in advanced computing.
- **PEO 2:** Graduates with an aptitude in lifelong research will be either pursuing or completed doctoral programme and engaged in advanced research and development.
- **PEO 3:** Graduates will be able to apply critical, lateral thinking and use reflective learning to analyze, conceptualize and evaluate the potential solutions for conducting theoretical and practical research by following ethical practices.

PROGRAMME OUTCOMES

Students of M.E. Computer Science and Engineering Programme at the time of graduation will be able to:

PO1: Independently carry out research / investigation and development work to solve practical problems.

PO2: Write and present a substantial technical report/document.

PO3: Demonstrate a higher degree of mastery over Computer Science and Engineering curriculum.

PO4: Practice code of ethics in professional accomplishments and research for sustainable societal development.

PO5: Identify feasible solutions by applying technical knowledge and ethical principles with engineering practices.

PO6: Engage in lifelong learning to improve knowledge and competence.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 M.E.COMPUTER SCIENCE AND ENGINEERING

FIRST SEMESTER

SI.	Course	Course Title	Category	CA	End Sem	Total		Hou	rs/Wee	k
No	Code	course rule	Category	Marks	Marks	Marks	L	Т	Р	С
			THEORY	ľ						
1	23CSFCZ1	Research Methodology and IPR (Common to All Branches)	FC	40	60	100	3	0	0	3
2	23CSFC02	Mathematical Foundations of Computer Science	FC	40	60	100	3	1	0	4
3	23CSPC01	Formal Languages, Machines and Computations	PC	40	60	100	3	1	0	4
4	23CSPC02	High Performance Computer Architecture	PC	40	60	100	3	0	0	3
5	23CSPC03	Algorithms and Complexity Analysis	РС	40	60	100	3	0	0	3
6	23CSPEXX	Professional Elective I	PE	40	60	100	3	0	0	3
7	23CSACXX	Audit Course I	AC	40	60	100	2	0	0	0
			PRACTIC	AL						
8	23CSPC04	Advanced Algorithms and Elective Laboratory	PC	60	40	100	0	0	3	1.5
		Total		340	460	800	20	2	3	21.5

SECOND SEMESTER

SI.	Course Code	Course Title	Catagory	СА	End Sem	Total		Hour	s/Week	K
No	Course Code	Course The	Category	Marks	Marks	Marks	L	Т	Р	С
		مي ف	THEORY	57.6	1000					
1	23CSPC05	Advanced Database Systems	PC	40	60	100	3	0	0	3
2	23CSPC06	Advanced Computer Networks	РС	40	60	100	3	0	0	3
3	23CSPC07	Advanced Operating System	РС	40	60	100	3	0	0	3
4	23CSPEXX	Professional Elective II	PE	40	60	100	3	0	0	3
5	23CSPEXX	Professional Elective III	PE	40	60	100	3	0	0	3
6	23CSACXX	Audit Course II	AC	40	60	100	2	0	0	0
	-	•	PRACTICA	L						
7	23CSPC08	Advanced Computer Networks and Electives Laboratory	РС	60	40	100	0	0	3	1.5
8	23CSEE01	Mini Project	EEC	60	40	100	0	0	4	2
	•	Total		360	440	800	17	0	7	18.5

SI.	Course Code	Course Title	Category	СА	End Sem	Total		Hour	s/Week	
No	Course Coue	Course file	Category	Marks	Marks	Marks	L	Т	Р	С
			THEORY	Y	•					
1	23CSPC09	Data Science	РС	40	60	100	3	0	0	3
2	23CSPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3
3	23\$OEXX	Open Elective	OE	40	60	100	3	0	0	3
			PRACTIC	AL						
4	23CSEE02	Project - I	EEC	60	40	100	0	0	24	12
		Total	a	180	220	400	9	0	24	21
		7 89	Danha	AUC 118 81.	2010					

THIRD SEMESTER

FOURTH SEMESTER

SI.	SI. NoCourse CodeCourse TitleCategories	Category	CA	End Sem	Total	Hours/Week					
No		Category	Marks	Marks	Marks	L	Т	Р	С		
		E	PRACTIC	AL							
1	23CSEE03	Project - II	EEC	60	40	100	0	0	48	24	
		Total	Det till to	60	.40	100	0	0	48	24	
			Con and	NOME	T						

Total Credits : 85

PROFESSIONAL ELECTIVES (PE)

PROFESSIONAL ELECTIVES – I

SI.No	Course Code	Course Title C	Category	СА	End Sem	Total	Hours/Week					
51.110	Course Coue	Course The	Category	Marks	Marks	Marks	L	Т	Р	С		
1	23CSPE01	Digital Image Processing	PE	40	60	100	3	0	0	3		
2	23CSPE02	Embedded Systems	PE	40	60	100	3	0	0	3		
3	23CSPE03	Fuzzy Logic and Neural Networks	PE	40	60	100	3	0	0	3		
4	23CSPE04	Cloud Computing	PE	40	60	100	3	0	0	3		
5	23CSPE05	Advanced Software Engineering	PE	40	60	100	3	0	0	3		
6	23CSPE06	Pattern Recognition	PE	40	60	100	3	0	0	3		
		- Sec	NUR	396	9							

PROFESSIONAL ELECTIVES - II

CL N	Course			CA	End	Total	Hou	rs/W	eek	
SI.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23CSPE07	Computer Vision Engineering	PE	40	60	100	3	0	0	3
2	23CSPE08	Internet of Things	PE	40	60	100	3	0	0	3
3	23CSPE09	Network Science	PE	40	60	100	3	0	0	3
4	23CSPE10	Machine Learning	PE	40	60	100	3	0	0	3
5	23CSPE11	Multidimensional Data Structures	PE	40	60	100	3	0	0	3
6	23CSPE12	Cryptography and Network Security	PE	40	60	100	3	0	0	3

GLN	Course			СА	End	Total	I	Hour	s/We	ek
SI.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23CSPE13	Social Networks	PE	40	60	100	3	0	0	3
2	23CSPE14	Information Retrieval	PE	40	60	100	3	0	0	3
3	23CSPE15	Natural Language Processing	PE	40	60	100	3	0	0	3
4	23CSPE16	Virtual Reality	PE	40	60	100	3	0	0	3
5	23CSPE17	Theory of Modern Compilers	PE	40	60	100	3	0	0	3

PROFESSIONAL ELECTIVES - III

PROFESSIONAL ELECTIVES - IV

-

2

. Agiterii

	Course			CA	End	Total		Hour	s/We	ek
SI.No	Code	Course Title	Category	CA Marks	Sem Marks	Marks	L	Т	Р	С
1	23CSPE18	Deep Learning	PE	40	60	100	3	0	0	3
2	23CSPE19	Ethical Hacking	PE	40	60	100	3	0	0	3
3	23CSPE20	Mining Massive Datasets	PE	40	60	100	3	0	0	3
4	23CSPE21	Data Center Networks	PE	40	60	100	3	0	0	3
5	23CSPE22	Data Visualization	PE	40	60	100	3	0	0	3
6	23CSPE23	Parallel Algorithms	PE	40	60	100	3	0	0	3

LIST OF OPEN ELECTIVES

SI.	Course Code	Course Title	Catagomy	СА	End Sem	Total		Hour	s/Wee	ek
No	Course Coue	Course Thie	Category	Marks	Marks	Marks	L	Т	Р	С
1	23SEOE01	Building Bye-Laws and Codes of Practice	OE	40	60	100	3	0	0	3
2	23SEOE02	Planning of Smart Cities	OE	40	60	100	3	0	0	3
3	23SEOE03	Green Building	OE	40	60	100	3	0	0	3
4	23EEOE04	Environment Health and Safety Management	OE	40	60	100	3	0	0	3
5	23EEOE05	Climate Change and Adaptation	OE OE	40	60	100	3	0	0	3
6	23EEOE06	Waste to Energy	OE	40	60	100	3	0	0	3
7	23GEOE07	Energy in Built Environment	OE	40	60	100	3	0	0	3
8	23GEOE08	Earth and Its Environment	OE	40	60	100	3	0	0	3
9	23GEOE09	Natural Hazard and Mitigation	OE	40	60	100	3	0	0	3
10	23EDOE10	Business Analytics	OE	40	60	100	3	0	0	3
11	23EDOE11	Introduction to Industrial safety	OE	40	60	100	3	0	0	3
12	23EDOE12	Operations Research	OE	40	60	100	3	0	0	3
13	23MFOE13	Occupational Health and Safety	OE	40	60	100	3	0	0	3
14	23MFOE14	Cost Management of Engineering Projects	OE	40	60	100	3	0	0	3
15	23MFOE15	Composite Materials	OE	40	60	100	3	0	0	3
16	23TEOE16	Global Warming Science	OE	40	60	100	3	0	0	3
17	23TEOE17	Introduction to Nano Electronics	OE	40	60	100	3	0	0	3

18	23TEOE18	Green Supply Chain Management	OE	40	60	100	3	0	0	3
19	23PSOE19	Distribution Automation System	OE	40	60	100	3	0	0	3
20	23PSOE20	Electricity Trading and Electricity Acts	OE	40	60	100	3	0	0	3
21	23PSOE21	Modern Automotive Systems	OE	40	60	100	3	0	0	3
22	23PEOE22	Virtual Instrumentation	OE	40	60	100	3	0	0	3
23	23PEOE23	Energy Management Systems	OE	40	60	100	3	0	0	3
24	23PEOE24	Advanced Energy Storage Technology	OE	40	60	100	3	0	0	3
25	23AEOE25	Design of Digital Systems	OE	40	60	100	3	0	0	3
26	23AEOE26	Basics of Nano Electronics	OE	40	60	100	3	0	0	3
27	23AEOE27	Advanced Processor	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL Programming Languages	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI Design	OE	40	60	100	3	0	0	3
30	23VLOE30	High Level Synthesis	OE	40	60	100	3	0	0	3
31	23CSOE31	Artificial Intelligence	OE	40	60	100	3	0	0	3
32	23CSOE32	Computer Network Management	OE	40	60	100	3	0	0	3
33	23CSOE33	Blockchain Technologies	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES (Common to All Branches)

SI.	Course Code	Course Title	Category	СА	End Sem	Total]	Hour	s/We	ek
No	Course Coue	Course fille	Category	Marks	Marks	Marks	L	Т	Р	С
1	23CSACZ1	English for Research Paper Writing	AC	40	60	100	2	0	0	0
2	23CSACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23CSACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23CSACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23CSACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23CSACZ6	Stress Management by Yoga	AC	40	60	100	2	0	0	0
7	23CSACZ7	Personality Development Through Life Enlightenment Skills	AC	40	60	100	2	0	0	0
8	23CSACZ8	Sanskrit for Technical Knowledge	AC C	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

	Course Work Subject			No Cred			
S.No		Ι	Π	III	IV	Total	Percentage
1.	Foundation Course	7	0	0	0	07	8.24 %
2.	Professional Cores	11.5	10.5	3	0	25	29.41 %
3.	Professional Electives	3	6	3	0	12	14.11 %
	Employability Enhancement	0	2	12	24	38	44.71 %
5.	Open Elective Courses	0	0	3	0	03	3.53 %
6.	Audit Courses	0	0	-	-	-	-
	Total Credits	21.5	18.5	21	24	85	100%
	CD .	6 9 G	0000	Ţ			

23CSFCZ1	
23CSFCZI	

RESEARCH METHODOLOGY AND IPR (Common to all Branches)

SEMESTER I

PREREQUISI	ГЕS	CATEGORY	L	Т	Р	С			
	NIL	FC	3	0	0	3			
Course	1. To impart knowledge on research methodolog	y, Quantitative m	etho	ds fo	or				
Objectives	writing								
-	2. To know the importance of IPR and patent rights.								
UNIT – I	INTRODUCTION					L (9)			
Definition and	objectives of Research - Types of research, Var	ious Steps in Re	esea	rch	proc	ess,			
	ools for analysis, Developing a research question								
, ,	ng, synthesizing, critical analysis, reading materia	, U,	hink	cing,	crit	ical			
	pretation, Research Purposes, Ethics in research –								
UNIT – II	QUANTITATIVE METHODS FOR PROBLE					L (9)			
	ling and Analysis, Time Series Analysis Probabilit								
	sis and Inference, Multivariate methods, Concept								
	of Time Series Analysis and Spectral Analysis,	Error Analysis,	App	lica	tions	; of			
Spectral Analysi									
UNIT – III	DATA DESCRIPTION AND REPORT WRITI					L (9)			
	phical description of data: Tables and graphs of								
	hs that show the relationship between two variab	les, Relation bet	wee	n fro	eque	ncy			
	d other graphs, preparing data for analysis.			_					
	Components of Research Report, Types of Repo	· ·	esea	rch	Rep	ort,			
	vriting a research report, referencing in academic w	rıtıng.	1						
UNIT – IV	INTELLECTUAL PROPERTY					L (9)			
	ectual Property: Patents, Designs, Trade and Cop		of Pa	atent	ing	and			
	echnological research, innovation, patenting, develo								
	enario: International cooperation on Intellectual I	Property. Procedu	ire f	or g	rant	s of			
patents, Patentin			1						
UNIT – V	PATENT RIGHTS					L(9)			
	cope of Patent Rights. Licensing and transfer of te	chnology. Patent	info	rma	tion	and			
0	raphical Indications.								
Contact Period									
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	iods Total: 45 I	erio	ods					

REFERENCES

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction", Juta
	Academic, 2nd edition, 2014.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, CengageLearning,
	2013
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition,
	2019
4	Dr. C. R. Kothari and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, 4th Edition, 2018

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Formulate research question for conducting research.	K3
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K2
CO4	Develop a structured content to write technical report.	K3
CO5	Summarize the importance of IPR and protect their research work through	K2
	intellectual property.	

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	3	3	1	3		
CO2	2	3	mmn	3	3	3		
CO3	2	3	3	3	3	3		
CO4	2	3	BASSO DELIB	3	3	3		
CO5	-	22	222		1	3		
23CSFCZ1	2	3	3	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY

ASSESSMENT	PATTERN – 1	HEORY	ANUA CO	1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20		-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100
ESE	30	30	20	20	-	-	100

H

٦

23CSFC02 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE SEMESTER I

PREREQUISITES	CATEGORY L		Т	Р	С
NIL	FC	3	1	0	4

Course	To enhance the fundamental knowledge in probability concepts and its application	ations				
Objectives	relevant to various streams of Engineering and Technology. This is a foundation course which mainly deals with topic such as probability, standard statistical distributions,					
	correlation and regression analysis, testing of hypothesis, linear programming problems, transportation and assignment problems and plays an important role in the understanding					
	of Science, Engineering and Computer Science					
	among other disciplines.					
UNIT – I	RANDOM VARIABLES& DISTRIBUTIONS	L(9)+T(3)				
Random variables:	Discrete and continuous random variables- Moments, Moment generating	functions-				

Binomial, Geometric, Poisson, Uniform, Exponential and Normal distributions.

UNIT - IICORRELATION AND REGRESSION ANALYSISL(9)+T(3)Correlation coefficients- Equation of the lines of regression, Regression coefficients, Regression plane-
Multiple and Partial correlation, Partial regression.L(9)+T(3)

UNIT	-III	TES	STIN	G OF H	YPOT	HESIS	X	(L(9)+T(3)
Large	samples:	Tests	for	Mean	and	proportions,	Small	samples:	Tests	for	Mean,	Variance
andAt	tributesus	ingt,F,C	Chi–So	quare dis	tributi	ions.).					
TINIT	117	TT		DDDOC	DANE	MINC BOOD	TIME	10				I(0) + T(2)

 UNIT - IV
 LINEARPROGRAMMING PROBLEMS
 L(9)+T(3)

 Formulation of Linear Programming problem: Graphical Method - Simplex Method - Big M method - dual method..
 method.

UNIT - VMARKOVIAN QUEUEING MODELSL(9)+T(3)Markovian models- Birth and Death Queuing models- steady state results: Single and multiple server
queuing models-queues with finite waiting rooms- Finite source models-Little's formula.

- **Contact Periods:**
- Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

REFERENCES

1	Veerarajan T, "Probability, Statistics and Random Processes (with Queueing Theory and Queueing Networks)", McGraw Hill Education(India)Pvt Ltd., New Delhi, Fourth Edition 2016.
2	Taha H.A., "Operations Research: An introduction", Ninth Edition, Pearson Education, Asia, New
	Delhi, 2012.
3	Gupta S.C and Kapoor V.K, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 2015.
4	Gupta S.P, "Statistical Methods", Sultan Chand & Sons, New Delhi, 2015.
5	Veerarajan T, "Higher Engineering Mathematics", Yes Dee Publishing Pvt Ltd, Chennai, 2016.

6 *Kandasamy P, Thilagavathy K and Gunavathy K,* **"Probability and Queueing Theory",** S. Chand & Co, *Ramnagar, New Delhi, Reprint 2013.*

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Solve the engineering problems associated with random variables, moments and moment generating functions.	K4
CO2	Calculate the coefficient of correlation, regression coefficients, multiple and partial correlation.	K4
CO3	Test the significance of hypothesis connected to small and large samples using different parameters.	K4
CO4	Form the linear programming problems for a real time phenomena and find the solution for the same by using simplex, big M and dual methods.	K4
CO5	Analyse problems involving single and multi-server markovian models.	K4

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO 2	9 PO 3	PO 4	PO 5	PO 6			
CO1	3	- /	2		2	1			
CO2	3	-)/.	2	8-1	2	1			
CO3	3	- 1	2		2	1			
CO4	3	- //		<u> </u>	2	1			
CO5	3	- //	¢ 2		2	1			
23CSFC02	3	- //	& 2		2	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	40	20	10	-	-	100
CAT2	30	40	20	10	-	-	100
	30	40	20	10	-	-	
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	30	40	20	10	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	30	40	20	10	-	-	100
ESE	30	40	20	10	-	-	100

23CSPC01	FORMAL LANGUAGES, MA COMPUTATION		SEME	STER	A I	
PREREQUISITES		CATEGORY	L	Т	Р	С
	NIL	РС	3	1	0	4

Course	The aims of this course are to understand basic theory of computation conc	ents				
Objectives	that lies at the backbone of all state-of-the-art applications and program des	1				
Objectives	Students should understand the capabilities and limits of computation, particular					
	applications and capabilities of deterministic and non-deterministic finite					
	automata, context-free grammars, and finally Turing machines, as well as N	NP-				
	completeness and complexity classes.					
UNIT – I	REGULAR LANGUAGES AND APPLICATIONS	L(9)+T(3)				
	sions and applications – Regular languages, properties and applications –	- Finite Automata,				
variants and app	lications – Pumping lemma for RL.					
UNIT – II	CONTEXT FREE LANGUAGES	L(9)+T(3)				
	ntext Free Languages, properties and applications – Stack machines – Con applications – Pumping lemma for CFL.	text free frontier –				
UNIT – III	TURING MACHINES	L(9)+T(3)				
	basics – Simple TMs – Language define by TM – Variants of TMs and t Recursive, Recursively Enumerable languages and properties	heir equivalence –				
UNIT – IV	COMPUTABILITY AND UNCOMPUTABILITY	L(9)+T(3)				
models, finite n	ble functions – Functions and languages – TM random access – Church-Turi nachines – Halting problem – Reducibility – Rice's theorem – Grammars ar ctions - Mathematical uncomputabilities	•				
UNIT – V	COST MODELS AND ALTERNATE ALGORITHMS	L(9)+T(3)				
complexity class	ations, properties and functions – TM cost model – Time complexity ses – Higher complexity classes – Verification methods – NP, NP hard roximation algorithms, probabilistic and parallel algorithms – Interactive pro-	and NP Complete				
Contact Period	s:					
Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods						

REFERENCES :

1	John E Hopcroft, Rajeev Motwani, Jeffrey D Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson, 2013
2	John C. Martin, "Introduction to languages and the theory of computation", Third edition, McGrawHil, 2015

3	Michael Sipser, "Introduction to Theory of Computation", Third Edition, Cengage learning, 2013.
4	H.R.Lewis and C.H.Papadimitriou, "Elements of the theory of Computation", Second Edition, Pearson, 2015

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:			
CO1	Identify, use and apply Formal Languages	К3		
CO2	Solve given problem by constructing appropriate Automata/Machines	K4		
CO3	Provide solution model for computable functions	K5		
CO4	Classify the problems based on the cost analysis	K6		
CO5	Use alternate models of computation such as Approximation algorithms, probabilistic and parallel algorithms and Interactive proof system	К3		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	3	3	3	-
CO2	3	1 2	2	3	3	-
CO3	3	1 8	3	3	3	-
CO4	2		3	3	2	1
CO5	1	247000	150	acus 1	1	2
23CSPC01	3	C.	445 31 ME	3	3	1

ASSESSME	NT PATTERN	– THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	20	-	-	-	100
CAT2	20	30	30	20	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	-	-	40	40	20	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	G	stern Canyon	40 940	40	20	100
ESE	40	30	30			-	100

23CSPC02

HIGH PERFORMANCE COMPUTER ARCHITECTURE

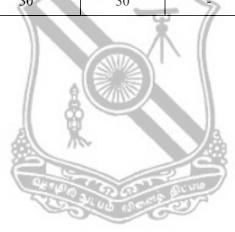
SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

Course	After the completion of the course, the students will be able to understand fundamentation	nentals of
Objectives	Computer Organization, performance laws and memory organization. Concepts and	issues in
	instruction level parallelism with different types of data Level Parallelism and differen	t types of
	thread level parallelism. extract the performance from software that is oblivious to arch	itecture.
UNIT – I	FUNDAMENTALS OF QUANTITATIVE DESIGN AND ANALYSIS AND MEMORY HIERARCHY DESIGN	L(9)
Architectures - Circuits and Principles of Optimizations	ors - Characteristics of RISC processors, RISC vs CISC, Classification of Instru- Review of performance measurements - Trends in Technology, Power and Energy in I Cost - Dependability - Measuring, Reporting, and Summarizing Performance - Qu Computer Design - Memory Hierarchy Design – Introduction - Memory Techno - Ten Advanced Optimizations of Cache Performance - Virtual Memory and Virtual M Issues: The Design of Memory Hierarchies.	ntegrated antitative logy and
UNIT – II	INSTRUCTION-LEVEL PARALLELISM AND ITS EXPLOITATION	L(9)
Reducing Bran Scheduling - I ILP Using Mu and Speculation	rel Parallelism: Concepts and Challenges - Basic Compiler Techniques for Exposinch Costs With Advanced Branch Prediction - Overcoming Data Hazards With Dynamic Scheduling: Examples and the Algorithm - Hardware-Based Speculation - Entiple Issue and Static Scheduling - Exploiting ILP Using Dynamic Scheduling, Multipan - Advanced Techniques for Instruction Delivery and Speculation.	Dynamic Exploiting ple Issue,
UNIT – III	DATA-LEVELPARALLELISMINVECTOR,SIMD,GPUARCHITECTURESANDWAREHOUSE-SCALECOMPUTERS	L(9)
Units - Dete Warehouse-Sca	Vector Architecture - SIMD Instruction Set Extensions for Multimedia - Graphics P ecting and Enhancing Loop-Level Parallelism - Programming Models and Work alle Computers - Computer Architecture of Warehouse-Scale Computers - The Efficiency Scale Computers - Cloud Computing: The Return of Utility Computing.	loads for
UNIT – IV	THREAD-LEVEL PARALLELISM	L(9)
Multiprocessor Models of Me	Centralized Shared-Memory Architectures - Performance of Symmetric Shared s - Distributed Shared-Memory and Directory-Based Coherence - Synchronization: The mory Consistency: An Introduction - Cross-Cutting Issues - Multicore Processors a The Future of Multicore Scaling.	e Basics -
UNIT – V	DOMAIN-SPECIFIC ARCHITECTURES	L(9)
Unit, an Inferen	Guidelines for DSAs - Example Domain: Deep Neural Networks - Google's Tensor Proce nee Data Center Accelerator - Microsoft Catapult, a Flexible Data Center Accelerator - In	ntel
	enter Accelerator for Training - Pixel Visual Core, a Personal Mobile Device Image Pro of Computer Architecture Research over the Next 15 Years.	cessing

REFERENCES:

1	John L. Hennessey and David A. Patterson, "Computer Architecture – A Quantitative Approach",
	Morgan Kaufmann / Elsevier, Six edition, 2019.
2	William Stallings, "Computer Organization and Architecture Designing for Performance", Pearson
	Education, Tenth Edition, 2016.
3	D. A. Patterson and J. L. Hennessy, "Computer Organization and Design RISC-V Edition: The Hardware
	Software Interface," 1st Edition, Morgan Kaufmann Publishing Co., Menlo Park, CA., April 2017.
4	Luis Ceze, Mark D. Hill, Thomas F. Wenisch, "Arch2030: A Vision of Computer Architecture Research
	over the Next 15 Years", The Arch2030 Workshop at ISCA 2016.


COURSE OUTCOMES:

COURSE OU Upon Comple	Bloom's Taxonomy Mapped	
CO1	Understand the components and operation of a memory hierarchy and the range of performance issues influencing its design.	K2
CO2	Analyze and exploit instruction level parallelism.	K4
CO3	Evaluate performance of different architectures with respect to Data level Parallelism.	K5
CO4	Understand the organisation and operation of current generation multiprocessor and multicore systems.	K2
CO5	Describe and explain current and future trends in computer architecture	K4

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2 405	300	2	3	3
CO2	3	2	3	2	3	3
CO3	3	2	3	2	3	3
CO4	3	2	3	2	3	3
CO5	3	2	3	2	3	3
23CSPC02	3	2	3	2	3	3
1 - Slight, 2 -	Moderate, 3 – Su	bstantial	L		•	

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	10	40	30	20	-	-	100			
CAT2	-	40	30	30	-	-	100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	50	30	20	-	-	100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	50 850 min	30	20	-	-	100			
ESE	40	30	30		-	-	100			

SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

	The objective of the course is to enable students with the ability to a	nalyze the asymptotic				
Course Objectives	performance of algorithms along the capability to understand and de					
Objectives	advanced design and analysis techniques.	sign algorithing using				
UNIT – I	INTRODUCTION	L(9)				
	ithms in Computing – Characterizing Running Times - Divide and Co					
•	lomized algorithms – Sorting and Order Statistics	bliquer – i tobabilistic				
UNIT – II	ADVANCED DESIGN AND ANALYSIS TECHNIQUES	I (0)				
		L(9)				
	amming: Rod cutting- Matrix-chain multiplication Elements of dynamic p					
	trees-Greedy Algorithms: An activity-selection problem, Elements of	the greedy strategy,				
	-offline caching – Amortized Analysis.	τ				
UNIT – III	GRAPH ALGORITHMS	L(9)				
	shortest paths - All pairs shortest paths : Floyd-Warshall algorithm - Jol					
sparse graphs -	- Maximum Flow: Flow networks - The Ford-Fulkerson method-Maximum	m bipartite matching –				
Matching in Bipartite Graphs: The stable-marriage problem - The Hungarian algorithm for the assignment						
	iparitie craphic. The basele mannage problem The Hangarian angertain	m for the assignment				
problem	spanne crapies into calor and go portain into transferrain algorithm	m for the assignment				
•	ADVANCED ALGORITHMS I	L(9)				
problem UNIT – IV	ADVANCED ALGORITHMS I	L(9)				
problem UNIT – IV Parallel Algori	ADVANCED ALGORITHMS I thms: Basics of fork-join parallelism – Parallel Matrix multiplication –	L(9) Parallel merge sort –				
problem UNIT – IV Parallel Algori Online Algorit	ADVANCED ALGORITHMS I thms: Basics of fork-join parallelism – Parallel Matrix multiplication – hms – Waiting for a elevator – Maintaining a search List –Online Cachi	L(9) Parallel merge sort – ng- Matrix Operation:				
problem UNIT – IV Parallel Algorit Online Algorit Solving system	ADVANCED ALGORITHMS I thms: Basics of fork-join parallelism – Parallel Matrix multiplication – hms – Waiting for a elevator – Maintaining a search List –Online Cachi a & Linear equation -Matrix Inversion - Symmetric Positive definite Mat	L(9) Parallel merge sort – ng- Matrix Operation:				
problem UNIT – IV Parallel Algorit Online Algorit Solving system	ADVANCED ALGORITHMS I thms: Basics of fork-join parallelism – Parallel Matrix multiplication – hms – Waiting for a elevator – Maintaining a search List –Online Cachi a & Linear equation -Matrix Inversion - Symmetric Positive definite Mat - Linear Programming	L(9) Parallel merge sort – ng- Matrix Operation: rices and least Square				
problem UNIT – IV Parallel Algorit Online Algorit Solving system Approximation UNIT – V	ADVANCED ALGORITHMS I thms: Basics of fork-join parallelism – Parallel Matrix multiplication – hms – Waiting for a elevator – Maintaining a search List –Online Cachi a & Linear equation -Matrix Inversion - Symmetric Positive definite Mat - Linear Programming ADVANCED ALGORITHMS II	L(9) Parallel merge sort – ng- Matrix Operation: rices and least Square L(9)				
problem UNIT – IV Parallel Algorit Online Algorit Solving system Approximation UNIT – V Polynomials an	ADVANCED ALGORITHMS I thms: Basics of fork-join parallelism – Parallel Matrix multiplication – hms – Waiting for a elevator – Maintaining a search List –Online Cachi a & Linear equation -Matrix Inversion - Symmetric Positive definite Mat - Linear Programming ADVANCED ALGORITHMS II nd FFT – Number theoretic Algorithms-String matching – machine learn	L(9) Parallel merge sort – ng- Matrix Operation: rices and least Square L(9)				
problem UNIT – IV Parallel Algorit Online Algorit Solving system Approximation UNIT – V Polynomials an Completeness	ADVANCED ALGORITHMS I thms: Basics of fork-join parallelism – Parallel Matrix multiplication – hms – Waiting for a elevator – Maintaining a search List –Online Cachi a Linear equation -Matrix Inversion - Symmetric Positive definite Mat - Linear Programming ADVANCED ALGORITHMS II nd FFT – Number theoretic Algorithms-String matching – machine learn - Approximation Algorithms	L(9) Parallel merge sort – ng- Matrix Operation: rices and least Square L(9)				
problem UNIT – IV Parallel Algorit Online Algorit Solving system Approximation UNIT – V Polynomials an	ADVANCED ALGORITHMS I thms: Basics of fork-join parallelism – Parallel Matrix multiplication – hms – Waiting for a elevator – Maintaining a search List –Online Cachi a Linear equation -Matrix Inversion - Symmetric Positive definite Mat - Linear Programming ADVANCED ALGORITHMS II nd FFT – Number theoretic Algorithms-String matching – machine learn - Approximation Algorithms ds:	L(9) Parallel merge sort – ng- Matrix Operation: rices and least Square L(9)				

REFERENCES

1	Thomas H. Cormen, Charles E. Leiseron, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms",
	Fourth Edition, PH1 learning Pvt. Ltd., 2022.
2	Anany Levitin, "The Design and analysis & algorithms", III Edition, Pearson, 2011.
3	Jeff Erickson, "Algorithms", 1 st edition, 2019.
4	Aho. A.V., Hopcroft. J.E. and Ullman .J.D., "The Design and Analysis of Algorithms", Addison-Wesley, 1974.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Design and analyze algorithms using divide and conquer, dynamic programming, greedy approaches.	K6
CO2	Perform probabilistic analysis and amortized analysis of algorithms.	K1
CO3	Use appropriate graph and matrix manipulation algorithms	K3
CO4	Solve problems using parallel algorithms and linear programming approach.	K2
CO5	Use algorithms on polynomials	K2
CO6	Identify problems that are NP Complete and generate near optimal solution	K4

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	User	105-20	9 -	-	2			
CO2	3		2	-	-	2			
CO3	2		2	7/ -	3	2			
CO4	2		2	- 1	3	2			
CO5	2		2	-	1	2			
CO6	2	- TS	2		-	2			
23CSPC03	2	1 -	2	- //	1	2			
1 - Slight, 2 - Mo	oderate, 3 – Subst	antial			•				

 \overline{U}

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	30	-	20	-	100
CAT2	30	40	30	-	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	30	30	30	-	10	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	30	40	30	-	-	-	100
ESE	30	30	20	-	20	-	100

23CSPC04

ADVANCED ALGORITHMS AND **ELECTIVE LABORATORY**

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	0	0	3	1.5

Course	Explain important algorithmic design paradigms and methods of analysisto design efficient					
Objectives	algorithms in common engineering design solutions.					
	PRACTICALS					
	EXERCISESILLUSTRATINGTHEFOLLOWINGCONCEPTS:					
1	Implement an algorithm that combines k sorted lists in time O(n log k)where n is the total number of elements.					
2	Implement an algorithm to solve Matrix multiplication problem and Maximum value					
	contiguous subsequence using dynamic programming approach.					
3	Implement an algorithm based on greedy approach to solve knapsack problem and					
	Activity selection problem.					
4	Implement Merge sort algorithm using Divide and Conquer approach.					
5	Implement stack operations and calculate the amortized cost.					
6	Implement Graph Traversal algorithms.					
7	Implement an algorithm to construct Minimum Spanning Trees.					
8	Implement Shortest path and Maximum flow algorithms					
9	Implement String matching algorithms					
10	Implement Computational Geometry algorithms					
Contact per	riods:					
Lecture: 0	Periods Tutorial: 0 Periods Practical: 45 Periods Total:45 Periods					

COURSE OUTCOMES:

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	Completion of the course, the students will able to:	Mapped
CO1	Design and analyze algorithms using divide and conquer, dynamic	K6
	programming, greedy algorithms	
CO2	Perform probabilistic analysis and amortized analysis of algorithms	K4
CO3	Implement Minimum spanning trees, shortest path and Maximum flow	K6
	algorithms in graphs to solve problems	
CO4	Solve problems using String matching algorithms	K6
CO5	Solve problems using Computational geometry algorithms	K6

COURSE ARTICULATION MATRIX												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6						
CO1	3	3	3	1	3	3						
CO2	3	3	3	1	3	3						
CO3	3	3	3	1	3	3						
CO4	3	3	3	1	3	3						
CO5	3	3	3	1	3	3						
23CSPC04	3	3	3	1	3	3						
1 - Slight, 2 - N	Ioderate, 3	– Substantial		1 – Slight, 2 – Moderate, 3 – Substantial								

23CSPC05

ADVANCED DATABASE SYSTEMS

SEMESTER II

PREREQUISI	ГЕS	CATEGORY	L	Т	P	С				
	NIL	PC	3	0	0	3				
Course The objective of the course is to explore emerging database technologies. Objectives The objective of the course is to explore emerging database technologies.										
UNIT – I DATABASE DESIGN THEORY, SQL, NOSQL L(9)										
Queries, Trigg NOSQL Datab -Document-Ba Wide Column	ronment – Relational model and languages – ers, Views, and Schema Modification ases and Big Data Storage Systems :Introduction t sed NOSQL Systems and MongoDB - NOSQL NOSQL Systems - NOSQL Graph Databases and of for Evaluation) : PostgreSQL, MongoDB	to NOSQL Systems - Th Key-Value Stores - C	e CA	P The	eoren	n				
UNIT – II	INDEXING, QUERY PROCESSING AND	OPTIMIZATION			L(9)				
Multiple-Key Indexing of Sp Query Process: - Other Operati Query Optimiz Expression Re Optimization UNIT – III Introduction to Transactions - Serializability Two-Phase Lo Ordering -Mu Snapshot Isola Using Locks for Recovery Com Based on Imu Multidatabase	c Concepts - Ordered Indices - B+ Tree Index Fil Access - Creation of Indices - Write-Optimize atial and Temporal Data ing : Overview - Measures of Query Cost - Selections - Evaluation of Expressions - Query Process zation: Overview - Transformation of Relational sults - Choice of Evaluation Plans - Materializ TRANSACTION PROCESSING, CONCUL AND RECOVERY - Transaction Processing -Transaction and Sys Characterizing Schedules Based on Recoverabil -Transaction Support in SQL cking Techniques for Concurrency Control- Con liversion Concurrency Control Techniques - V tion Concurrency Control - Granularity of Data In or Concurrency Control - Granularity of Data In or Concurrency Control in Indexes -Other Concurr icepts-NO-UNDO/REDO Recovery Based on E mediate Update- Shadow Paging -The ARIES Systems - Database Backup and Recovery from Ca	ed Index Structures - I ion Operation – Sorting ing in Memory I Expressions - Estimated Views - Advanced RRENCY CONTROL, tem Concepts -Desiral lity- Characterizing Sch neurrency Control Base Validation (Optimistic) tems and Multiple Gran rency Control Issues Deferred Update- Reco S Recovery Algorithm atastrophic Failures	Bitmaj - Join ing S Topic Dele Pr dedule ed on Tech ularity	 p Inc Ope tatist tatist s in 0 operting operting range range	lices ration ics c Quer L(s ties c sed c sed c estam es ar cking nique ery i	n of y 9) of on np nd g - es n				
UNIT – IV	PARALLEL AND DISTRIBUTED DATAB	ASES			L(9)				
parallel and of Partitioning – Systems - Para Parallel and D Plans - Query	em Architecture- Parallel Systems – Distributed distributed system –cloud based services – Pa Dealing with Skew in Partitioning - Replicatio llel Key-Value Stores. Distributed Query Processing : Parallel sort -para Processing on Shared-Memory Architectures - Que ssing of Streaming Data -Distributed Query F ocessing.	arallel and Distributed n - Parallel Indexing allel Join - Parallel Eva ery Optimization for Pa	Stora -Distr luatio rallel	age : ibute n of Exec	Da d Fi Quei ution	ta le ry				

UNIT – V	DATABASE SECURITY AND ENHANCED DATA MODELS	L(9)
Database Securit	y: Issues, Access Control Mechanisms, SQL injection, Statistical Data	base security –
Advanced Data	models: Active Database, Temporal Database, Spatial Database Multim	nedia Database,
Deductive Datab	ases, Blockchain Databases	
Case Study(not	for Evaluation) : Support of spatial, temporal and Multimedia in Po	ostgreSQL and
MongoDB, Hype	rledger Fabric, corda	
	-	

Contact Periods:				
Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods	

REFERENCES:

1	Elmasri, Ramez. "Fundamentals of database systems" seventh edition, Pearson, 2021.
2	Silberschatz, Abraham, Henry F. Korth, and Shashank Sudarshan. "Database system concepts."
	Sixth edition, McGraw Hill, 2011.
3	Coronel, Carlos, and Steven Morris "Database systems: design, implementation and management"
	Cengage learning, sixth edition, Pearson 2019.
4	Diaz, Christopher. Database Security: Problems and Solutions. Stylus Publishing, LLC, 2022.
5	https://www.postgresql.org/
6	https://www.mongodb.com/

	DUTCOMES: letion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Demonstrate SQL and NoSQL databases	K3
CO2	Explain different techniques used for indexing ,query processing and Query optimization	K2
CO3	Explore the principle and techniques behind Transaction Processing, Concurrency Control, and database recovery	K2
CO4	Apply Concurrency control and Query Optimization algorithms in Parallel and Distributed data model	K3
CO5	Elaborate on Database Security and Advanced Data Model	K2

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6								
CO1	3	2	3	2	3	3								
CO2	3	2	3	2	3	3								
CO3	3	2	3	2	3	3								
CO4	3	2	3	2	3	3								
CO5	3	2	3	2	3	3								
23CSPC05	3	2	3	2	3	3								
1 - Slight, 2 -	- Moderate, 3 – 3	Substantial		1 – Slight, 2 – Moderate, 3 – Substantial										

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	40	50	-	-	-	100
CAT2	20	40	40	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	Carpenin Dan 505	500 ppL UB BF		-	-	100
ESE	40	30	30	//-	-	-	100

23CSPC06	
23055000	

PREREQUISI	ГЕS:	CATEGORY	L	Т	Р	С		
		20	_	0				
	NIL	PC	3	0	0	3		
Course	This course explores advanced topics in comp							
Objectives theoretical concepts and practical applications in the areas of advance						-		
switching, network security, emerging technologies, and protocols for efficient and reliable data communication.								
UNIT – I	NETWORKING CONCEPTS]	L(9)		
Peer To Peer	Vs Client-Server Networks, Network Devices, C	SI Model, Pack	ets,	Frar	nes	and		
Headers, Collis	ion and Broadcast Domains, LAN Vs WAN, N	letwork Adapter	- H	lub,	Sw	itch,		
Router, Firewal	l, IP, Wireless networking, IP addressing, TCP/IP	, Internet, Troub	lesho	ootin	ig, ()oS		
and QoE.						-		
UNIT – II	MOBILE NETWORKS]	L(9)		
4G Networks ar	nd Composite Radio Environment, Protocol Booste	rs, Hybrid 4G W	irele	ss N	etw	orks		
Protocols, Gree	n Wireless Networks, Physical Layer and Multipl	e Access, Channe	el M	ode	lling	; for		
4G, Concepts of	f 5G, channel access, air interface, Cognitive Radio	, Spectrum mana	gem	ent,	C-R	AN		
architecture, Intr								
UNIT – III	SOFTWARE DEFINED NETWORKS	2				L(9)		
	ire and Characteristics, SDN- and NFV-Related S				e, D)ata		
Plane Function						J - T		
Model,OpenDay	ylight, SDN Application Plane Architecture,	Network Servic	es	Abs	tract	ion		
	ngineering, Measurement and Monitoring, Data cer	iter networking, I	nfor	mati	on			
centric networki				1				
UNIT – IV	NETWORK FUNCTIONS VIRTUALIZATIO					L(9)		
	rtual Machines, NFV benefits and requirement							
	Virtualized Network Functions, NFV Manageme			-				
	nd SDN, Network virtualization - VLAN and	VPN, Open Day	/ Lig	ght's	vii	tual		
tenant Network		628		1				
UNIT – V	EMERGING NETWORKS AND SECURITY	216				L(9)		
	ng - Basic concepts, Cloud services, Deployment							
Things – Scope and Components, Sensors, RFID, NFC, HIP, Architecture and Implementation, Fog								
and Edge Computing, Block chain in networking, Network Security - Threats and								
	Security polices, Security Requirements in SDN, N	FV, IoT, Cloud.						
Contact Period Lecture: 45 Per		iods Total: 45	Peri	ods				

REFERENCES:

1	James Bernstein, "Networking Made Easy: Get Yourself Connected", Computers Made Easy, 2018(Unit I)
2	Erik Dahlman, Stefan Parkvall, Johan Skold, "4G: LTE/LTE-Advanced for Mobile Broadband", Academic Press, 2013 (Unit II)
3	Saad Z. Asif, "5G Mobile Communications Concepts and Technologies" , CRC press – 2019 (Unit II)
4	William Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud" , 1st Edition, Pearson Education, 2016 (Units III, IV, V)

COURS Upon Co	Bloom's Taxonomy Mapped	
CO1	Understand the components of modern network architectures considering scalability, performance, and various design constraints.	K2
CO2	Apply SDN principles in implementing virtualized network solutions	K3
CO3	Analyze and compare various mobile network architecture and protocols	K4
CO4	Evaluate virtualized network solutions, adapting to dynamic demands and optimizing resource utilization.	K5
CO5	Compare the network architectures of Cloud, Fog, Edge, IoT and analyze their security issues	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	1	3	-	2	-			
CO2	1	1	3	-	2	-			
CO3	1	1	3	-	2	-			
CO4	1	200	3.2		2	-			
CO5	1	Contraction of the second	150 p13 + ann	N)Y	2	-			
23CSPC06	1	L.	DAGS CO	$\underline{\bigcirc}$	2	-			
1 - Slight, 2 - N	Ioderate, 3 – Sub	stantial		0					

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	20	20	20	20	-	100	
CAT2	10	30	30	20	10	-	100	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	20	20	20	20	20	100	
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	-	10	30	30	20	10	100	
ESE	20	40	40	-	-	-	100	

23CSPC07

PREREQUISIT	TES	CATEGORY	L	Т	Р	С	
	NIL PC 3						
Course Objectives							
UNIT – I	INTRODUCTION					L(9)	
Distributed Ope	erating Systems – Issues – Communication Primiti	ves – Limitations	of a l	Distr	ibute	ed	
System – Lamp	ort's Logical Clocks - Vector Clocks - Causal Ore	dering of Message	S				
UNIT – II	DISTRIBUTED OPERATING SYSTEMS					L(9)	
Algorithms – D Algorithm – H	 m – Distributed Deadlock Detection – Preliminari Distributed Deadlock Detection Algorithms – Path ierarchical Deadlock Detection Algorithms – Age Byzantine Agreement Problem – Lamport-Shostak-I DISTRIBUTED RESOURCE MANAGEMENT 	Pushing Algorithm reement Protocols Pease Algorithm.	n –	Edge	e Cha	asing	
Distributed File Systems – Design Issues – Google File System – Hadoop Distributed File SystemDistributed Shared Memory – Algorithms for Implementing Distributed Shared Memory– Load Distributing Algorithms – Synchronous and Asynchronous Check Pointing and Recovery– Fault Tolerance – Two-Phase Commit Protocol – Nonblocking Commit Protocol.UNIT – IVREAL TIME OPERATING SYSTEMSBasic Model of Real - Time Systems – Characteristics – Application of Real - Time Systems – Real - Time					L(9)		
Task Scheduling – Handling Resource Sharing.							
UNIT – V MOBILE AND CLOUD OPERATING SYSTEMS						L(9)	
	Android – Overall Architecture – Linux Kernel – Hardware Support – Native User-Space –Dalvik and Android's Java – System Services – Introduction to Cloud Operating Systems.						
Lecture: 45 Per		ds Total: 45 Peri	ods				

REFERENCES:

1	Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems –							
	Distributed, Database and Multiprocessor Operating Systems", Tata MC Graw-Hill, 2001.							
2	Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2006.							
3	Karim Yaghmour, "Embedded Android", O'Reilly, First Edition, 2013.							
4	Nikolay Elenkov, "Android Security Internals: An In-Depth Guide to Android's Security							
	Architecture", No Starch Press, 2014.							

	COURSE OUTCOMES: Jpon Completion of the course, the students will able to:			
CO1	Understand the fundamental concepts in distributed OS.	K1		
CO2	Demonstrate the Mutual exclusion, Deadlock detection and agreement protocols of Distributed operating systems.	К2		
CO3	Identify the requirements of Distributed File System and Distributed Shared Memory.	K2		
CO4	Identify the different features of real time operating systems.	К3		
CO5	Discuss the role of operating systems in cloud and mobile environment.	К3		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1		3.3		2	2
CO2	3	2	and on \$3 115	2	3	3
CO3	2	000	NO CONCERCIÓN DE		3	3
CO4	2		3	L	2	3
CO5	1	2	2 9	1	1	3
23CSPC07	2	1	3	1	3	3
1 - Slight, 2 - Mo	oderate, 3 – Substa	intial	ANU ANU			

ASSESSMENT	TPATTERN – TH	IEORY 💭	-				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20 0 20 OC	TC.	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100
ESE	30	30	40	-	-	-	100

23CSPC08

ADVANCED COMPUTER NETWORKS AND ELECTIVES LABORATORY

SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	0	0	3	1.5

of this course is to enable students gain practical, hands-on experience in applying
epts and technologies in computer networks, preparing them for real-world scenarios and
he field.
sic routing and congestion control algorithms.
on Point to Point network using duplex links between the nodes. Analyze the r by varying the queue size and bandwidth (NS3).
e dynamic routing protocol by varying the CBR traffic for each node and use a flow onitor losses at nodes (NS3).
ess mobile ad-hoc network environment and implement the OLSR routing
stall hypervisor such as VirtualBox, VMware, or Hyper-V on your host machine. Create al machines using hypervisor interface.
ferent network settings for your virtual machine (NAT, Bridged, Host-Only) and Setup ing to access services running inside the virtual machine.
ogy in Mininet and configure OpenFlow switches with POX ommunicate between nodes.
nfigure an SDN controller (OpenDaylight or ONOS).
tet Analysis- Select a TCP packet and follow the TCP stream to see the entire between two hosts (Wireshark).
- Capture DNS traffic and analyze the DNS queries and responses (Wireshark).

Lecture: 0 Periods	Tutorial: 0 Periods	Practical: : 45 Periods	Total: 45 Periods
--------------------	----------------------------	-------------------------	--------------------------

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Analyze and optimize routing protocol parameters for enhanced network performance.	K4
CO2	Design and simulate voice and data traffic within mobile network	K5
CO3	Understand the concept of virtual routing and forwarding for network isolation	K2
CO4	Test and observe the impact of SDN on network behavior	К3
CO5	Capture and analyze real-time data on a network	K4

COURSE ARTICULATION MATRIX

					-	
COs/	PO1	PO2	PO3	PO4	PO5	PO6
POs						
CO1	2	1	3	-	3	-
CO2	2	1	3	-	3	-
CO3	2	1	3	-	3	-
CO4	2	1	3	-	3	-
CO5	2	1	3	-	3	-
23CSPC08	2	1	3	-	3	-
1-Slight,2-Mo	derate, 3-Substantia	l				•

23CSEE01 MINI PROJEC	T SEMESTER II
----------------------	---------------

T

Т

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	4	2

Course Objectives	To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature and develop the methodology to solve the identified problem, prepare project reports.			
Contact Periods Lecture: 0 Perio				

	OUTCOMES:	Bloom's
Upon Com	pletion of the course, the students will able to:	Taxonomy Mapped
CO1	Identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature to get clear idea about the project work.	K2
CO2	Develop the methodology to solve the identified problem.	K3
CO3	Confidence to work on projects independently.	K2
CO4	Improve presentation and communication skills.	К3
CO5	Identify one's need for further knowledge and continuously develop one's own competencies, write clear, concise and accurate technical document for publication.	K2

COURSE ARTIC	ULATION MA	TRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	35	200	3	3	3
CO2	2	2	2	3	3	3
CO3	2	2	2	2	2	2
CO4	1	1	2	1	1	3
CO5	1	3	1	2	3	3
23CSEE01	2	3	2	2	3	3
1 – Slight, 2 – Mod	lerate, 3 – Substa	antial	•	•		

23CSPC09	DATA SCIENCE		SEMESTER III				
PREREQUISI	L	Т	Р	C			
	PC	3	0	0	3		
Course Objectives	This course introduces he techniques and processes of da Visualize data for various applications, Understand infer build predictive models from data	· · · · · ·	-			2	
UNIT – I	INTRODUCTION TO DATA SCIENCE						
applications. UNIT – II	rating, and transforming data – exploratory data analysis – bui DESCRIPTIVE ANALYTICS		-			L(
- variability for	butions – Outliers – interpreting distributions – graphs – averages - qualitative and ranked data - Normal distributions – z scores – least squares regression line – standard error of estimate – interpre ard the mean	-correlation – s	catter	plots	– reg	ressio	
UNIT – III	INFERENTIAL STATISTICS					Ι	
z-test procedure	mples – random sampling – Sampling distribution- standard error -decision rule – calculations – decisions – interpretations - one- confidence interval – level of confidence – effect of sample size.						
UNIT – IV	ANALYSIS OF VARIANCE					Ι	
	nple – sampling distribution of t – t-test procedure – t-test for two test for two related samples. F-test – ANOVA – Two-factor experim hi-square tests						
UNIT – V	PREDICTIVE ANALYTICS					Ι	
StatsModels - 1	ares – implementation – goodness of fit – testing a linear model nultiple regression – nonlinear relationships – logistic regressio ng averages – missing values – serial correlation – autocorrelation. I	n – estimating	paran	eters	– Tii		
Contact Period							
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods					

REFERENCES:

1	Robert S. Witte and John S. Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017.
2	David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016
3	Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare, "Fundamentals of Data Science", CRC Press, 2022
4	Chirag Shah, "A Hands-On Introduction to Data Science", Cambridge University Press, 2020.
5	Vineet Raina, Srinath Krishnamurthy, "Building an Effective Data Science Practice: A Framework to Bootstrap and
	Manage a Successful Data Science Practice", Apress, 2021.
6	Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta, "Practical Data Science Cookbook", Packt
	Publishing Ltd., 2014

COURSE C Upon Comp			se, the student	s will able to:			Bloom's Taxonomy Mapped
CO1	Ex	plain the pr	ocess of dat	a science			K2
CO2	De	scribe and	visualize dat	a			K1
CO3	Pe	rform statis	tical inferen	ces from data			К3
CO4	An	alyze the v	ariance in th	e data			K3
CO5	Bu	ild models	for predictiv	e analytics			K4
COURSE A	RTI	CULATION	MATRIX			I.	
COs/POs	8	PO1	PO2	PO3	PO4	PO5	PO6
CO1		3	1	-	2	-	-
CO2		3	1	2	3	1	-
CO3		3	-	2	3	2	-
CO4		2	1	2	3	3	1
CO5		3	3	3	3	3	3
23CSPC09		3	1	2	3	3	1
1 – Slight, 2	– M	loderate, 3 –	Substantial	(SASAGIA C	A B \$3810		

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	20	\ <u> </u>	-	-	100
CAT2	20	30	30	20	-	-	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	-		CO COT	40	40	20	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	-		40	40	20	100
ESE	40	30	30	-	-	-	100

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	24	12

Course Objectives	To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature and develop the methodology to solve the identified problem, prepare project reports.
Contact Periods: Lecture: 0 Period	

COURSE OUTCOMES:

	E OUTCOMES: npletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature to get clear idea about the project work.	K4
CO2	Develop clear outline and methodology to solve the identified problem.	K4
CO3	Confidence to work on projects independently.	K2
CO4	Improve presentation and communication skills.	K3
CO5	Identify one's need for further knowledge and continuously develop one's own competencies, write clear, concise and accurate technical document for publication.	К3

COURSE ARTICU	LATION MATH	RIX	New York		1	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2300	20	2	2	3
CO2	3	- 64	2	3	3	3
CO3	2	-	3	2	2	3
CO4	1	1	2	1	1	3
CO5	1	3	1	2	3	3
23CSEE02	3	2	2	3	3	3

23CSEE03

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	48	24

Course Objectives	To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature and develop the methodology to solve the identified problem, prepare project reports.
Contact Periods: Lecture: 0 Period	

Upon Compl	DUTCOMES: letion of the course, the students will able to:	Bloom's Taxonomy Mapped
	Identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature to get clear idea about the project work.	K4
CO2	Develop a clear outline and methodology to solve the identified problem.	K4
CO3	Confidence to work on projects independently.	K2
CO4	Improve presentation and communication skills.	K5
	Identify one's need for further knowledge and continuously develop one's own competencies, write clear, concise and accurate technical document for publication and publish the findings in the peer reviewed National/International journals	К3

COURSE ARTICU	ULATION MAT	RIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1000	2	2	2	3
CO2	3	00	2	3	3	3
CO3	2	-	3	2	2	3
CO4	1	1	2	1	1	3
CO5	1	3	1	2	3	3
23CSEE03	3	2	2	3	3	3
1 – Slight, 2 – Mod	erate, 3 – Substar	ntial	•	-		

	SITES	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course Objectives	 Understand the basic concepts of image processing Enhancement techniques, restoration and compression Recognition. Apply image processing concepts in real time appli 	n techniques, Seg				
UNIT – I	FUNDAMENTALS					L(
Acquisition-S	Processing – Fundamental steps, Components – Eleme Sampling and Quantization – Relationship between Pixel					
UNIT – II	IMAGE TRANSFORMS AND ENHANCEMENT					L()
Hadamard-Wa level transform	orms and its properties: Unitary transform, Discrete Fo Ilsh transform, Haar Transform, Hoteling Transform – I nations, Histogram processing, Spatial Filtering - Image	Image Enhancem	ent in	spatia	l Dor	nain: Gra
and smoothing	g filters, Homomorphic filtering					F
and smoothing UNIT – III	g filters, Homomorphic filtering IMAGE RESTORATION AND COMPRESSION	an	1			L
UNIT – III Image Restor restoration – I Image Compr Arithmetic co	IMAGE RESTORATION AND COMPRESSION ation: Degradation model – Noise models – Estima Inverse Filtering – Wiener Filtering – Blind deconvolu ression: redundancy and compression models - Loss ding, bit-plane coding, Lossless predictive coding. L	ating Degradation tion –Image reco less compression	n - A nstruc : vari	lgebra tion fi able-le	aic ap rom p ength,	L(pproach rojection Huffma
UNIT – III Image Restor restoration – I Image Compr	IMAGE RESTORATION AND COMPRESSION ation: Degradation model – Noise models – Estima Inverse Filtering – Wiener Filtering – Blind deconvolu ression: redundancy and compression models - Loss ding, bit-plane coding, Lossless predictive coding. L	ating Degradation tion –Image reco less compression cossy compressio	n - A nstruc : vari n: Tra	lgebra tion fi able-le insform	aic ap rom p ength,	L(pproach rojection Huffma
UNIT – III Image Restor restoration – I Image Compr Arithmetic co (DCT), JPEG UNIT – IV Image Segmer Boundary repr	IMAGE RESTORATION AND COMPRESSION ation: Degradation model – Noise models – Estima Inverse Filtering – Wiener Filtering – Blind deconvolu ression: redundancy and compression models - Loss ding, bit-plane coding, Lossless predictive coding. L standard	ating Degradation tion –Image reco less compression ossy compression AND RECOGN dary detection – F	n - A nstruc : vari n: Tra ITIO	lgebra tion fi able-le insform N	aic ap rom p ength, n bas	L(pproach rojection Huffma ed codir L(nentation
UNIT – III Image Restor restoration – I Image Compr Arithmetic co (DCT), JPEG UNIT – IV Image Segmer Boundary repr	IMAGE RESTORATION AND COMPRESSION ation: Degradation model – Noise models – Estimation Inverse Filtering – Wiener Filtering – Blind deconvolution ression: redundancy and compression models - Loss iding, bit-plane coding, Lossless predictive coding. Listandard IMAGE SEGMENTATION, UNDERSTANDING ntation: Line, Edge Detection – Edge Linking and Bound resentation – Region Descriptors. Image understanding a	ating Degradation tion –Image reco less compression ossy compression AND RECOGN dary detection – F	n - A nstruc : vari n: Tra ITIO	lgebra tion fi able-le insform N	aic ap rom p ength, n bas	L(pproach rojection Huffma ed codir L(nentation
UNIT – III Image Restor restoration – I Image Compr Arithmetic co (DCT), JPEG UNIT – IV Image Segmer Boundary repr templates, class UNIT – V Applications:	IMAGE RESTORATION AND COMPRESSION ation: Degradation model – Noise models – Estima Inverse Filtering – Wiener Filtering – Blind deconvolu ression: redundancy and compression models - Loss iding, bit-plane coding, Lossless predictive coding. L standard IMAGE SEGMENTATION, UNDERSTANDING ntation: Line, Edge Detection – Edge Linking and Bound resentation – Region Descriptors. Image understanding a ssifiers-statistical and neural network based model	ating Degradation tion –Image reco less compression ossy compression AND RECOGN dary detection – F and recognition: P	n - A nstruc : vari n: Tra ITIO Region attern	lgebra tion fi able-le ansform N basec classe	nic ap rom p ength, n bas l segn es - M	L(1)
UNIT – III Image Restor restoration – I Image Compr Arithmetic co (DCT), JPEG UNIT – IV Image Segmer Boundary repr templates, class UNIT – V Applications:	IMAGE RESTORATION AND COMPRESSION ation: Degradation model – Noise models – Estima Inverse Filtering – Wiener Filtering – Blind deconvolute ression: redundancy and compression models - Loss iding, bit-plane coding, Lossless predictive coding. L standard IMAGE SEGMENTATION, UNDERSTANDING ntation: Line, Edge Detection – Edge Linking and Bound resentation – Region Descriptors. Image understanding a ssifiers-statistical and neural network based model APPLICATIONS Automatic fruit grading system in Precision agricultur n – Medical Investigation – Entertainment: Multimedia	ating Degradation tion –Image reco less compression cossy compression AND RECOGN dary detection – F and recognition: P	n - A nstruc : vari n: Tra ITIO Region attern isual :	lgebra tion fi able-le ansform N basec classe	nic ap rom p ength, n bas l segn es - M	L(1)

1	Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Fourth Edition, Pearson Education, 2018
2	Anil K. Jain, "Fundamental of Digital Image Processing", Prentice Hall, 2015
3	Annadurai S, Shanmugalakshmi R, "Fundamentals of Digital Image Processing", Pearson Education Pvt. Ltd., 2007
4	S. Jayaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing", Second Edition, Tata McGraw Hill Education Pvt. Ltd., 2020.
5	S. Sridhar, "Digital Image Processing", Second Edition, OXFORD University press, 2016

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe the image processing steps and relationship between the pixels.	K2
CO2	Apply the image transforms and enhancement techniques on images.	K3
CO3	Analyze the different kinds of restoration and compression techniques of image processing.	K4
CO4	Perform edge detection and segmentation and Recognize image using matching by templates, statistical and neuralnetwork models.	K5
CO5	Apply suitable image processing techniques for various real time applications like medical and network security applications	К3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4]	PO5	PO6
CO1	2	- (815A	10 0 3	110 0 010 10-		1	1
CO2	3	- M	3	222 V	0	2	2
CO3	3	-	3		600 - C	2	2
CO4	3	-	3	-	2	3	3
CO5	3	-	3	8 -/		3	3
23CSPE01	3	-))	3	A -1		2	2
1 - Slight, 2 - M	oderate, 3 – Sub	stantial	SNU				
ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	20	30	20	30	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	30	20	20	30	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	30	20	-	20	30	100
ESE	10	30	20	20	10	10	100

NIL PE 3 0 0 3 Course Objectives After the completion of the course, the students will be able to understand embedded concepts and embedded system architecture with programming of ARM Cortex Microcontroller. Selection of a proper Microcontroller for an application. The usage of the development and debugging tools. Memory systems and Peripherals. L(9) UNIT - I INTRODUCTION TO EMBEDDED CONCEPTS L(9) Introduction to embedded systems, Application Areas, Categories of embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb- 2 and Instruction Set Architecture. Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. CortexM3Instruction Sets: Assembly Basics, Instruction Ist, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I- Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT - III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts, Tail-Chaning Interrupt, Late Arrivals and Interrupt Latency L(9) <t< th=""><th>PREREQUISI</th><th>ΓΕS</th><th>CATEGORY</th><th>L</th><th>Т</th><th>Р</th><th>С</th></t<>	PREREQUISI	ΓΕS	CATEGORY	L	Т	Р	С		
Conste Objectives embedded system architecture with programming of ARM Cortex Microcontroller. Selection of a proper Microcontroller for an application. The usage of the development and debugging tools. Memory systems and Peripherals. UNIT -1 INTRODUCTION TO EMBEDDED CONCEPTS L(9) Introduction to embedded systems, Application Areas, Categories of embedded systems, Overview of embedded system architecture, Specialties of embedded systems, recent trends in embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. UNIT - II OVERVIEW OF ARM AND CORTEX-M3 L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture, Cortex-M3 Basics', Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence, Cortex/M3 Instruction Sets Assembly Basics, Instruction List, Instruction Descriptions. Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. INVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts, Tail-Chaining Interrupts, Eat Arrivals and Interrupt, Exception Sequences, Exception Types, Priority, Vector Table, Relocation. Memory Protection Init and other Cortex-M3 features: MPU Registers, Software I		NIL	PE	3	0	0	3		
Course Objectives embedded system architecture with programming of ARM Cortex Microcontroller. Selection of a proper Microcontroller for an application. The usage of the development and debugging tools. Memory systems and Peripherals. UNIT -1 INTROUCTION TO EMBEDDED CONCEPTS L(9) Introduction to embedded systems, Application Areas, Categories of embedded systems, Overview of embedded system architecture, Specialties of embedded systems, recent trends in embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. UNIT - II OVERVIEW OF ARM AND CORTEX-M3 L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb- 2 and Instruction Set Architecture, Cortex-M3 Basics', Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence, Cortex/M3 Instruction Sets Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I- Code Bus, D Code Bus, System Bus, External PPB and DAP Bus L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts, Tail-Chaining Interrupts, Eat Arrivals and Interrupt Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Eat Arrivals and Interrupt Exception/Interrupt Handlers, Software Interrupts, Vector Tab							ı		
Objectives Import Microcontroller for an application. The usage of the development and debugging tools. Memory systems and Peripherals. UNIT - I INTRODUCTION TO EMBEDDED CONCEPTS L(9) Introduction to embedded systems, Application Areas, Categories of embedded systems, Architecture of embedded systems, Application Areas, Categories of embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. UNIT - II OVERVIEW OF ARM AND CORTEX-M3 L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture, Cortex-M3 Basics, Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Cortex/M3Instruction Set: Assembly Basics, Instruction List, Instruction Descriptions: Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT - III CORTEX.EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Fist, Nested Interrupts, Exception Programming: Using Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table, Recleation. Memory Protection Unit	Course	1					*		
Independence Description UNIT - I INTRODUCTION TO EMBEDDED CONCEPTS L(9) Introduction to embedded systems, Application Areas, Categories of embedded systems, Overview of embedded system architecture, Specialties of embedded systems, recent trends in embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. UNIT - II OVERVIEW OF ARM AND CORTEX-M3 L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture, Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Cortex/M3Instruction Set: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus L(9) UNIT - III CORTEX-K2CEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Fault Scate Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt, Exception/Interrupt Handlers, Software Interrupts, Vector Table, Register, Orgramming: Using Interrupts, Exception/Interrupt Handlers, Software Interru									
UNIT - I INTRODUCTION TO EMBEDDED CONCEPTS L(9) Introduction to embedded systems, Application Areas, Categories of embedded systems, Overview of embedded system architecture, Specialties of embedded systems, recent trends in embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. UNIT - II OVERVIEW OF ARM AND CORTEX-M3 L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture, Ortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Cortex/M3Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT - III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Controller Overview, Bequence, Sexception Exits, Nested Interrupts, and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception/Interrupt Controller Overview, Basic Interrupt Setter Marine Interrupt, Vector Tables, Stack Microcontroller VINT - IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, U	proper Microcontroller for an application. The usage of the development and debugging tools.								
Introduction to embedded systems, Application Areas, Categories of embedded systems, Overview of embedded system architecture, Specialties of embedded systems, recent trends in embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. UNIT - II OVERVIEW OF ARM AND CORTEX-M3 L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture, Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Cortex/M3Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PDB and DAP Bus UNIT - III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Exception Sequences, Turner, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT - IV CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS L(9) StrMayre Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Register	UNIT – I						L(9)		
system architecture, Specialties of embedded systems, recent trends in embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. UNIT – II OVERVIEW OF ARM AND CORTEX-M3 L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture. Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Cortex/M3Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT – III CORTEX EXCEPTION HANDLING AND INTERUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupt, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT – V CORTEX-M3/M4 DEVELOPMENT AND DEBUGCING TOOLS L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller; Memory and Bas Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods:			nbedded systems.	Overvi	ew	of en			
embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software. UNIT - II OVERVIEW OF ARM AND CORTEX-M3 L(9) Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture. Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Cortex/M3 Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT - III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts, and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency L(9) Cortex-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller, Memory and Bas Architecture, Power Control, R									
Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture. Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Cortex/M3Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT - III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT - IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.									
2 and Instruction Set Architecture. Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. Cortex/M3Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions. Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT - III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT - IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timer, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.	UNIT – II	OVERVIEW OF ARM AND CORTEX-M3					L(9)		
Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. CortexM3Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT – III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency L(9) UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOS, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.	Background of	ARM Architecture, Architecture Versions, Processor Nam	ing, Instruction Se	t Deve	lopn	nent,	Thumb-		
Memory Operations, Reset Sequence. CortexM3Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT – III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT – V CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.									
Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus UNIT – III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT – V CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.									
Code Bus, D Code Bus, System Bus, External PPB and DAP Bus L(9) UNIT – III CORTEX EXCEPTION HANDLING AND INTERRUPTS L(9) Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT – V CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.									
UNIT - IIICORTEX EXCEPTION HANDLING AND INTERRUPTSL(9)Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt LatencyUNIT - IVCORTEX-M3/M4 PROGRAMMINGL(9)Cortex-M3/M4Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication.L(9)STM32L15xxxRAM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.			agram, Bus. Inter	faces of	on C	ortex	M3, I-		
Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT – V CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.									
Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT – V CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods: Contact Periods:									
Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.									
Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency UNIT – IV CORTEX-M3/M4 PROGRAMMING L(9) Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interface Standard), Using Assembly. Exception Programming: Using Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods:									
UNIT - IVCORTEX-M3/M4 PROGRAMMINGL(9)Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interface Standard), Using Assembly. Exception Programming: Using Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication.UNIT - VCORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLSL(9)STM32L15xxxARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.	U V		A		otior	i Sec	juences,		
Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interface Standard), Using Assembly. Exception Programming: Using Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication.UNIT - VCORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLSL(9)STM32L15xxxARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.	-		s and Interrupt Lat	ency			T (0)		
Software Interface Standard), Using Assembly. Exception Programming: Using Interrupts, Exception/InterruptHandlers, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features:MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication.UNIT - VCORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLSL(9)STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset andClock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators,GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler,Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.Contact Periods:					<u> </u>				
Handlers, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT - V CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods:									
MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication. UNIT - V CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS L(9) STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods:									
UNIT - VCORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLSL(9)STM32L15xxxARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxxPeripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.Contact Periods:					tex-	M3 1	eatures:		
STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods:							I (0)		
Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods:									
GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods:									
Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc. Contact Periods:									
Contact Periods:									
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			Total: 45 Perio	ods					

1	Joseph Yiu," The Definitive Guide to the ARM Cortex-M3", Second Edition, Elsevier Inc. 2010.
2	Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide Designing and
	Optimizing System Software ", Elsevier Publications, 2006
3	Steve Furber, "ARM System-on-Chip Architecture", 2nd Edition, Pearson Education, India ISBN:
	9788131708408, 8131708403 , 2015
4	STM32L152xx ARM Cortex M3 Microcontroller Reference Manual 5/97
5	ARM Company Ltd. "ARM Architecture Reference Manual- ARM DDI 0100E"

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the Embedded Concepts and Architecture of Embedded Systems.	K2
CO2	Describe the architectural features and instructions of ARM Cortex M3 Microcontroller.	K2
CO3	Use Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation.	K2
CO4	Use ARM Cortex M3/M4 with Embedded C Programming for Application Development.	K5
CO5	Design and implement software systems to provide an interface to ARM Cortex M3 based hardware systems.	K6

COURSE ARTICULATION MATRIX :

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	Contra Contra	3	2	2	3
CO2	2	1000	061603yc110	< 2	2	3
CO3	2	وب	3030460	2	2	3
CO4	3	-//	3	3	2	3
CO5	3	8	3	3	2	3
23CSPE02	2	-11-	3	2	2	3
1 - Slight, 2 - M	loderate, 3 – Subs	tantial				
		11				
		//		11		

ASSESSMEN	T PATTERN –	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	10	10	-	-	100
CAT2	40	25	20	10	-	5	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	30	10	10	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	5	5	20	20	15	35	100
ESE	50	25	15	10	-	-	100

PREREQUISI	TES	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
Course Objectives	1 5 7 5 7 5						
	competitive resonance neural networks						
UNIT – I	FUNDAMENTALS OF FUZZY LOGIC	1.2 1.5	D 1			L(9	
	Fuzzy Sets: Operations and Properties – Classical R						
	mposition, Tolerance and Equivalence Relations – M		ns: Fea	itures	and S	tandar	
	cation-A Cuts For Fuzzy Sets and Relations - Defuzzi					т. (б	
UNIT – II	FUZZY LOGIC SYSTEMS AND APPLICATION		Con Erro	C_		L(9	
Squares Algorit	zy Systems – Membership Value Assignments – Au thm, Gradient and Clustering Method – Decision Ma ation, Fuzzy Pattern Recognition – Fuzzy Control Sy	aking with Fuzzy In	format	ion –	Appli	cations	
Applications- F	uzzy Information Retrieval						
UNIT – III	ARCHITECTURE OF NEURAL NETWORKS					L(9	
	al Networks - Biological Neural Networks - Typic						
	nctions- Basic Learning Rules - Mcculloch-Pitts				For	Patter	
	Architecture, Biases and Thresholds, Linear Separability	y, Hebb Net-Percepti	on-Ad	aline.			
UNIT – IV	BASIC NEURAL NETWORK TECHNIQUES						
Association-He	on Neural Net: Standard Back Propagation – Architect bb Rule and Delta Rule - Associative and other Neura ciative Net- Bidirectional Associative Memory-Applica	l Networks: Hetro A	ssociat	ive M	emory	Neura	
UNIT – V	COMPETITIVE NEURAL NETWORKS					L(9	
	k Based on Competition: Fixed Weight Competiti						
	earning Vector Quantization-Counter Propagation N						
	Architecture and Operation-Architecture, Algorithm, A		lysis c	of ART	[1 & A	ART2	
	Neocognitron - Architecture, Training Algorithm and ap	plication					
Contact Period Lecture: 45 Per		Total: 45 Periods	5				

1	LaureneFausett, "Fundamentals of Neural Networks", Pearson Education India, 2008.
2	Timothy J.Ross, "Fuzzy Logic with Engineering Applications", John Wiley and sons Pvt.Ltd, Fourth Edition, 2016
3	J.A.Freeman and B.M.Skapura, "Neural Networks, Algorithms applications and Programming Techniques",
	Pearson, 2002
4	Zimmermann.H.J, "Fuzzy Set Theory and its Applications", Kluwer Academic Publishers, Dordrecht, Germany,
	Fourth Edition, 2013.
5	Zurada J.M. "Introduction to Artificial Neural Systems", Jaico Publishing House, 1994

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Perform simple arithmetic, logical and geometric operations on classical and fuzzy sets.	K3
CO2	Apply Fuzzy Logic techniques for real time applications.	K3
CO3	Apply activation functions suitable for different neural networks and Solve linearly separable problems	К3
CO4	Choose and apply the suitable BPN algorithm for pattern classification, character recognization	K4
CO5	Describe the features, operations and applications of Competitive Networks and Adaptive resonance neural networks, and Neocognitron.	K2

COURSE ARTICULATION MATRIX :

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	3	2	2	2
CO2	3		33	3	2	2
CO3	2	a serie	Barson 3 HILLING	Stepher 2	2	2
CO4	3	1/59	3	22173	2	2
CO5	2		3	2	1	2
23CSPE03	2	1	3	2	2	2
1 – Slight, 2 – Mo	derate, 3 – Substan	tial			1 1	
				1		

ASSESSME	NT PATTERN -	THEORY	B CAND				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	20	30 944	20	30	-	-	100
Individual Assessmen t 1/Case Study 1/Seminar 1/Project 1	-	30	20	20	30	-	100
Individual Assessmen t 2/Case Study 2/Seminar 2/Project 2	-	30	20	-	20	30	100
ESE	10	20	30	20	10	10	100

UNIT-I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. The objective of the course is to enable students to understand the basic underlying concepts,
Objectives	Characteristics, issues and challenges of cloud computing, architecture and virtualization.
·	 Students will be familiar with Cloud application program and the ANEKA latform, security issues of cloud computing.

Overview of Computing Paradigm: Recent trends in Computing - Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing - Introduction to Cloud Computing - Cloud issues and challenges-Cloud Computing (NIST Model) - History of Cloud Computing, - Cloud service providers Properties, Characteristics & Disadvantages - Pros and Cons of Cloud Computing, Benefits of Cloud Computing - Role of Open Standards .

UNIT – II CLOUD COMPUTING ARCHITECTURE AND VIRTUALIZATION

INTRODUCTION TO CLOUD COMPUTING

Cloud computing stack - Comparison with traditional computing architecture (client/server), Services provided at various levels - Role of Networks in Cloud computing, protocols used, Role of Web services- Service Models (XaaS)-Infrastructure as a Service(IaaS) - Platform as a Service(PaaS) - Cloud Platform and Management – Software as a Service(SaaS)- Web services - Web 2.0 - Deployment Models -Public cloud -Private cloud -Hybrid cloud -Community cloud - Virtualization concepts - Introduction to virtualization - Types of Virtualization- Introduction to Various Hypervisors - High Availability (HA)/Disaster Recovery (DR) using Virtualization, Moving VMs

UNIT – III CLOUD APPLICATION PROGRAMMING AND THE ANEKA PLATFORM

L(9)

L(9)

L(9)

L(9)

L(9)

Aneka - Framework overview - anatomy of the Aneka container - Building Aneka clouds - Cloud programming and management - Programming applications with threads - Multithreading with Aneka - Programming applications with Aneka threads - Task computing - Task-based application models - Aneka task-based programming - Data-Intensive Computing - Aneka MapReduce programming.

UNIT – IV CLOUD SECURITY

Infrastructure Security - Network level security, Host level security, Application level security - Data security and Storage - Data privacy and security Issues, Jurisdictional issues raised by Data location - Identity & Access Management -Access Control -Trust, Reputation, Risk, Authentication in cloud computing, Client access in cloud, Cloud contracting Model, Commercial and business considerations.- Cloud Reliability and fault-tolerance -privacy - policy and compliance -Cloud federation, interoperability and standards.

UNIT – V CLOUD APPLICATIONS AND CASE STUDY

Scientific applications : Healthcare – Biology – Geoscience - Business and consumer applications: CRM and ERP – Productivity - Social networking - Media applications - Multiplayer online gaming - Case Study on Open Source & Commercial Clouds – Eucalyptus - Microsoft Azure - Amazon EC2 - Google AppEngine.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES

1	Sosinsky, Barrie. "Cloud computing bible", Vol. 762. John Wiley & Sons, 2010.
2	Kai Hwang, Geoffrey C. Fox, Jack, J. Dongarra "Distributed and Cloud Computing from Parallel Processing
	to the Internet of Things", Elsevier 2012.
3	RajkumarBuyya, Christian Vecchiola, S. ThamaraiSelvi "Mastering Cloud Computing Foundations and
	Applications Programming", 2013.
4	RajkumarBuyya, James Broberg, Andrzej M. Goscinski, "Cloud Computing: Principles and Paradigms",
	Wiley,2011
5	Nikos Antonopoulos, Lee Gillam, "Cloud Computing: Principles, Systems and Applications" Springer, 2012.
6	Ronald L. Krutz, Russell Dean Vines, "Cloud Security: A Comprehensive Guide to Secure Cloud
	Computing", Wiley-India, 2010.
7	John Ritting house & James Ransome, "Cloud Computing, Implementation, Management and Strategy",
	<i>CRC Press, 2016.</i>

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain and discuss basic concepts, fundamental issues and challenges of Cloud	K1
CO2	Computing and paradigms of computing. Explain the basic architecture of cloud computing and virtualization techniques.	K2
CO3 CO4	Design and implement basic cloud application using Aneka framework. Explain the core issues of cloud computing such as security, privacy, and interoperability.	K3 K4
CO5	Provide cloud computing solutions and recommendations and for applications.	К5

累

COURSE ARTICULATION MATRIX

3	2		18 1		
	4	200 AVC	<u>cor</u>	-	-
3	2	-	-	-	-
3	3	2	-	3	2
3	2	2	2	-	-
3	3	2	2	3	-
3	2	2	2	3	2
	$\begin{array}{c c} 3 \\ \hline 3 \\$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	3 2 2 3 3 2 3 3 2 3 2 2	3 2 2 3 2 2 3 3 2 3 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2	3 2 2 2 3 3 2 2 3 3 2 2 3 2 2 3 3 2 2 3

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	-	30	30	20	20	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	40	40	20	-	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	30	30	20	20	-	100
ESE	40	20	10	10	10	10	100

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	The objective of the course is to familiarize students with software Design an	d estimation techniques,					
Objectives	software quality, testing and maintenance strategies along with scrum develop	A .					
Ū		<u>^</u>					
UNIT – I	INTRODUCTION AND REQUIREMENTS MODELING	L(9)					
Software Engin	neering- Process models-Agile development- Software engineering Know	wledge-core Principles-					
	guide each framework Activity - Requirements Engineering- Developing						
requirements mo	odel-Negotiating, validating Requirements-Requirements Analysis-Requiremer	nts Modeling.					
UNIT – II	SOFTWARE DESIGN AND ESTIMATION	L(9)					
Design Process	- Design Concepts - Design Model - Architectural Design - Component leve	l design –User interface					
	based design – Web App design – Case Study						
Software Project	et Estimation - Process and Project Metrics- Empirical Estimation model -	Specialized Estimation					
Technique for A	gile Development - Project Scheduling - Risk Management						
UNIT – III	SOFTWARE QUALITY AND TESTING	L(9)					
	y- Software - Quality Dilemma- Achieving Software Quality- Testing: Strateg						
Testing- Strateg	ic IssuesTesting: Strategies for Conventional Software, Object oriented software	re, Web Apps-Validating					
Testing- System	Testing- Art of Debugging						
UNIT – IV	SOFTWARE MAINTENANCE AND IMPROVEMENT	L(9)					
	ntenance-Software Supportability- Reengineering- Business Process						
Reengineering-	Reengineering- Reverse Engineering-Restructuring- Forward Engineering.Software Process improvement: Process –						
CMMI – The pe	CMMI – The people CMM – SPI return on investment – SPI Trends.						
UNIT – V	INTRODUCTION TO SCRUM DEVELOPMENT PROCESS	L(9)					
Basics of Scrum	Basics of Scrum – Running a Scum project – Steps for transition to scrum – Metrics for scrum – CaseStudy.						
Contact Period	s:						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

REFERENCES

_							
1	1	Roger Pressman.S "Software Engineering: A Practitioner's Approach" Eighth Edition, McGraw Hill, 2014					
4	2	Ian Sommerville "Software Engineering" Tenth Edition, Pearson Education Asia, 2017.					
		Shari Lawrence Pfleeger, Joanne M. Atlee, "Software Engineering: Theory and Practice", Fourth Edition, Pearson Education, 2011.					

4 Alistair Cockburn, "Agile Software Development", First Edition, Pearson Education, 2002.

COURSE OUTCOMES:

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Apply different process models for different projects and Perform requirement gathering and model the requirements.	К3
CO2	Design the project and identify risks, construct RMMM plan and develop estimation models.	K4
CO3	Verify and validate the software applications using different types of testing and maintain the quality of software.	K4
CO4	Perform reverse and forward engineering process for maintenance and improvement required in the project	K5
CO5	Apply Scrum Development Process to develop software.	<i>K6</i>

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	3	3	1	2	3					
CO2	3	3	3	1	2	3					
CO3	3	3	3	1	2	3					
CO4	3	3	3	1	2	3					
CO5	3	3	3	1	2	3					
23CSPE05	3	3	3	1	2	3					
1 – Slight, 2 – M	1 – Slight, 2 – Moderate, 3 – Substantial										

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	40		-	-	100
CAT2	-	20 56	30	30	-	20	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-		50	50	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-		50	50	-	-	100
ESE	20	20	20	20	-	20	100

SEMESTER I

PREREQUISITES					
	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

		··· ·					
Course	Explain and compare a variety of pattern classification, structural pattern recognition and pattern						
Objectives	classifier combination techniques						
UNIT – I	INTRODUCTION TO PATTERN RECOGNITION	L(9)					
Introduction to 1	Pattern Recognition- Data structures for pattern recognition -Review of Rando	om Vectors, Expectation,					
	variance - Review of Linear Algebra- Linear Transformations -Feature Ex						
Learning-Discr	iminant Functions.						
UNIT – II	LINEAR CLASSIFIERS	L(9)					
Bayes Decision	Theory - The Gaussian Probability Density Function - Minimum Distance	classifiers - Mixture					
Models - Percep	tron Algorithm - The Sum of Error Squares Classifier - Support Vector Machir	nes: K-Nearest-Neighbor					
Classification							
UNIT – III	UNSUPERVISED LEARNING AND CLUSTERING	L(9)					
Terminologies-1	Maximum likelihood estimation - Applications - Clustering - Sequential algorith	hms –Data descriptions -					
Criterion function	ons -Spectral Clustering - Hierarchical Clustering	_					
UNIT – IV	SYNTACTICAL PATTERN RECOGNITION	L(9)					
Elements of for	mal grammars - String generation as pattern description - Case Studies - F	Recognition of syntactic					
description - Pa	rsing - Stochastic grammars and applications - Graph based structural represen	tation					
UNIT – V	FEATURE SELECTION TECHNIQUES	L(9)					
Outlier Remova	1 - Normalization - ROC Curve - Fishers Discriminant Ratio - Class Separ	rability - Feature Subset					
Selection - Unsu	pervised learning in neural Pattern Recognition - Self-organizing networks						
Contact Period	s:						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45Periods						
REFERENCES							

1	M. Narasimha Murthy and V. Susheela Devi, "Pattern Recognition. An Algorithmic approach", Springer, 2011.
2	Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", Wiley, India, 2009.
3	SergiosTheodoridis, Konstantinos Koutroumbas, "Introduction to Pattern Recognition: A Matlab Approach",
	Elsevier Academic Press, 2010.
4	Andrew R. Webb, Keith D. Copsey, "Statistical Pattern Recognition", Third Edition, Wiley, 2011.
5	Duda R.O., HarP.E., and David G Stork, "Pattern Classification", Second edition, John Wiley & Sons, NewYork,
	2012

COUR: Upon C	Bloom's Taxonomy Mapped	
CO1	Describe the significance of pattern recognition	K2
CO2	Analyze the given patterns and apply suitable pattern classifiers for pattern classification	K4
CO3	Apply appropriate clustering techniques for high dimensional datasets.	K3
CO4	Summarize various syntactical pattern recognition models.	K4
CO5	Identify appropriate feature selection techniques.	K4

COURSE ARTICULATION MATRIX

COs/POs	PO 1	PO2	PO 3	PO 4	PO5	PO6		
CO1	1	2	3	1	2	2		
CO2	1	2	3	1	2	2		
CO3	1	2		1	2	2		
CO4	1	2	\$ 3 3		2	2		
CO5	1	2	"BBA53 DIL 118	<u> </u>	2	2		
23CSPE06	1	2 3	203	EV.	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

11

ASSESSMENT PATTERN – THEORY

ASSESSMENTTATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	20	40	40	-	-	100
CAT2	-	20	40	40	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-		1995 (Sec.	100	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	-	-	100	-	-	100
ESE	-	30	40	30	-	-	100

SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РЕ	3	0	0	3

Course Objectives	To enable correct identification of an object and take appropriate actions towards s making apt sense of images.	olving problems by
UNIT – I	IMAGE FORMATION AND PROCESSING	L(9)
	tives and transformations, Photometric image formation, The digital camera, Poin eighborhood operators, Fourier transforms, Pyramids and wavelets, Geometric trans	
UNIT – II	SEGMENTATION	L(9)
shift and mode f	and matching - Points and patches, Edges, Lines. Segmentation- Active contours, Spl finding, Normalized cuts, Graph cuts and energy-based methods. Feature-based alignment, Pose estimation, Geometric intrinsic calibration.	
UNIT – III	MOTION ESTIMATION	L(9)
structure and mot	notion- Triangulation, Two-frame structure from motion, Factorization, Bundle adjustion. Dense motion estimation- Translational alignment, Parametric motion, Spline-battion. Image stitching - Motion models.	
UNIT – IV	COMPUTATIONAL PHOTOGRAPHY	L(9)
Texture analysis a	ration, High dynamic range imaging, Super-resolution and blur removal, Image mattir and synthesis. Stereo correspondence - Epipolar geometry, Sparse correspondence, Der lobal optimization, Multi-view stereo.	
UNIT – V	IMAGE-BASED RENDERING	L(9)
Recognition - C	on, Layered depth images, Light fields and Lumigraphs, Environment mattes, Vide Object detection, Face recognition, Instance recognition, Category recognition, Comparison, Category recognition, Category recognitin, Category recognition, Categ	
Contact Periods: Lecture: 45 Perio		
REFERENCES	ALTER ALLES CO. CO. C.	

1	Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, New York, 2010
2	David Forsyth and Jean Ponce, "Computer Vision: A Modern Approach (Second Edition)", Prentice Hall, 2011
3	Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision (Second Edition)", Cambridge University Press, March 2004
4	S. Khan, H. Rahmani, S. Shah and M. Bennamoun, "A Guide to Convolutional Neural Networks for Computer Vision", Morgan & Claypool Publishers, 2018
5	E.R.Davies, "Computer Vision: Principles, Algorithms, Applications, Learning,", Elsevier Academic Press, 2017.

COURS Upon C	Bloom's Taxonomy Mapped	
CO1	Describe image formation and processing techniques.	K2
CO2	Apply feature detection and segmentation algorithms on image datasets	K3
CO3	Analyze various motion estimation techniques	K4
CO4	Interpret computational photographical approaches to transform images.	K2
CO5	Apply image rendering and recognition techniques on real time images	К3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	2	-	2	2
CO2	2	-	3	-	2	2
CO3	2	- Gt	3	3	2	2
CO4	2	Bigherin De	3. 6620	3	2	3
CO5	2	WERE	3	3	2	3
23CSPE07	2		3	3	2	2

ASSESSMENT PATTERN – THEORY	

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	40	40	20	-	-	100
CAT2	-	30	30	40	-	-	100
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	-	E.	at us	100	-	-	100
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	-	-	100	-	-	100
ESE	40	30	30	-	-	-	100

SEMESTER II

PREREQUISIT	ES	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course Objectives	After the completion of the course, the students will be able to applications, standardization and Interoperability efforts for things and data among IoT devices, design and deploy I concerning IoT	IoT, protocols for co	mmuni	catio	n betv	ween
UNIT – I	FUNDAMENTALS OF IoT					L(9)
communication r	haracteristics – Physical Design of IoT – Things in IoT – Log nodel and enabling technologies. Applications of domain speci art agriculture and smart health, IoT levels. IoT Vs M2M, SDN a	fic IoT systems such				
UNIT – II	IoT STANDARDIZATION AND INTEROPERABILITY					L(9)
IoT, Data Interop methodologies, S	on architecture, i-Core functional architecture, M2M service lev erability, Semantics Interoperability, Organizational Interoperabi emantics as an interoperability enabler.					
UNIT – III	COMMUNICATION PROTOCOLS AND SYSTEM					L(9)
	IOT CLOUD AND DATA ANALYTICS Cloud storage Models – WAMP – Xively Cloud for IoT – Pyt. Tful based Web API. Data Analytics for IoT – Apache Hadoop, A		Frame	work		L(9) go –
UNIT – V	SECURITY AND FUTURE RESEARCH	1				L(9)
Secure Key Gen algorithms for b computing. Case Contact Periods		ctional data transmis issues of incorporatin	sions, S	Secur	ity ad	ccess
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Perioas				
REFERENCES	ALL					
2014	hga, Vijay Madisetti, "Internet of Things - A hand on approach					
	san, Peter Friess, "Internet of Things: Converging Technologi ', River publications, 2013.	es for Smart Environ	ments a	nd Ir	itegra	ted
3 Charalampo	sdoucas, "Building the Internet of Things with Arduino", Crea	teSpace,2002				
-						

4 *Pethuru Raj, Anupama C. Raman,* **"The Internet of Things – Enabling Technologies, Platforms and Use cases",** CRC *Press, Taylor & Francis Group, 2017.*

5 *Fei Hu,* **"Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations,**" *CRC Press,* 2016.

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Interpret the vision of IoT from a global context.	K2
CO2	Analyze the need for standardization and organizational interoperability to resolve heterogeneity Issues.	K4
CO3	Design a portable IoT using any Single Board Computer and relevant protocols	K3
CO4	Design applications of IoT in real time scenario and deploy an IoT application to the cloud.	К3
CO5	Analyze the security principles for IoT and future research	K4

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	2	-	2
CO2	3	-	3	2	-	2
CO3	3	-	3 3	2	-	2
CO4	3	- 765	1000 00 3500 DIC W	2	-	2
CO5	3	- (9-3 JUL	SEV 2	-	2
23CSPE08	3	- //	3	2	-	2

11

ASSESSMEN	T PATTERN – TH	IEORY	AND				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	-	30	20	30	10	10	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20	20	20	20	20	100
ESE	20	40	40	-	-	-	100

NETWORK SCIENCE

SEMESTER II

PREREQUISI	ГЕЅ	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course Objectives	This course introduces the principles and concepts of net dynamics, models, analysis of complex systems and networks social science, biology, and technology.					
UNIT – I	INTRODUCTION					L (9)
Characteristics of	Network Science - Definition and scope, Historical develop of Network Science, Societal and Scientific impact, Basic Conce is and graphs, Measures of centrality and connectivity, Prestige					
UNIT – II	NETWORK STRUCTURE AND MODELS]	L(9)
attachment, Pov Barabasi-Albert	Guing -					
UNIT – III	NETWORK DYNAMICS				1	(0)
	(Batton Billio					. ,
Diffusion and onetworks, Case	Cascading Phenomena - Epidemic modeling and prediction, Ir ading and modeling failures in networks, Percolation Theory - teria, Attack and Error Tolerance of Real Networks				is in	
Diffusion and onetworks, Case	Cascading Phenomena - Epidemic modeling and prediction, Ir ading and modeling failures in networks, Percolation Theory -				is in 1 moc	real lels,
Diffusion and O networks, Casca Molly Reed Crit UNIT – IV Social Group an clans and n-clu	Cascading Phenomena - Epidemic modeling and prediction, Ir ading and modeling failures in networks, Percolation Theory - teria, Attack and Error Tolerance of Real Networks	Building robustne	ss, Perc	colation	ns in n moo l liques	real lels, L(9)
Diffusion and O networks, Casca Molly Reed Crit UNIT – IV Social Group an clans and n-clu	Cascading Phenomena - Epidemic modeling and prediction, Ir ading and modeling failures in networks, Percolation Theory - eria, Attack and Error Tolerance of Real Networks COMMUNITY DETECTION AND CLUSTERING and Subgroup- Subgroups Based on Complete Mutuality: Clique, bs, Subgroups Based on Nodal Degree: k-plexes, k-cores, Mea	Building robustne	ss, Perc	colation	ns in n moo l liques ommu	real lels, L(9) s, n- nity
Diffusion and O networks, Casca Molly Reed Crit UNIT – IV Social Group at clans and n-clu detection using UNIT – V Social Network Biological and Contact Period Lecture: 45 Period	Cascading Phenomena - Epidemic modeling and prediction, Ir ading and modeling failures in networks, Percolation Theory - teria, Attack and Error Tolerance of Real Networks COMMUNITY DETECTION AND CLUSTERING and Subgroup- Subgroups Based on Complete Mutuality: Clique, bs, Subgroups Based on Nodal Degree: k-plexes, k-cores, Mea Subgroups and Betweenness, Fast algorithms APPLICATIONS Analysis - Centrality measures in social networks, Structural hol Technological Networks - Protein-protein interaction networks, P infrastructure s: tiods Tutorial: 0 Periods Practical: 0 Periods Total:	Building robustne Reachability and sures of Subgroup les and brokerage, Network science in	Diamet Cohesi	er: n-c on, Co	is in n moo liques ommu l netwo	real lels, L(9) , n- nity L(9)
Diffusion and O networks, Casca Molly Reed Crit UNIT – IV Social Group at clans and n-clu detection using UNIT – V Social Network Biological and ' Smart cities and Contact Period	Cascading Phenomena - Epidemic modeling and prediction, Ir ading and modeling failures in networks, Percolation Theory - teria, Attack and Error Tolerance of Real Networks COMMUNITY DETECTION AND CLUSTERING and Subgroup- Subgroups Based on Complete Mutuality: Clique, bs, Subgroups Based on Nodal Degree: k-plexes, k-cores, Mea Subgroups and Betweenness, Fast algorithms APPLICATIONS Analysis - Centrality measures in social networks, Structural hol Technological Networks - Protein-protein interaction networks, P infrastructure s: tiods Tutorial: 0 Periods Practical: 0 Periods Total:	Building robustne Reachability and sures of Subgroup les and brokerage, Network science in	Diamet Cohesi	er: n-c on, Co	is in n moo liques ommu l netwo	realels lels L(9) g, n nity L(9) rks

1	Albert-László Barabási, "Network Science", Cambridge University Press, 1st edition, 2016. Online edition available
	at <u>http://networksciencebook.com/</u>
2	Kayhan Erciyes, "Complex Networks – An algorithmic perspective", CRC Press, Taylor and Francis Group, 2015
3	Wasserman Stanley, and Katherine Faust, "Social Network Analysis: Methods and Applications, Structural Analysis
	in the Social Sciences", Cambridge University Press, 2012
4	John Scott, "Social Network Analysis", Sage Publications Ltd., Fourth Edition, 2017.

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the fundamental principles of network science, including graph theory, connectivity, and centrality measures.	K2
CO2	Apply various network models, such as random graphs, Watts-Strogatz, and Barabási-Albert models, to represent and simulate different types of networks.	K3
CO3	Evaluate dynamic processes on networks, including random walks, diffusion, and percolation, and their implications in real-world scenarios.	K5
CO4	Apply algorithms for community detection and understand the impact of community structure on network dynamics.	K3
CO5	Identify and analyze applications of network science in various domains, including social networks, biological networks, and technological networks.	K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	2 3 3		2	-
CO2	3	16 8000	Pariso 310 Was	K GY	2	-
CO3	3	1.19	300300-20		2	-
CO4	3	1	3	1.	2	-
CO5	3	1	3 0	1	2	-
23CSPE09	3	1	3	//-	2	-
1 – Slight, 2 – M	oderate, 3 – Subst	antial	SNUP			

ASSESSMENT	PATTERN – T	HEORY	8 ~				
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creating (K6) %	Total %
CAT1	20	20	20	20	20	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	20	20	20	20	20	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	10	30	30	20	10	100
ESE	20	40	40	-	-	-	100

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РЕ	3	0	0	3

Course Objectives	This course explores the various concepts, algorithms and applications of machine	leaning
UNIT – I	INTRODUCTION	L(9)
Concept Learnin the Candidate El	s of Machine Learning –Design a Learning System – Perspectives and Issues in M g Task – Concept Learning as Search – Finding a Maximally Specific Hypothesis – mination Algorithm –Introduction to Machine learning tools liarity with R tool and Python programming language & libraries for Machine Learning	Version Spaces and
UNIT – II	SUPERVISED LEARNING	L(9)
Machines – Decis Ensemble Learnir	Nearest Neighbour learning - Perceptron - Multi-layer Perceptron –Back-Propagatic ion Trees - Classification and Regression Trees – Random Forests - Different ways to C ag – Boosting – Bagging – Evaluation Measures – Multiclass classification ementation of decision tree algorithm for problems in Retail Domain and Back propa- cial domain	ombine Classifiers –
UNIT – III	DIMENSIONALITY REDUCTION AND UNSUPERVISED LEARNING	L(9)
Gaussians-Flat clu	omerative Clustering (HAC)-Single-link, complete-link, group-average similarity- k-Me istering, k-Means algorithms-Mixture of Gaussian model. ementation of clustering algorithm for problems in financial/health care domain	eans and Mixtures of
UNIT – IV	GRAPHICAL MODELS	L(9)
Description Leng Network – EM-al	earning – Data into Probabilities –Bayes Theorem – Concept Learning – Maximum Lik th Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifie gorithm - Markov Random Fields – Hidden Markov Models – Tracking Methods e Bayes Classifier for problems in insurance domain	
UNIT – V	REINFORCEMENT LEARNING	L(9)
Reinforcement Le Elements – Mode – non-determinist	errning – Introduction -Elements of Reinforcement Learning – Learning Task – Q-learning I-Based learning – Value Iteration – Policy iteration – Temporal Difference Learning - Estic rewards and actions errentation of Q learning algorithm/reinforcement learning for problems in automotive d	ng – k-armed Bandit xploration Strategies
Contact Periods: Lecture: 45 Perio		

REFERENCES :

1 Ethem Alpaydin, "Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series)", Fourth Edition, MIT Press, 2020

2 Jason Bell, "Machine learning – Hands on for Developers and Technical Professionals", First Edition, Wiley, 2014

3 Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", First Edition, Cambridge University Press, 2012.

4 Stephen Marsland, "Machine Learning – An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

5 Tom M Mitchell, "Machine Learning", First Edition, McGraw Hill Education, 2017

- 6 Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Second Edition ,Springer, 2017
- 7 Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012

11

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Differentiate between supervised, unsupervised, semi-supervised machine learning approaches	K2
CO2	Apply specific supervised or unsupervised machine learning algorithm for a particular problem	K3
CO3	Analyse and suggest the appropriate machine learning approach for the various types of problem	K4
CO4	Design and make modifications to existing machine learning algorithms to suit an individual application	K5
CO5	Provide useful case studies on the machine learning algorithms	K6

18.81

11

Course Articulation	Matrix	l a				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3			2	-	-
CO2	3	and and	255	01003	1	-
CO3	3	CES.	15 2000	273	2	-
CO4	2	1	2	3	3	1
CO5	3	3	3	3	3	3
23CSPE10	3	1	2	3	3	1

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	20		-	-	100
CAT2	20	30	30	20	-	-	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	-	-	-	40	40	20	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	-	-	40	40	20	100
ESE	40	30	30	-	-	-	100

MULTIDIMENSIONAL DATA STRUCTURES

SEMESTER II

PREREQUISIT	TES	CATEGORY	L	Т	Р	С
	NIL	РЕ	3	0	0	3
Course Objectives	This course explores the design and implementation and algorithms for optimizing multidimensional quer multidimensional data.					
UNIT – I	DATA STRUCTURES – I					L(9)
Quadtree, Comp	ultidimensional Data, Range Trees, Priority Search T parison of Point and Trie-based Quadtrees, K-d Tre e, One-dimensional Orderings					
UNIT – II	DATA STRUCTURES – II					L(9)
	s - Tree Directory Methods:K-d-B-tree, Hybrid Tree, ods: Grid File, EXCELL, Linear Hashing, Spiral Hash nods	· · ·	·			·
UNIT – III	IMAGE REPRESENTATIONS erior-based Representations - Pyramid, R-tree, Hilbert I					L(9)
Distance Field, Boundary Repre UNIT – IV	INTERVALS AND SMALL RECTANGLES	Tree, Simplificat	ion M	ethods,	Surface	-based
based methods, A	thods and the Rectangle Intersection Problem - Segment Area based methods – MX-CIF Quadtree, HV/ VH tree, r Finding, Depth-first K-nearest Neighbor Algorithm					
UNIT – V	INDEXING METHODS	//				L(9)
Sequential Scan Partitioning Met neighbor queries		Partitioning Metho	ds, Ge	eneraliz	ed Hype	erplane
Contact Periods						
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Period	15			
Publishers, 2	et, "Foundations of Multidimensional and Metric D a 2006 2015 Santai Sahni "Handhook of Data Structures and					

$2 \mid D$	Dinesh P. Mehta,	Sartaj Sahni,	"Handbook o	f Data Structures	and Applications",	$2^{na}Edition$.	CRC Press, 2018	
------------	------------------	---------------	-------------	-------------------	--------------------	-------------------	-----------------	--

3 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", 4th Edition, MIT Press, 2022

4 Mark Berg , Otfried Cheong , Marc Kreveld , Mark Overmars, "Computational Geometry Algorithms and Applications", 3rd Edition, Springer, 2008

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the principles and applications of spatial data structures, such asRange Trees, Priority Search Trees, Quadtrees, K-d trees, bucket methods, PK trees	K2
CO2	Evaluate the strengths and weaknesses of different multidimensional data structures in terms of efficiency, scalability, and suitability for real world applications.	K5
CO3	Understand object representations by their interiors and boundaries and apply them in computer vision applications	K3
CO4	Understand the representations of intervals and small rectangles and its applications in spatiotemporal data	K2
CO5	Analyze the performance and suitability of various multidimensional indexing techniques and nearest neighbor search algorithms	K4

COURSE ARTICULATION MATRIX

PO1	PO2	PO3	PO4	PO5	PO6
3	1	3	-	2	-
3	1	3		2	-
3	1 8158	BIA DE ALCON DUCID	10 52 5 10 m	2	-
3	1	2 Barren	Salvy)	2	-
3	1	3	-	2	-
3	1	3 -	7	2	-
	PO1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	PO1 PO2 PO3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3	PO1 PO2 PO3 PO4 3 1 3 - 3 1 3 - 3 1 3 - 3 1 3 - 3 1 3 - 3 1 3 - 3 1 3 - 3 1 3 - 3 1 3 -	PO1 PO2 PO3 PO4 PO5 3 1 3 - 2 3 1 3 - 2 3 1 3 - 2 3 1 3 - 2 3 1 3 - 2 3 1 3 - 2 3 1 3 - 2 3 1 3 - 2 3 1 3 - 2 3 1 3 - 2

1 - Slight, 2 - M	Ioderate, 3 – Substa	antial		禾 ((
ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understand ing (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creating (K6) %	Total %					
CAT1	20	20	20	20	20	-	100					
CAT2	10	30	30	20	10	-	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	20	20	20	20	20	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	10	30	30	20	10	100					
ESE	20	40	40	-	-	-	100					

23CSPE12	CRYPTOGRAPHY AND NETWORK SI	SEMESTER II				
PREREQUISIT	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3

Course Objectives	After the completion of the course, the students will be able to understand the concepts of classical and symmetric key encryption schemes, Public Key Cryptographic Algorithms, types of data integrity and authentication schemes, network layer and Web security protocols, Software attacks, wireless network security threats and practice systems.							
UNIT – I	INTRODUCTION TO SECURITY	L(9)						
Testing - Eucl Shannon's Theo Classical Crypt	Cryptography: Algebraic structures - Groups, Rings, Fields - Number Tidean Algorithm - Chinese Remainder Theorem - Fermat's and Eupry ography -Types of attack: Chosen Message Attack (CMA) – Chosen en Cipher text Attack (CCA)- One Time Passwords (OTP) - Pse	ller's Theorem - Plaintext Attack						
	tream ciphers and Block Ciphers: Block ciphers - Modes of operation	on - DES and its						
variants – AES UNIT – II	- Linear and differential cryptanalysis - RC4. PUBLIC-KEY CRYPTOGRAPHY	L (10)						
	Public-key Cryptography - RSA Cryptosystem - Implementing RSA- At	L(10)						
Rabin Cryptosy - Elliptic Curv Key Predistribu	stem - Factoring Algorithms - ElGamal Cryptosystem - Discrete Logari ve Systems - Key Distribution and Key Agreement : Blom's Scheme tion – Kerberos - Diffie-Hellman Key Agreement scheme.	thm Problem						
UNIT – III	INTEGRITY AND AUTHENTICATION ALGORITHMS	L(9)						
function: HMA	requirement – Authentication function – MAC – Hash function – AC, CMAC – MD5 message Digest algorithm - Secure Hash Algones - Digital Signature Standard – X.509 Certificate							
UNIT – IV	NETWORK SECURITY AND WEB SECURITY PROTOCOLS	L(9)						
overflow, ARP UDP exploits, T Web Security P	ity, Security services, attacks, Security Issues in TCP/IP suite- Sniffing, poisoning, ICMP Exploits, IP address spoofing, IP Fragment attack, ΓCP exploits - Network Security Protocols:IP Security - AH and ESP - rotocols: HTTPS - DNS Security - Electronic Mail Security (PGP, S/MI	routing exploits, SSL/TLS - SSH. ME).						
UNIT – V	SOFTWARE ATTACKS AND PRACTICES	L(8)						
Honey pots. Se	ises - Worms - Trojan horses - Distributed Denial-Of-Service (DDoS) curity Systems: Firewalls – IDS - Password Management - Wireless Se ess networks. Wireless LAN Security: WEP – WPA - Blockchains, Cl	curity: Issues and						
Contact Perio Lecture: 45 P		eriods						

REFERENCES

1	Douglas R. Stinson.	"Cryptography:	Theory	and	Practice",	Fourth	edition,	Chapman	Å
	Hall/CRC, 2017.								

2 William Stallings, "Cryptography and Network Security - Principles and Practice", Seventh Edition, Pearson Education, 2017

-	3	Behrouz A. Ferouzan, DebdeepMukhopadhyay, "Cryptography and Network Security", 3rd
		Edition, Tata Mc Graw Hill, 2015
	4	J. Michael Stewart, "Network Security, Firewalls And VPNs", Jones& Bartlett Learning, 2013.

5 AtulKahate, "Cryptography and Network Security", Fourth Edition, Tata McGraw-Hill, 2019.

COURSE OUTCOMES:

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:						
CO1	Demonstrate the various classical and symmetric encryption techniques and the adversary capabilities.	K3					
CO2	Apply the different cryptographic operations of public key cryptography.	К3					
CO3	Apply the various integrity and authentication schemes to simulate different applications.	К3					
CO4	Understand the fundamentals and architecture used in Network security web security and Email Security protocols.	K1					
CO5	Analyze a security solution for a given system or real-world applications.	K4					

hum **COURSE ARTICULATION MATRIX** PO3 COs/POs **PO1** PO2 PO4 **PO5 PO6** CO1 3 3 2 1 1 CO2 3 3 2 2 1 6-1 CO3 2 3 3 3 2 H CO4 3 3 3 3 3 CO5 3 3 3 3 H 3 23CSPE12 3 14 2 3 3 2 ê 1 – Slight, 2 – Moderate, 3 – Substantial

The

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	-	30	20	30	10	10	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20	20	20	20	20	100
ESE	20	40	40	-	-	-	100

PREREQUISIT	CATEGORY	L	Т	Р	С	
	0	0	3			
Course Objectives	Demonstrate the analytical framework for understanding	g interactions amor	ng socia	al cor	nmuni	ties.
UNIT – I	INTRODUCTION					L
Commute Time	cial networks - Static and Dynamic properties - Random s - Algorithms for Computing Personalized Pagerank ions- Applications in computer vision, text analysis, comb	and Simrank - A				
UNIT – II	DISCOVERING COMMUNITIES					L
	ng –Markov Clustering - Community discovery in dyna nodes- Local classifiers - Classifiers for large scale netwo PRIVACY AND LINK PREDICTION		is and	direc	ted ne	etwork
networks and affi	in social networks - k-anonymity - l-diversity and <i>t</i> -close liation networks. Link Prediction - Feature Set Construction rediction by Local Probabilistic Models, Network Evolution lel.	- Classification Mo	dels - E	Bayesi	an Pro	babilis
UNIT – IV	SOCIAL NETWORK INFRASTRUCTURES					L
Accessibility Tes	nline Social Networks - Multi-Relational Characterization sting of Social Websites - Understanding and Predicting an-Centered Concepts with Social Networks Using Fuzzy Se	Human Behavior	al Net for So	work ocial	Comn Comn	nunitie nunitie
UNIT – V	VISUALIZATION AND APPLICATIONS OF SOCIAL	NETWORKS				L
Applications of	f Social Networks - Novel Visualizations and Intera Social Network Analysis - Online Advertising in so net: A Study of Technology Adoption and Diffusion.					
Contact Periods Lecture: 45 Peri		tal: 45 Periods				

1	Charu c. Aggarwal, "Social Network Data Analytics ", Springer 2011					
2	Borkofurht, "Handbook of Social Network Technologies and Applications", 2010					
3	David Easley and Jon Kleinberg,"Networks, Crowds, and Markets: Reasoning About a Highly Connected					
	World", Cambridge University Press, 2010.					

COURSE OUTCOMES: Upon Completion of the course, the students will able to:				
CO1	Compare Static and Dynamic properties of Social Networks and develop algorithms to perform random walks.	K4		
CO2	Develop methods to discover communities in large scale online Social Networks.	K2		
CO3	Use k-anonymity, l-diversity and other techniques to detect privacy threats and link selection, Bayesian Probabilistic Models to estimate efficiency of the links in graphs	К3		
CO4	Explain decentralized large scale online Social Networks and Use fuzzy sets to understand human behavior in Social Network communities	K3		
CO5	Visualize Social Networks using social network analysis tools and study Applications of Social Networks.	K2		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	- (PMS/6370 00	BS10100	3	3
CO2	3	-	2	3021	3	2
CO3	3	-	3	ALCONT OF	1	3
CO4	3	- 6	2	3	3	2
CO5	3	-	2	2	2	3
23CSPE13	3	-	3	2	2	3
1-Slight 2-Mo	derate 3-Substa	antial		NUZ I		

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	-	40	40	20	-	-	100					
CAT2	-	30	30	40	-	-	100					
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	-	-	-	100	-	-	100					
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	-	-	100	-	-	100					
ESE	40	30	30	-	-	-	100					

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РЕ	3	0	0	3

Course Objectives	Understand the various aspects of an Information retrieval system and it analyze the performance of information retrieval models.	s evaluation and
UNIT – I	DICTIONARY AND POSTINGS	L(9)
	rieval process – indexing – Information Retrieval model – Boolean Re	
Tokenization – S	temming – Inverted Index construction and compression – Skip Pointers - Wild card queries – Bigram Index – Jaccard Coefficient	
UNIT – II	EVALUATION AND QUERY EXPANSION	L(9)
	weighting – Vector Space model – Computing Scores in complete search alback – Rocchio algorithm – Query expansion – types - Query drift	systems
UNIT – III	XML, PROBABILISTIC AND CBIR	L(9)
	bilistic IR, Probabilistic relevance feedback – Probability ranking pawling – Link Analysis, Content based Image Retrieval	rinciple-
UNIT – IV	PARALLEL INFORMATION RETRIEVAL	L(9)
	easures – Minimizing Adjudication effect – measuring efficiency – ef scheduling – Parallel information retrieval – Parallel query process	
UNIT – V	IR MODELS AND SCALABILITY	L(9)
* *	Machines and Machine Learning on documents – Flat and hierarchical Clu- Information Retrieval on graphs and audios.	ustering
Contact Periods Lecture: 45 Peri		8

1	Christopher D Manning, Prabhakar Raghavan, Hinrich Schutze, "An Introduction to
	Information Retrieval", Online Edition © 2009 Cambridge UP, April 2019
2	Carol Peters, Martin Braschler, Paul Clough, "Multilingual Information Retrieval: From
	Research to Practice" Springer 2012
3	Andrew G Psaltis, "Streaming Data Understanding The Real Time Pipeline", OReillyMedia
	Inc, May 2017
4	Stefan Butcher, "Implementing and Evaluating Search Engines", The MIT Press, 2016.

	OUTCOMES: pletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe retrieval models and index constructions.	K2
CO2	Evaluate a simple retrieval model.	K5
CO3	Analyze XML, Probabilistic and Content based image retrieval techniques.	K4
CO4	Summarize parallel retrieval techniques.	K2
CO5	Handle scalable Information Retrieval models.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	2	-	3	3
002	2	-	2	-	3	3
003	2	-	3	-	3	3
CO4	2	9	0 3 32		3	3
205	2	Cardina De	150 p3118 01	S OY	3	3
3CSPE14	2	000	573-56		3	3
1 – Slight, 2 – Mc	oderate, 3 – Substa	antial		1		

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2)%	Applying (K3)%	Analyzing (K4) %	Evaluating (K5)%	Creating (K6)%	Total %				
CAT1	-	40	40	20	-	-	100				
CAT2	-	-30	30	40	-	-	100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	Color Color	40 50 50 50 50 50 50 50 50 50 50 50 50 50		100	-	100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	-	-	-	100	-	100				
ESE	20	40	40	-	-	-	100				

23CSPE15	NATURAL LANGUAGE PROCESS	SING	SEMESTER II			
PREREQUISITES CATE		CATEGORY	L	Т	Р	С
	NIL		3	0	0	3

Course	The objective of the course is to get familiar with the foundational	algorithms used in
	Natural Language Processing (NLP) and their practical applications	algorithing used in
Objectives	Natural Language Processing (NLP) and then practical applications	
UNIT – I	INTRODUCTION	L(9)
Classical App	roaches to Natural Language Processing - Text Preprocessing - I	Lexical Analysis -
Syntactic Pars	ing- Semantic Analysis- Natural Language Generation	
UNIT – II	STATISTICAL NLP AND SEQUENCE LABELING	L(9)
N-grams Lang	uage models Naive Bayes, Text Classification, and Sentiment - Ve	ctor Semantics and
Embeddings -	Neural Networks and Neural Language Models - Sequence Labeling	for Parts of Speech
and Named I	Entities - Transformers and Pretrained Language Models - Fine-Tu	uning and Masked
Language Mo	dels esterio esterio	
UNIT – III	ANNOTATING LINGUISTIC STRUCTURE	L(9)
Constituency -	-Context Free Grammar – Treebanks - CKY Parsing: A Dynamic Prog.	ramming Approach
- Span-Based	Neural Constituency Parsing - Evaluating Parsers - Dependency Rela	ations- Dependency
Parsing -Trans	ition Based - Graph Based - Logical Representations of Sentence Mean	ing
UNIT – IV	COMPUTATIONAL SEMANTICS AND SEMANTIC PARSING	L(9)
Relation and I	Event Extraction - Time and Temporal Reasoning - Word Senses and W	VordNet – Semantic
	- Lexicons for Sentiment, Affect, and Connotation .	
	NLP APLLICATIONS	L(9)
UNIT – V		
	slation - Question Answering and Information Retrieval - Chatbots & I	Dialogue Systems -
Machine Tran	slation - Question Answering and Information Retrieval - Chatbots & Deech Recognition and Text-to-Speech	Dialogue Systems -
Machine Tran	eech Recognition and Text-to-Speech	Dialogue Systems -
Machine Tran Automatic Sp	eech Recognition and Text-to-Speech	Dialogue Systems - 45 Periods

1	Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition" Third edition,
	Prentice Hall Series, 2023
2	Nitin Indurkhya, Fred J. Damerau, "Handbook of Natural Language Processing", Second edition, CRC, 2010
3	Jacob Eisenstein. "Natural Language Processing ", MIT Press, 2019
4	NPTEL course : Natural Language Processing https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cs56/

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Comprehend text preprocessing techniques, including lexical analysis, syntactic parsing and semantic analysis to enhance the quality of textual data.	K2
CO2	Summarize key algorithms for statistical NLP and sequence labeling	K2
CO3	Apply annotation skills to real-world linguistic data, contributing to the broader field of linguistics and language technology	K3
CO4	Utilize word senses and WordNet for disambiguation and lexicons for Sentiment, Affect, and Connotation	K3
CO5	Design and implement practical NLP applications, such as machine translation, question answering system ,chatbots, automatic speech and text to speech recognition systems.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	817.6	2	Pullar .	-	3
CO2	1	140	2		1	3
CO3	2	2	3	2	2	3
CO4	2	2	3	2	2	3
CO5	3	3	3	2	2	3
23CSPE15	2	2	2	2	2	3
1 – Slight, 2 – Mod	derate, 3 – Sul	ostantial		1		1

ASSESSMENT I	PATTERN – TH	EORY		12			
Test / Bloom's Category*	Remembering (K1)%	Understanding (K2) %	Applying (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	50 50	20	-	-	-	100
CAT2	-	30	70	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	-	100	-	-	-	100
ESE	10	50	40	-	-	-	100

23CSPE16	5 VIRTUAL REALITY			SEMESTER II			
PREREQUISITES CATEGORY		CATEGORY	L	Т	Р	C	
NIL		PE	3	0	0	3	
Course ObjectivesThe objective of the course is to provide fundamentals of sensation, perception, technical and engineering aspects of virtual reality systems							
UNIT – I	INTRODUCTION TO VIRTUAL REALITY				L(9)	
Virtual Reality - History of VR - The Basics: Design Guidelines - Benefits of VR –VR hardware –VR software - Two Pillars of VR: Presence and 3D Multimodal Interaction -Building a Virtual Reality System - Object Modeling - Scene Construction- Object Placement -Multiple Frames of Reference -Re-Expressing Coordinates -Function and Behavior Modeling -Performance Estimation and System Tuning							
UNIT – II	REPRESENTING THE VIRTUAL WORLD				L(9)	
Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR - Geometric Models - Changing Position and Orientation - Axis-Angle Representations of Rotation- Viewing Transformations - Chaining the Transformations							
UNIT – III	3D MULTIMODAL DESIGN				L(
Why 3D Multimodal - Structured Approach to the Interaction / Interface Design – Metaphors - Interface Design – Multimodality. Case Study : Handling Collision							
UNIT – IV	INTERACTION AND ITERATIVE DESIGN				L(9)	
Human-Centered Interaction - Norman's Principles of Interaction Design - VR Interaction Concepts - Interaction Patterns and Techniques - Interaction: Design Guidelines Philosophy of Iterative Design - Define Stage - Make Stage - Learn Stage - iterative Design: Design Guidelines - The Present and Future State of VR							
UNIT – V	EVALUATING VR SYSTEMS AND APLLICATI	ONS			L(9)	
Perceptual Training - Recommendations for Developers -Comfort and VR Sickness -Experiments on Human Subjects VR in Education – Medical - Entertainment - Military - Manufacturing - Robotics							
Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods							

1	Steven M. LaValle. "VIRTUAL REALITY" Cambridge University Press, 2023. http://www.lavalle.pl/vr/
2	Gerard Jounghyun Kim "Designing Virtual Reality Systems The Structured Approach", Springer 2005
3	Vince, John "Introduction to virtual reality", Springer, 2004.
4	Jason Jerald ,"The VR Book: Human-Centered Design for Virtual Reality", ACM books , 2016
5	Grigore C. Burdea, Philippe Coiffet," Virtual Reality Technology"2 edition, wiley, 2003
6	NPTEL Course : Virtual Reality https://archive.nptel.ac.in/courses/106/106/106106138/

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:			
CO1	Comprehend the basics of virtual reality	K2		
CO2	Demonstrate their ability to represent the real world scenarios in virtual reality	K3		
CO3	Comprehend the techniques behind 3D Multimodal design	K2		
CO4	Narrate Norman's principles of interaction design and the philosophy of iterative design in VR	К2		
CO5	Demonstrate their understanding related to the assessment of VR systems and use them for empowering the enhancement of VR applications.	К3		

COURSE ARTICUL	ATION MA	TRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	- Toursday	2	BS1000	b -	1
CO2	1	14/E		3	2	1
CO3	1		2	2	-	1
CO4	1		2	2	- (1
CO5	1	1-	2	83/	2	1
23CSPE16	1		2	2	2	1
1 - Slight, 2 - Moderat	te, 3 – Substa	antial		1.1		
ASSESSMENT PAT	FTERN – TI	IEORY				

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembe ring (K1)%	Understandi ng (K2) %	Applyin g (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	30	40 00	30	Dicuto	-	-	100	
CAT2	20	50	30	-	-	-	100	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	40	60	-	-	-	100	
ESE	10	50	40	-	-	-	100	

23CSPE17

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	This course introduces the theory of modern compilers									
UNIT – I	INTERMEDIATE REPRESENTATIONS	L(9)								
Introduction to compiler technologies - Review of compiler Structure -Intermediate										
Representations - Run Time Support: Data representations and Instructions, Register Usage,										
The local stack frame, Run time Stack, Parameter Passing, Procedure Prologues, Epilogues,										
Call and retur	ns, Code sharing and position independent code-Producing Code	Generators								
Automatically										
UNIT – II	FLOW ANALYSIS	L(9)								
Control Flow	Analysis -Data Flow Analysis: Iterative data flow analysis, Latti	ces of flow								
functions, Co	ntrol tree based data flow analysis, Structural analysis, Interval	analysis -								
Dependence A	Analysis and Dependence Graph-Alias Analysis.	-								
UNIT – III	EARLY OPTIMIZATIONS AND LOOP	L(9)								
	OPTIMIZATIONS									
Introduction t	o optimization, Importance of Individual optimizations, Order and	d repetition								
of optimization	ons - Early Optimization: Constant folding, Scalar replacement of	aggregates,								
Algebraic sin	nplifications and Reassociation, Value Numbering, Copy and	d Constant								
Propagation-H	Redundancy Elimination-Loop Optimizations									
UNIT – IV	PROCEDURE OPTIMIZATION AND SCHEDULING	L(9)								
Procedure Op	timizations-Register Allocation - Code Scheduling -Control-Flow	v and Low-								
Level Optin	nizations: Unreachable code elimination, Straightening, If	and Loop								
simplification	, Loop inversion, Unswitching, Branch Optimizations, Tail	l merging,								
Conditional m	noves, dead code elimination, Branch prediction									
UNIT – V	INTERPROCEDURAL ANALYSIS AND MEMORY	L(9)								
	HIERARCHY OPTIMIZATION									
	ral Analysis and Optimizations: Control flow, Dataflow and Alia									
Constant Prop	agation, Optimization and Register allocation - Optimization for t	he Memory								
Hierarchy: Im	pact of data and Instruction caches and Optimizations									
Contact Perio	ds:									
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Peri	iods								

REFERENCES:

1	A V Aho, Monical Lam, R Sethi, J D Ullman, "Compilers: Principles, Techniques, and
	Tools", Second Edition ,2013
2	Steven Muchnick., "Advanced Compiler Design and Implementation", Morgan
	Kaufmann Publishers, Elsevier,2008.
3	Keith Cooper, Linda Torczon, "Engineering a Compiler", Morgan Kaufmann,
	Second Edition, 2011.
4	Andrew W. Appel, Jens Palsberg, "Modern Compiler Implementation in Java", Second
	Edition, Cambridge University Press, 2002

5	Randy Allen and Ken Kennedy, "Optimizing Compilers for Modern Architectures:
	A Dependence based Approach", Morgan Kaufman, 2001
6	Robert Morgan, "Building an Optimizing Compiler", Digital Press, 1998

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Generate Intermediate representations	К3
CO2	Perform control and data flow analysis	K4
CO3	Eliminate redundancy from IR and Target Code	К3
CO4	Optimize loops, Procedures and Memory Hierarchy	K4
CO5	Generate target code	K5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	W Bas	3	3	2	-
CO2	2	Y Z	2		1	-
CO3	2	/ - · ·	2		1	-
CO4	2		3	3	2	-
CO5	2		3	3	2	-
23CSPE17	2		3	3	2	-
1 - Slight, 2 - Mode	rate, 3 – Substar	itial	E SI	11		

ASSESSMEN	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	50	30	20 00	CUT	-	-	100				
CAT2	20	30	30	20	-	-	100				
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	-	-	-	40	40	20	100				
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	-	-	40	40	20	100				
ESE	40	30	30	-	-	-	100				

PREREQUISITE	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	The students will be introduced with Perceptron Learnin	g Algorithms,
Objectives	Feedforward Neural Networks, Deep Neural Networks, Conv	
	Networks and Recurrent Neural Networks	
UNIT – I	INTRODUCTON TO DEEP LEARNING	L(9)
Basics: Biolog	ical Neuron, Biological Neuron, Idea of computational units, McCulloc	ch-Pitts unit and
Thresholding	logic, Linear Perceptron, Perceptron Learning Algorithm, Line	ear separability.
Convergence t	heorem for Perceptron Learning Algorithm.	
UNIT – II	FEEDFORWARD NETWORKS	L(9)
Representation	Power of Feedforward Neural Networks, Backpropagation,	Empirical Risk
Minimization,	Regularization, Autoencoders.	
UNIT – III	DEEP NEURAL NETWORKS	L(9)
Difficulty of	training deep neural networks, Greedy layerwise training. Gradient	Descent (GD),
Stochastic Gra	idient Descent (GD), Better Training of Neural Networks: Newer optim	nization methods
	vorks (Adagrad, adadelta, rmsprop, adam, NAG), Regularization method	ls (dropout, drop
,	normalization).	
UNIT – IV	CONVOLUTIONAL NEURAL NETWORKS	L(9)
	Networks: The Convolution Operation - Variants of the Basic Convol	
	tputs - Data Types - Efficient Convolution Algorithms - Random of	or Unsupervised
Features- LeN		n
UNIT – V	RECURRENT NEURAL NETWORKS	L(9)
	ural Networks: Bidirectional RNNs - Deep Recurrent Networks R	ecursive Neural
	e Long Short-Term Memory and Other Gated RNNs	
Contact Perio		
Lecture: 45 P	eriods Tutorial:0 Periods Practical: 0 Periods Total: 45 Per	riods

REFERENCES:

1	Ian Goodfellow and Yoshua Bengio and Aaron Courville., " Deep Learning ",MIT Press, 2016
2	Raúl Rojas, "Neural Networks: A Systematic Introduction ", Springer-Verlag, Berlin, 1996.
3	Yegnanarayana, B., " Artificial Neural Networks ", PHI Learning Pvt. Ltd, 2009
4	Christopher Bishop., " Pattern Recognition and Machine Learning ", Springer, 2016
5	Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine
	Intelligence Algorithms", O'Reilly publications, 2017

	OUTCOMES: pletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Summarize the basics of neural network and deep learning	K2
CO2	Implement basic neural network model with hidden layers	K3
CO3	Analyze optimization and generalization in deep learning	K4
CO4	Criticize convolutional neural network and how it is applied to analyzing visual imagery	K5
CO5	Appraise Recurrent Neural Network (RNN) and its temporal dynamic behavior which helps us to remembers some information about a sequence to predict the next information	К5
COURSE	ARTICULATION MATRIX	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	E	2		_
CO2	3	1	2	500 DI 3100 W	51	-
CO3	3	- 1	227	DAG3 SC	2	-
CO4	2	1	2	3	3	1
CO5	3	3	3	3	3	3
23CSPE18	3	1	2	3	3	1
1 - Slight, 2 -	- Moderate,	3 – Substant	ial			

ASSESSMEN	NT PATTERN –	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	-30	20	210	5 -	-	100
CAT2	20	30	30	20	<u> </u>	-	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	-		-	40	40	20	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	-	-	40	40	20	100
ESE	40	30	30	-	-	-	100

23CSPE19	ETHICAL HACKING		S	ш			
PREREQUISIT	ES	CATEGORY L T P					
	NIL	PE		3	0	0	3
Course ObjectivesThe objective of the course is to get familiar with techniques of ethical hacking							
UNIT – I	PRINCIPLE OF HACKING						L(9)
Hacking - Types	- ethical Hacking Terminology-different phases invo	olved in Ethica	al Ha	ckin	g - 1	Hack	tivism
- Categories of	Penetration Test - Penetration Testing Methodolo	gies-Cracking	the	Hao	eker	Mir	ndset -
Hacking Method	ology - Ethical Hacking Tools						
UNIT – II	INFORMATION GATHERING AND SCANNIN	NG					L(9)
Information Gat	hering Techniques - Target Enumeration and Por	t Scanning T	echn	ique	es –	Ad	vanced
	ading Techniques - Network Sniffing - Remote Explo			•			
UNIT – III	SYSTEM HACKING AND MALWARE ANALM	YSIS					L(9)
Understanding	Password-Cracking Techniques - Understanding	Different T	ypes	of	Pa	SSW	ords -
Understanding I	Keyloggers and Other Spyware Technologies - U	Inderstanding	Hov	v to	Hi	de 1	Files -
	ow to Cover Your Tracks and Erase Evidence - Col						
•	Live Analysis - Norman SandBox Technology - Ha	cking Malwar	e : T	rend	ls in	Mal	ware -
	Malware - Reverse-Engineering Malware			1			
	VULNERABILITY ANALYSIS						L(9)
	Client-Side browser exploits - Exploiting the Windo		ontrol	Mo	odel	- In	telligent
	y -From Vulnerability to Exploit -Mitigation alternative	s - Patching					
UNIT – V	WIRELESS AND WEB HACKING						L(9)
	g - Introducing Aircrack -ng - Cracking the WEP						
	Aircrack-ng – Evil Twin Attack – Causing Denial c						
	cking the Authentication - Brute Force and Dict						
	Iandling Captcha – Manipulating User-Agents to b		na an	d O	ther	Pro	tection
	ypass Attacks – Session Attacks – SQL Injection Att	acks.					
Contact Periods				n			
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Peri	ods Total	l: 45	Per	10ds	5	

REFERENCES:

1	Kimberly Graves, "Certified Ethical Hacker STUDY GUIDE", Wiley publication, 2010
	Allen Harper, Shon Harris, Jonathan Ness, Chris Eagle, Gideon Lenkey, and Terron Williams , "Gray Hat Hacking The Ethical Hacker's Handbook" Third Edition, Mc Graw Hill,2011
-	RafayBaloch, "Ethical Hacking and Penetration Testing Guide", CRC Press, 2014
4	Kevin Beaver, "Ethical Hacking for Dummies", Sixth Edition, Wiley, 2018
	Daniel G. Graham, "ETHICAL HACKING A Hands-on Introduction to Breaking In" no starch
-	press, 2021
6	NPTEL Course : Ethical Hacking https://archive.nptel.ac.in/courses/106/105/106105217/

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Comprehend the distinct phases in ethical hacking ,its methodology and tools	K2
CO2	Enumerate information gathering, scanning and sniffing techniques for ethical hacking	K2
CO3	Comprehend defend against various cyber security threats, particularly related to password security, spyware, file hiding, digital forensics, and malware.	K2
CO4	Analyze and exploit vulnerability and implement effective mitigation strategies.	K3
CO5	Demonstrate the ability to crack WEP and WPA/WPA2 wireless networks using Aircrack-ng and an understanding of encryption weaknesses and vulnerabilities	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1		m2m	2	3	2
CO2	2	- Bradenin	2	B.F. Q. 3	3	2
CO3	2	14 BG	2	2	3	2
CO4	2	2	2	3	3	2
CO5	2	<	2	3	3	2
23CSPE19	2	2	2	3	3	2
1 - Slight, 2 - Mo	derate, 3 – Sub	stantial				·

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembe ring (K1)%	Understanding (K2) %	Applying (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70		1S)	-	-	100
CAT2	20	50	30	7.63	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	100		-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	40	60	-	-	-	100
ESE	10	60	30	-	-	-	100

23CSPE20
23CSI 1220

MINING MASSIVE DATASETS

SEMESTER III

PREREQUIS	ITES	CATEGORY	L	Т	Р	С			
	NIL	PE	3	0	0	3			
Course Objectives									
UNIT – I	INTRODUCTION					L(9)			
Overview of M	Aassive Data Mining, Challenges in scalable d	ata mining method	s and '	Traditio	nal algo	orithms,			
Applications in	n retail industry.Distributed Computing Fram	eworks - Introduc	ction t	o Hado	op eco	system,			
Algorithms usin	ng MapReduce programming model, Apache Spa								
UNIT – II	FINDING SIMILAR ITEMS AND MINING					L(9)			
	f Near-Neighbor Search, Locality-Sensitive Has								
	lications of LSH. Mining Data Streams - Sam	pling Data, Filterin	ng Stre	eams, co	ounting	distinct			
elements, estim	ating moments, Counting ones in a window.								
UNIT – III	MINING SOCIAL-NETWORK GRAPHS					L(9)			
	s as graphs, Clustering of social-network graph								
	ing overlapping communities, Simrank, Countin	g triangles, Neighb	orhood	propert	ies of g	raphs.			
UNIT – IV	CLUSTERING	K (/				L(9)			
Introduction to Clustering Techniques – Curse of dimensionality, Hierarchical Clustering – Euclidean and Non- Euclidean spaces, K-means Algorithms, CURE algorithm, GRGPF algorithm, Clustering for Streams and Parallelism									
UNIT – V	APPLICATIONS					L(9)			
Advertising on the Web- Issues in Online Advertising, Online Algorithms, Matching Problem, Adwords Problem and its implementation, Recommendation System - Content-Based Recommendations, Collaborative Filtering, Dimensionality reduction, Netflix challenge, Parallel Implementation of Perceptrons and SVMs.									
Contact Period		Design of the second	5 D'	. J.					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0	Periods Total: 4	5 Peri	ods					
REFERENCE	S. 10 10 10 10 10 10 10 10 10 10 10 10 10	T.C.							

REFERENCES:

1	Jure Leskovec, Anand Rajaraman, Jeff Ullman, "Mining of Massive datasets", 3 rd Edition, Cambridge
	University Press, 2020. <u>http://www.mmds.org</u> (Video lectures, Slides)
2	https://www.edx.org/learn/mining/stanford-university-mining-massive-datasets
3	Tomasz Wiktorski, "Data-intensive Systems: Principles and Fundamentals using Hadoop and Spark",
3	Tomasz Wiktorski, "Data-intensive Systems: Principles and Fundamentals using Hadoop and Spark", Springer, 2019

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain the fundamental concepts and challenges of mining massive datasets and	K2
	demonstrate proficiency in Hadoop MapReduce and Apache Spark	
CO2	Apply LSH algorithm for finding similarities among documents and mining	K3
	algorithms for streams	
CO3	Analyze and mine graph structures in massive datasets using various algorithms	K4
	and apply them in the area of social network analysis.	
CO4	Understand several methods for discovering clusters in high-dimensional data in	K2
	both Euclidean and Non-Euclidean spaces	
CO5	Apply mining massive datasets algorithms to solve real-world problems in diverse	K3
	domains	

COURSE ART	ICULATION	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	G13	0-	2	-
CO2	3	AND AND A	3	A B 515000	2	-
CO3	3	4	3.00		2	-
CO4	3		3		2	-
CO5	3	1	3	-	2	-
23CSPE20	3	1	3	9-11	2	-
1 – Slight, 2 – N	Ioderate, 3 – S	ubstantial		不 //		
			ANU			

Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluati ng (K5) %	Creatin g (K6) %	Total %
CAT1	20	20	20	20	20	-	100
CAT2	10	30 0	30	20	10	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	20	20	20	20	20	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	10	30	30	20	10	100
ESE	20	40	40	-	-	-	100

23CSPE21 DATA CENTER NETWORKS					SEMESTER III				
PREREQUISITES		CATEGORY	L	Т	Р	С			
	NIL	РЕ	3	0	0	3			

Course	After the completion of the course, the students will be able to und	derstand the
Objectives	architecture of data center, Server Management and troubleshootin	
3	maintenance and system Resource Management, data center se	
	administration.	-
UNIT – I	DATA CENTER ARCHITECTURE	L(9)
	chitecture, Data center prerequisites Data center Requirements Physic	
	Unoccupied Space - power to run all the devices - cooling and HVAC	
	dget Constraints-Power Distribution in a Data Center: Estimating Your F	
	rators - Power Distribution Units (PDUs) - Electrostatic Discharge (E	
	Strict Environmental Requirements - Air-Conditioning Systems - P	lacement of
Hardware Rack		
UNIT – II	DATA CENTER DESIGN	L(9)
	of an Outstanding Design, Guidelines for Planning a Data Center	
	ed Floor Design and Deployment, Design and Plan against Vandalism,	
0	ndy, Modular Cabling Design, Points of Distribution, Data center ser	vers, Server
	etrics - Sever Capacity Planning	
UNIT – III	DATA CENTER NETWORK MAINTENANCE	L(9)
	aintenance, Network Operations Center, Network Monitoring, Datacer	
	enter Logical security, Cleaning, Data center Consolidation, Reasons for	
	Consolidation opportunity, Server consolidation, Storage Consolidation	
	Service Consolidation, Process Consolidation, Staff Consolidation	
	bhases - Best Practices in IT: System Management Best Practices - Se	
	Data Storage Best Practices - Network Management Best Practices - Do	cumentation
Best Practices		T (D)
UNIT – IV	DATA CENTER CLUSTER AND DISASTER RECOVERY	L(9)
	cture: Asymmetric Two-Node Clusters - Symmetric Two-Node Clusters	
	urations - Failover Policies - Cluster Requirements: Required Hardy	
	Cluster Software Requirements – What Happens During Service Failover	
	y Applications - Disaster Recovery - High Availability (HA) and Disast	
	hases of DR – Designing a Disaster-Tolerant Architecture - Online	Replication
Techniques - D	K Architectures	
UNIT – V	DATA CENTER SECURITY AND ADMINISTRATION	L(9)
	elines Internet security, Source Security Issues, Best Practices	
	System Administration Work Automation, Device Naming, Naming Pra	
	oad balancing, Terminology, Advantages, Types of load balancing, Imp	
	Load-Balancing Switches – Fault Tolerance - Designing Fault-Tolerant	
Network Securi		1 (0000 0110)
Contact Period		
U Contact Period		
Lecture: 45 Pe		ods

REFERENCES :

1	Kailash Jayaswal, "Administering Data Centers: Servers, Storage and Voice over IP", John Wiley & Sons, 2005
2	Mauricio Arregoces, Maurizio Portol, "Data center fundamentals", Cisco Press, 2003
3	Dinesh G Dutt, "Cloud Native Data Center Networking: Architecture, Protocols, and Tools",
	O'Reilly Media, 2019
4	Luiz André Barroso, UrsHölzle, ParthasarathyRanganathan, "The Datacenter as a Computer:
	Designing Warehouse-Scale Machines", Third Edition, Morgan & Claypool Publishers, 2018

COURSE OUTCOMES:

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Manage Server Systems and Data Centers Infrastructure Management	K2
CO2	Analyze the Storage, Bandwidth, Efficiency of systems and other resources for build Data center.	K4
CO3	Monitor the data center networks and resources	K3
CO4	Illustrate configuration of data center cluster and significance of disaster recovery	K1
CO5	Describe various security threats and fault tolerance of data center architecture.	K4

COURSE AR	1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	1184	2	3
CO2	3	-	3	5	2	3
CO3	3	-	3	10 a 22	2	3
CO4	3	-	3	20100	3	3
CO5	3	-	3	_	3	3
23CSPE21	3	-	3	-	2	3
1 – Slight, 2 –						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	10	30	20	40	-	-	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20 55	Panja gr	20	20	20	100
ESE	20	40	40	永 - //	-	-	100

DATA VISUALIZATION

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	Explore, monitor and curate data into a form easier to understand, highli	ghting the
Objectives	trends and outliers.	
	INTRODUCTION TO DATA VICUAL IZATION	I (0)
UNIT – I	INTRODUCTION TO DATA VISUALIZATION	L(9)
	s for data visualization - Seven stages of visualizing data –Static Graphics –	
	ation, extensibility, Data Visualization through Graph Representations, Gra	
	Graph-theoretic Graphics - Graph Drawing, Geometric Graphs, Graph	h-theoretic
Analytics.	G. P.	
UNIT – II	HIGH-DIMENSIONAL DATA VISUALIZATION	L(9)
Mosaic Plots -	Trellis Displays- Parallel Coordinate Plots- Projection Pursuit and the Gra	and Tour -
Geometric App	roach to the Statistical Analysis- Factorial Analysis- Distance Visualization	- Principal
Axis Methods a	and Classification: a Unified View- Computational Issues	-
UNIT – III	SMOOTHING TECHNIQUES	L(9)
Nonparametric	Regression- Structural Adaptation- Smoothing in One Dimension - Smoothing	ing in Two
	Additive Models - Data Visualization via Kernel Machines - Hierarchic	
Analysis- Parti	tioning Cluster Analysis- Model-Based Clustering. Visualizing Contingency	Tables.
UNIT – IV	EXPLORATION AND ANALYSIS OF HIGH-DIMENSIONAL	L(9)
	DATA	
Exploratory Da	ta Analysis - Visual and Computational Models- Matrix Visualization- Gen	eralization
	Matrix Visualization of Binary Data - Visualization in Bayesian Data Analy	
Based Statistica		
UNIT – V	APPLICATIONS	L(9)
Reconstruction	, Visualization and Analysis of Medical Images - Exploratory Graphics of a	Financial
	hical Data Representation in Bankruptcy Analysis - Visualizing Functional	
	to eBay's Online Auctions - Visualization Tools for Insurance Risk Processes	
Contact Perio		-
Lecture: 45 Pe		
Lecture: 45 Pe	rious rutoriai; v rerious r racucai; v rerious rotai; 45 rerious	

REFERENCES :

23CSPE22

1	Kristen Sosulski, "Data Visualization Made Simple", Taylor and Francis, 2019.
2	Evan Stubbs, "The value of business analytics: Identifying the path to profitability", Wiley,
	2011.
3	Stephen Few, "Information dashboard design: Displaying data for at-a-glance monitoring",
	second edition, Analytics Press, 2013.
4	Tamara Munzner, "Visualization Analysis and Design", CRC Press, Nov. 2014

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Discuss basic principles of data visualization using graphs	K2
CO2	Illustrate visualization techniques for huge dimensional datasets	K3
CO3	Summarize trends, pattern in data using smoothing techniques.	K2
CO4	Categorize visual cues effectively and explore the metadata	K4
CO5	Choose appropriate visualization techniques based on the application	K5
	environment.	

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	- min	3	3
CO2	3	- 1	82,6mi	D and a second	15 613:271	3
CO3	3	-	3/59		23.	3
CO4	3	-	3		3	3
CO5	3	-	3		3	3
23CSPE22	3	-	3	-	3	3
1 - Slight, 2 -	- Moderate,	3 – Substan	ntial		A	
					\times \cdot \cdot	

ASSESSME	NT PATTERN -	- THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	40	40	20	<u> </u>	-	100
CAT2	-	30	30	40	-	-	100
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	-	-	-	-	100	-	100
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	-	-	-	100	-	100
ESE	40	30	30	-	-	-	100

23CSPE23	PARALLEL ALGORITHMS		SEN	MES	TEI	RIII
PREREQUISIT	ES	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3

Course Objectives	After the completion of the course, the students will be able to und different types of multiprocessors, techniques for implementing parallel model the programming using message passing and shared memory, an parallelization techniques for sorting, graph, Fast Fourier Transform.	algorithms,
UNIT – I	PARALLEL COMPUTING ARCHITECTURE	L(9)
Memory Multi SM, Commun	parallel computers: Parallel Computing, Shared memory multiprocessors, processors, SIMD, Systolic processor, Cluster, Grid Computing, Multico ication between parallel processors – Shared memory multi process Memory Consistency – Interconnection Networks: Classification and Networks:	ore systems, sors: Cache
UNIT – II	FUNDAMENTALS OF PARALLEL ALGORITHMS	L(9)
Independent lo	olatforms: Cilk++, OpenMP, CUDA – Adhoc techniques for parallel op scheduling, dependent loops, loop spreading, loop unrolling, problem nquer strategies, pipelining – Non serial Parallel algorithms.	
UNIT – III	ALGORITHM ANALYSIS	L(9)
various design Scheduling fur hardware imple	nalysis: Definition, DFA, Software and Hardware implementations of zTra s – Dependence Graph analysis: DFA, Deriving dependence graph of ar nction, Node projection operation, Nonlinear projection operation, So ementations – Computational Geometry analysis.	n algorithm, oftware and
UNIT – IV	PROGRAMMING USING MESSAGE PASSING AND SHARED MEMORY PARADIGM	L(9)
Blocks: Send Embedding, C Computation Platforms: Thr Synchronizatio	Using Message Passing:Principles of Message-Passing Programming, T and Receive Operations, MPI: the Message Passing Interface, Topo Overlapping Communication with Computation, Collective Communi Operations, Groups and Communicators. Programming Shared Add ead Basics - The POSIX Thread API - Thread Basics: Creation and Te n Primitives in Pthreads - Controlling Thread and Synchronization A technonization Constructs	ologies and ication and lress Space ermination -
UNIT – V	PARALLEL ALGORITHMS AND APPLICATIONS	L(9)
sorting, Sortin Problems: Sequences Programming -	Algorithms: Matrix Multiplication, Solving Linear Equations – Sorting g Networks, Quick sort, Bucket sort- Graph Algorithms- Discrete C uential Search Algorithms, Search overhead Factor, Parallel DFS and BF Fast Fourier Transform	Optimization
Contact Perio Lecture: 45 Pe		ods

REFERENCES :

1	Fayez Gebali, "Algorithms and Parallel Computing", Wiley publications, 2011
2	A.Grama, A.Gupta, G.Karypis and V.Kumar, "Introduction to Parallel Computing", Second Edition,
	Addison-Wesley, 2003
3	Joseph JaJa, "An introduction to Parallel Algorithms", Addison-wesley publications, 1992
4	Michael J Quinn, "Parallel Programming in C with MPI and OpenMP", first edition, McGraw Hill,
	2004
5	Barry Wilkinson and Michael Allen, "Parallel programming: techniques and applications using
	networked workstations and parallel computers", Second Edition, Pearson Education, 2005.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe the architecture of different multiprocessors	K2
CO2	Implement the techniques using OpenMP, CUDA	K3
CO3	Analyze the implementation techniques for parallel algorithms	K4
CO4	Implement the MPI and Posix Threads for Message passing and Shared memory	К3
CO5	apply the parallelization techniques for sorting, graph, Fast Fourier Transform	K5

COURSE ARTI	CULATION	MATRIX			1	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	188	3		1	1
CO2	2		3	-	2	2
CO3	3	0.0	3	22	2	2
CO4	2	1	203-20	P and and	2	2
CO5	2		3	L'ES	2	2
23CSPE23	2	-	3	-	2	2
1 - Slight, 2 - M	oderate, 3 – S	Substantial	1			

ASSESSME	NT PATTERN -	- THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	-	30	20	30	10	10	100
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	10	30	20	20	20	-	100
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	20 ans d on	20 Рольо рг	20	20	20	100
ESE	20	40	40	-	7 -	-	100

23SEOE01	BUILDING BYE-LAWS AND (Common to al		менс	Ľ		
PREREQUISI	res	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course Objectives	To impart knowledge on the building bye –laws an practice in construction sector.	d to emphasize th	e signi	ificanc	ce of	codes o
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS					L(9)
height, building	Building Bye Laws and regulation, their need and rel line, FAR, Ground Coverage, set back line. Introduct stitutional, residential etc Terminologies of Building	ion to Master Plan				
UNIT – II	ROLE OF STATUTORY BODIES					L(9)
etc. Local Planr	statutory bodies governing building works like deving Authority, Town and Country planning organisation					
etc. Local Planr UNIT – III Interpretation o appendices. Ap		on, Ministry of urba changes as shown	an deve	elopme	ent.	L(9)
etc. Local Planr UNIT – III Interpretation o appendices. Ap water, and com UNIT – IV	ing Authority, Town and Country planning organisatic APPLICATION OF BUILDING BYE-LAWS f information given in bye laws including ongoing plication of Bye-laws like structural safety, fire safe nunication lines in various building types. INTRODUCTION TO CODES OF PRACTICE	on, Ministry of urba changes as shown ety, earthquake sat	in deve i in va fety, ba	arious	ent. annex nt, el	L(9) cure and ectricity L(9)
etc. Local Plann UNIT – III Interpretation o appendices. Ap water, and comm UNIT – IV Introduction to	ing Authority, Town and Country planning organisation APPLICATION OF BUILDING BYE-LAWS f information given in bye laws including ongoing plication of Bye-laws like structural safety, fire safe nunication lines in various building types.	changes as shown ety, earthquake sat	in deve i in va fety, ba	arious	ent. annex nt, el	L(9) cure and ectricity L(9)
etc. Local Plann UNIT – III Interpretation o appendices. Ap water, and comm UNIT – IV Introduction to and welfare - Co	ing Authority, Town and Country planning organisation APPLICATION OF BUILDING BYE-LAWS f information given in bye laws including ongoing plication of Bye-laws like structural safety, fire safe nunication lines in various building types. INTRODUCTION TO CODES OF PRACTICE various building codes in professional practice - Code	changes as shown ety, earthquake sat	in deve i in va fety, ba	arious	ent. annex nt, el	L(9) cure and ectricity L(9)
etc. Local Planr UNIT – III Interpretation o appendices. Ap water, and comm UNIT – IV Introduction to and welfare - Co UNIT – V Applications of to other internat Contact Period	ing Authority, Town and Country planning organisation APPLICATION OF BUILDING BYE-LAWS f information given in bye laws including ongoing plication of Bye-laws like structural safety, fire safe nunication lines in various building types. INTRODUCTION TO CODES OF PRACTICE various building codes in professional practice - Code odes, regulations to ensure compliance with the local an APPLICATION OF CODES OF PRACTICE various codes as per various building types. Bureau of ional codes. s:	on, Ministry of urba changes as shown ety, earthquake sat es, regulations to p nuthority. of Indian Standards	in deve fety, ba rotect p	public	ent. anne nt, el healt – Intro	L(9) cure and ectricity L(9) h, safet
etc. Local Planr UNIT – III Interpretation o appendices. Ap water, and comm UNIT – IV Introduction to and welfare - Co UNIT – V Applications of to other internat	Authority, Town and Country planning organisationAPPLICATION OF BUILDING BYE-LAWSf information given in bye laws including ongoingplication of Bye-laws like structural safety, fire safenunication lines in various building types.INTRODUCTION TO CODES OF PRACTICEvarious building codes in professional practice - Codeodes, regulations to ensure compliance with the local aAPPLICATION OF CODES OF PRACTICEvarious codes as per various building types. Bureau ofional codes.s:riodsTutorial: 0 PeriodsPractical: 0 I	on, Ministry of urba changes as shown ety, earthquake sat es, regulations to p nuthority. of Indian Standards	n deve i in va fety, ba	public	ent. anne nt, el healt – Intro	L(9) cure and ectricity L(9) h, safet

and Urban Affairs, Government of India. "Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017. 3

4 Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COURSE OUTCOMES:

COURSE OUTCOMES: Upon Completion of the course, the students will able to:					
CO1	Apply the building bye-laws in planning, design and construction works.	K3			
CO2	Familiarize with the role of various statutory bodies.	K2			
CO3	Execute safety related work practices in the construction sector.	K3			
CO4	Ensure compliance with the rules and regulations in design and construction practices.	K3			
CO5	Perform design and construction practices based on national and international codal	K3			
	provisions.				

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	3	1	1	2	3			
CO2	1	3	1	1	2	3			
CO3	1	3	1	1	2	3			
CO4	2	3	1	1	2	3			
CO5	2	3	1	1	2	3			
23SEOE01	2	3	1	1	2	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20		-	-	100
CAT2	40	40	20	5-7	? <u>-</u>	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20			-	100
ESE	40	40	20	-	-	-	100

23SEOE02 PLANNING OF SMART CITIES (Common to all Branches)										
PREREQUISITES CATEGORY L T P										
NIL OE 3 0 0										
Course Objectives										
UNIT – I SMART CITIES DEVELOPMENT POTENTIALS AND CHALLENGES L(S										
Perspectives of Smart Cities: Introduction and Overview - Implementation Challenges - Methodological issues Spatial distribution of startup cities – Re imagining postindustrial cities - Implementation Challenges fo Establishing Smart Urban Information and Knowledge Management System.										
UNIT – II	SUSTAINABLE URBAN PLANNING]	L(9)				
UNIT – III Alternatives for Management - Ur	ng Urban Expansion. ENERGY MANAGEMENT AND SUSTAINAB Energy Stressed Cities - Social Acceptability of ban Dynamics and Resource Consumption - Issues Eco-friendly Technique for Modern Cities.	Energy - Effici	ent Li		- En					
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMA	RT CITIES				L(9)				
Water Consumpti	Demostic Water Use Practices - Issue of Governance on at Urban Household Level - Water Sustainabi Ithcare System - Problems and Development of Slun	lity - Socio-econo			essmer	nt of				
UNIT – V	INTELLIGENT TRANSPORT SYSTEM]	L(9)				
Sensing Traffic us Commercial Rout	telligent Transport Systems (ITS) - The Range of I' sing Virtual Detectors - Vehicle Routing and Perso ing and Delivery - Electronic Toll Collection - T nt. Urban Mobility and Economic Development.	nal route informa	tion -	The St	mart (Car -				
Contact Periods: Lecture: 45 Peri	iods Tutorial: 0 Periods Practical: 0 Per	riods Total:	45 Pei	riods						

REFERENCES

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future Perspectives",
	Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva", 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems And
	Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	К3
CO3	Choose appropriate energy conservation system for smart cities.	K3
CO4	Identify the proper method of water management system.	K3
CO5	Apply Intelligent Transport System concepts in planning of smart city.	K3

COURSE ARTICULATION MATRIX

CO1 1 - 2 3 1 CO2 1 1 1 3 2 CO3 1 1 - 2 2 CO4 1 - 1 2 1 CO5 1 - 1 3 1 23SEOE02 1 1 2 3 2	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO3 1 1 - 2 2 CO4 1 - 1 2 1 CO5 1 - 1 3 1	201	1	-	2	3	1	1
CO4 1 - 1 2 1 CO5 1 - 1 3 1	02	1	1	1	3	2	1
CO5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	203	1	1		2	2	1
A particular in the second se second second sec	CO4	1	- Gri	- 10-	2	1	1
23SEQE02 1 1 2 3 2	205	1 6	AS BETTER		8000 3	1	-
	23SEOE02	1 (2)		* 0 ¹ 2	N-3	2	1
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMEN	T PATTERN -	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	45	30	1-1	-	-	100
CAT2	25	45	30	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	15	40	645 10055		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	10	45	45	-	-	-	100
ESE	20	40	40	-	-	-	100

	23SEOE03 GREEN BUILDING (Common to all Branches)									
Course To introduce the different concepts of energy efficient buildings, indoor environmental qualit management, green buildings and its design. UNIT - I INTRODUCTION L(9) Life cycle impacts of materials and products – sustainable design concepts – strategies of design for th Environment -The sun-earth relationship and the energy balance on the earth's surface, climate, wind – Sola radiation and solar temperature – Sun shading and solar radiation on surfaces – Energy impact on the shape an orientation of buildings – Thermal properties of building materials. UNIT - II ENERGY EFFICIENT BUILDINGS L(9) Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energ management. UNIT - III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation. L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building form, orientation and site consideratio										
Objectives management, green buildings and its design. UNIT - I INTRODUCTION L(9) Life cycle impacts of materials and products – sustainable design concepts – strategies of design for th Environment -The sun-earth relationship and the energy balance on the earth's surface, climate, wind – Sola radiation and solar temperature – Sun shading and solar radiation on surfaces – Energy impact on the shape an orientation of buildings – Thermal properties of building materials. L(9) Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management. L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement- Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation. UNIT – IV GREEN BUILDING CONCEPTS L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget			NIL		OE	3	0	0	3	
UNIT - I INTRODUCTION L(9) Life cycle impacts of materials and products – sustainable design concepts – strategies of design for th Environment -The sun-earth relationship and the energy balance on the earth's surface, climate, wind – Sola radiation and solar temperature – Sun shading and solar radiation on surfaces – Energy impact on the shape an orientation of buildings – Thermal properties of building materials. UNIT – II ENERGY EFFICIENT BUILDINGS L(9) Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management. UNIT – III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Air conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation. L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Building economics L(9) Gase studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Cont					ent buildings, indo	or enviror	nmen	tal qua	ality	
Life cycle impacts of materials and products – sustainable design concepts – strategies of design for th Environment -The sun-earth relationship and the energy balance on the earth's surface, climate, wind – Sola radiation and solar temperature – Sun shading and solar radiation on surfaces – Energy impact on the shape an orientation of buildings – Thermal properties of building materials. UNIT – II ENERGY EFFICIENT BUILDINGS Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energ management. UNIT – III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation. L(9) Green building energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget				design.			1			
Environment -The sun-earth relationship and the energy balance on the earth's surface, climate, wind – Sola radiation and solar temperature – Sun shading and solar radiation on surfaces – Energy impact on the shape an orientation of buildings – Thermal properties of building materials. UNIT - II ENERGY EFFICIENT BUILDINGS L(9) Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management. UNIT - III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy efficient motors- Insulation. L(9) Oreen building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building commiss L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget L(9)										
radiation and solar temperature – Sun shading and solar radiation on surfaces – Energy impact on the shape an orientation of buildings – Thermal properties of building materials.UNIT – IIENERGY EFFICIENT BUILDINGSL(9)Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management.L(9)UNIT – IIIINDOOR ENVIRONMENTAL QUALIFY MANAGEMENTL(9)Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation.L(9)UNIT – IVGREEN BUILDING CONCEPTSL(9)Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budgetL(9)										
orientation of buildings – Thermal properties of building materials.UNIT – IIENERGY EFFICIENT BUILDINGSL(9)Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management.UNIT – IIIINDOOR ENVIRONMENTAL QUALITY MANAGEMENTL(9)Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation.L(9)UNIT – IVGREEN BUILDING CONCEPTSL(9)Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building economicsL(9)Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budgetL(9)										
UNIT - IIENERGY EFFICIENT BUILDINGSL(9)Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management.UNIT – IIIINDOOR ENVIRONMENTAL QUALITY MANAGEMENTL(9)Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation.UNIT – IVGREEN BUILDING CONCEPTSL(9)Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building economicsL(9)Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budgetL(9)					surfaces – Energy	impact of	n the	shape	and	
Passive cooling and day lighting – Active solar and photovoltaic- Building energy analysis methods- Buildin energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management. UNIT – III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation. UNIT – IV GREEN BUILDING CONCEPTS L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building economics UNIT – V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:								T (0)		
energy simulation- Building energy efficiency standards-Lighting system design- Lighting economics an aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management. UNIT – III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Air conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation. UNIT – IV GREEN BUILDING CONCEPTS L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building conomics UNIT – V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:						1	1 1		1.	
aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting- Technological options for energy management. UNIT – III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Air conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejection equipment- Energy efficient motors- Insulation. UNIT – IV GREEN BUILDING CONCEPTS L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget L(9)										
management. INDOOR ENVIRONMENTAL QUALITY MANAGEMENT L(9) Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Air conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejection equipment- Energy efficient motors- Insulation. UNIT – IV GREEN BUILDING CONCEPTS L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods: UNIT – IV										
UNIT - IIIINDOOR ENVIRONMENTAL QUALITY MANAGEMENTL(9)Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Air conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejection equipment- Energy efficient motors- Insulation.L(9)UNIT - IVGREEN BUILDING CONCEPTSL(9)Green building concept- Green building rating tools- Leeds and IGBC codes Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budgetContact Periods:Contact Periods:	-	acts o	of lighting efficiency – Energy au	dit and energy	targeting- Technolo	ogical opt	ions i	tor ene	ergy	
Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement Visual perception- Illumination requirement- Auditory requirement- Energy management options- Ai conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejectio equipment- Energy efficient motors- Insulation. UNIT - IV GREEN BUILDING CONCEPTS Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building economics L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:				12			1	T (0)		
Visual perception- Illumination requirement- Auditory requirement- Energy management options- Aid conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejection equipment- Energy efficient motors- Insulation. UNIT - IV GREEN BUILDING CONCEPTS L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodice energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building economics UNIT - V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:						1				
conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejection equipment- Energy efficient motors- Insulation. UNIT - IV GREEN BUILDING CONCEPTS L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building economics UNIT - V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:										
equipment- Energy efficient motors- Insulation. UNIT - IV GREEN BUILDING CONCEPTS Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building economics UNIT - V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:										
UNIT – IV GREEN BUILDING CONCEPTS L(9) Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Water efficiency- Building economics UNIT – V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:				Fans and blow	ers- Reirigerating i	machines	- Hea	t rejec	tion	
Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodie energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Wate efficiency- Building economics UNIT – V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:					11		1	T (0)		
energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems- Water efficiency- Building economics UNIT - V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:				1 1 110		· 1 1			1. 1	
efficiency- Building economics UNIT - V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:										
UNIT - V GREEN BUILDING DESIGN - CASE STUDY L(9) Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:	0. 1	<u> </u>	e., , ,	n systems-Tran	isportation- Water t	reatment	syste	ms- W	ater	
Case studies - Building form, orientation and site considerations; conservation measures; energy modeling heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:					11					
heating system and fuel choices; renewable energy systems; material choices - construction budget Contact Periods:					11					
Contact Periods:	Case studies -	Buil	ding form, orientation and site of	considerations;	conservation meas	sures; en	ergy	model	ıng;	
			uel choices; renewable energy sys	stems; material	choices - construct	tion budg	et			
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			AL IN.							
	Lecture: 45 Pe	riods	Tutorial: 0 Periods	Practical: 0 Pe	eriods Total:	45 Perioo	ds			
REFERENCES : 1 Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green			andbook of Green Building D	sign and Cor	struction: LEED	RRFFA	Ma	nd G	roon	

1	sam Ruoba "Hanabook of Green Bullaing Design and Construction: LEED, BREEAM, and Green
	Globes", Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Apply the concepts of sustainable design in building construction.	K3
CO2	Execute green building techniques including energy efficiency management in the building design.	K3
CO3	Establish indoor environmental quality in green building.	К3
CO4	Perform the green building rating using various tools.	K3
CO5	Create drawings and models of green buildings.	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	3	3	3			
CO2	3	den 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	3	3			
CO3	2	2	2	2	3	3			
CO4	2	23000		3	3	3			
CO5	3	3	1	3	3	3			
23SEOE03	3	3		3	3	3			
1 – Slight, 2 – Moder	ate, 3 – Substar	tial			L				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	40	20		-	-	100	
CAT2	40	40,000	20	OR UD	<i>.</i>	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20	C?	-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20	-	-	-	100	
ESE	40	40	20	-	-	-	100	

23EEOE04

ENVIRONMENT HEALTH AND SAFETY MANAGEMENT (Common to all Branches)

PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To impart knowledge on occupational health hazar	ds, safety measu	res	at w	ork	place,
Objectives	accident prevention, safety management and safety m	easures in industr	ies.			
UNIT – I	OCCUPATIONAL HEALTH HAZARDS					L(9)
	ealth and Hazards - Safety Health and Manageme					
	Importance of Industrial Safety - Radiation and Indu					
	ustrial Hygiene - Different air pollutants in industries	and their effects -	Ele	ctric	al, fi	re and
Other Hazards.						
UNIT – II	SAFETY AT WORKPLACE	0.1:00	0	•		L(9)
	place - Safe use of Machines and Tools: Safety in use					
	f Machine guarding - working in different workp	laces - Operatio	on,	Inspe	ectio	n and
	Housekeeping, Industrial lighting, Vibration and Noise.					I (0)
UNIT – III	ACCIDENT PREVENTION		4 : .		1	L(9)
	ention Techniques - Principles of accident prevention lysis, Hazop studies, Job safety analysis - Theories an					
	v structure and functions - Fracture and Dislocation, Inju					ation .
UNIT – IV	SAFETY MANAGEMENT		Juy I	Jarts	•	L(9)
	ment System and Law - Legislative measures in Ind)eeu	natic	mal	
	wironment Management, Bureau of Indian Standard					
	HA, Process safety management (PSM) and its principl			iery,	15	11102
UNIT – V	GENERAL SAFETY MEASURES					L(9)
	or Safety - design and location, distance between haza	ardous units, light	ing.	colo	our c	
	dies, Housekeeping - Accidents Related with Mainte					
	ificance of Documentation - Case studies involving i					
measures in Inc	lustries.	-				-
Contact Perio	ds: 04 100 00 00 00 000					
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 P	eriods Tot	tal: 4	15 P	erio	ls
REFERENCES	Core Co					

 "Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
 "Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019
 "Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
 "Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rad PharmaMed Press, 1st edition, 2021.

	E OUTCOMES: Block	
CO1	Identify the occupational health hazards.	K3
CO2	Execute various safety measures at workplace.	K3
CO3	Analyze and execute accident prevention techniques.	K3
CO4	Implement safety management as per various standards.	K3
CO5	Develop awareness on safety measures in Industries.	K3

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	2	2	3	2
CO2	2	2	2	1	2	2
CO3	2	3	2	1	2	2
CO4	1	ADVIT	1	2	2	2
CO5	1		32	1	1	2
23EEOE04	1 7 3	20000 200500	2	\sim 1	2	2
1 – Slight, 2 – Modera	ate, 3 – Substan	tial	TRE			

ASSESSMENT PA	ATTERN – THEO	DRY	$\overline{\Lambda}$				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

CLIMATE CHANGE AND ADAPTATION	
(Common to all Branches)	

PREREQUISITESCATEGORYLTPCNILOE3003

C		1
Course	To understand the Earth's climate system, changes and their effects on the earth, ic	
Objectives	impacts, adaptation, mitigation of climate change and for gaining knowled	ge on clean
	technology, carbon trading and alternate energy sources.	
UNIT – I	EARTH'S CLIMATE SYSTEM	L(9)
Introduction-C	limate in the spotlight - The Earth's Climate Machine - Climate Classification-	Global Wind
Systems - Trac	le Winds and the Hadley Cell – The Westerlies – Cloud Formation and Monsoon Ra	ains – Storms
	- The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effect - Sc	
– The Earth's N	atural Green House Effect – Green House Gases and Global Warming – Carbon Cyc	le.
UNIT – II	OBSERVED CHANGES AND ITS CAUSES	L(9)
Observation of	Climate Change - Changes in patterns of temperature, precipitation and sea level ris	e – Observed
effects of Clir	nate Changes - Patterns of Large-Scale Variability -Drivers of Climate Chang	ge – Climate
Sensitivity and	Feedbacks - The Montreal Protocol -UNFCCC - IPCC - Evidences of Changes in	Climate and
Environment -	on a Global Scale and in India - climate change modeling.	
UNIT – III	IMPACTS OF CLIMATE CHANGE	L(9)
Impacts of Cli	mate Change on various sectors - Agriculture, Forestry and Ecosystem - Water	Resources -
Human Health	- Industry, Settlement and Society - Methods and Scenarios - Projected Impacts	for Different
0	ertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.	
UNIT – IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	L(9)
	ategy/Options in various sectors - Water - Agriculture Infrastructure and Settlem	
	Human Health – Tourism – Transport – Energy – Key Mitigation Technologies an	
	- Transport - Buildings - Industry - Agriculture - Forestry - Carbon sequestration	
	orage (CCS) - Waste (MSW & Bio waste, Biomedical, Industrial waste - Inter-	rnational and
Regional coope		
UNIT – V	CLEAN TECHNOLOGY AND ENERGY	L(9)
	ment Mechanism - Carbon Trading - examples of future Clean Technology -Biodie	
	co- Friendly Plastic - Alternate Energy - Hydrogen - Biofuels- Solar Energ	y - Wind -
	Power – Mitigation Efforts in India and Adaptation funding.	
Contact Perio		
Lecture: 45 Pe	riods Tutorial: 0Periods Practical: 0 Periods Total:45 Perio	ds

REFERENCES

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam, Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report – Working Group I Report, "The physical sciencebasis", 2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability", 2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change, Bates,
	B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:	
CO1	Classify the Earths climatic system and factors causing climate change and global	K2
	warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and	K2
	Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	K3
	changes.	
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	K3
CO5	Discover clean technologies and alternate energy source for sustainable growth.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	msder200	3 65-12	2	3	1
CO2	3	2	2	2	3	2
CO3	2	2	20	2	3	2
CO4	3	2	2	2	2	2
CO5	3	3	2	3	3	3
23EEOE05	3	3	3	3	3	3

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	30	35	10	-	-	100		
CAT2	25	30	35	10	-	-	100		
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100		
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100		
ESE	25	30	35	10	-	-	100		

23EEOE06

WASTE TO ENERGY (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To classify waste as fuel, introduce conversion devices, gain knowledge about	Biomaga
Objectives	Pyrolysis, demonstrate methods, factors for biomass gasification, and acquire ki	
Objectives	about biogas and its development in India.	lowledge
UNIT – I	INTRODUCTION	L(9)
	Energy from Waste: Classification of waste as fuel – Agro based, Forest residue,	
	- Conversion devices – Incinerators, Gasifiers, Digestors.	
UNIT – II	BIOMASS PYROLYSIS	L(9)
Biomass Pyroly	ysis: Pyrolysis - Types, Slow Pyrolysis, Fast Pyrolysis – Manufacture of charcoal –	
	pplications – Manufacture of Pyrolytic oils and gases, Yields and Applications.	
UNIT – III	BIOMASS GASIFICATION	L(9)
Gasifiers – Fiz	xed bed system - Downdraft and updraft gasifiers - Fluidized bed gasifiers -	
	and Operation - Gasifier burner arrangement for thermal heating - Gasifie	
arrangement an	d electrical power – Equilibrium and Kinetic Considerations in gasifier operation.	•
UNIT – IV	BIOMASS COMBUSTION	L(9)
Biomass Com	bustion - Biomass Stoves - Improved Chullahs, types, some exotic designs, F	ixed bed
combustors, ty	pes - Inclined grate combustors - Fluidized bed combustors, design, construe	ction and
operation of all	the above biomass combustors.	
UNIT – V	BIOENERGY SYSTEM	L(9)
Biogas: Proper	ties of biogas (Calorific value and composition) - Biogas plant technology and sta	ıtus – Bio
energy system	- Design and constructional features - Biomass resources and their classification -	Biomass
conversion pro	ocesses - Thermo chemical conversion - Direct combustion - biomass gasif	ication –
	liquefaction - biochemical conversion - anaerobic digestion - Types of biogas	
	- Alcohol production from biomass - Bio diesel production - Urban waste t	
	iomass energy programme in India.	
Contact Perio	ds:	
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Peri	ods
REFERENCES	TESSAR EN CENT	

REFERENCES

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P Jayaram Reddy, Taylor and Francis Publications, 2016.
2	<i>"Waste – to – Energy: Technologies and project Implementations",</i> Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications, 2010

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	K3
CO3	Demonstrate methods and factors considered for biomass gasification.	K3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

COURSE ARTIC	ULATION MA	TRIX	
	PO1	PO2	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	2	3	1
CO2	3	2	2	2	3	1
CO3	3	3	2	3	2	1
CO4	3	2	2	3	3	1
CO5	2, 817	Paris 03 autom	WE WE \$3: 9000	3	2	1
23EEOE06	3 ~	923 in	5.23 V	3	3	1
1 - Slight, 2 - Mod	lerate, 3 – Substa	antial				•

1 – Slight,	2 - Moderate, 3 -	Substantial					
			-	7			
ASSESSMENT	PATTERN – TH	EORY			1	1	
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	20	20	25	15	10	100
CAT2	10	25	20	10	25	10	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	_	a. r. v 15 a. v 3	35	50	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100
ESE	10	25	25	20	10	10	100

23GEOE07	ENERGY IN BUILT ENVIRONMENT (Common to all Branches)							
PREREQUISIT	ES			CATEGORY	L	Т	Р	С
		NIL		OE	3	0	0	3
Course Objective		nderstand constructional ods and conservation of en	e . 1	ts of buildings,	ene	ergy	auc	lit
UNIT–I	INTI	RODUCTION]	L(9)
of energy use an Thermal comfo	nd its ort-Ven	vironmental control - Inter management -Macro aspe tilation and air quali- nt-Auditory requirement.	ect of energy use in	n dwellings and	its i	mpl	icati	ons –
UNIT-II	UNIT–II LIGHTING REQUIREMENTS IN BUILDING L(9)						L(9)	
The sun-earth re	lations	hip - Climate, wind, sola	r radiation and ter	nperature - Sun s	shad	ing	and	solar
		nergy impact on the shape nation, methods of day-lig		0 0 0	·		, U	U
UNIT-III		ENERGY REQUIREM	ENTS IN BUILDI	NG]	L(9)
of building envel	ope- E	eat transfer through wall ar valuation of the overall the s-Status of energy use in t	ermal transfer- Ther	mal gain and net l	neat	gaiı	n-En	
UNIT-IV		ENERGY AUDIT]	L(9)
•••		gy targeting-Technologica ronment and air quality-Ai		•				
UNIT-V		COOLING IN BUILT I	ENVIRONMENT]	L(9)
•	for ve	cture–Radiative cooling-S ntilation-Natural and activ oncept.				tive	1	
Contact Periods	:	Con the	A ADDER					
Lecture: 45 Peri	iods	Tutorial: 0 Periods	Practical: 0 Perio	ds Total: 4	5 Pe	rioc	ls	

REFERENCES

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-
	Hill, 2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley,
	1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois, USA.

	E OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand energy and its usage	K2
CO2	Know lighting to be given to a building	K1
CO3	Analyse the energy requirements in a building	K3
CO4	Apply the energy audit concepts.	K3
CO5	Study architectural specifications of a building	K1

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	- NVI	3	1	2	1
CO2	2	and a	3	1	2	1
CO3	2	Banga	DI CHE 1183	1	2	1
CO4	2	0-10	Ren 3 Ch		2	1
CO5	2	-	3	1	2	1
23GEOE07	2	-	3	1	2	1

1–Slight, 2–Moderate, 3–Substantial ASSESSMENT PATTERN – THEORY

ASSESSMEN	T PATTERN -	THEORY	ANK A				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20		-	-	100
CAT 2	40	40	20		-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50			-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	40	40	20	-	-	-	100

23GEOE08	EARTH AND ITS ENVIRONMENT (Common to all Branches)							
PREREQUISIT	'ES	```	CATEGORY	L	Т	Р	С	
		NIL	OE	3	0	0	3	
Course	Course To know about the planet earth, the geosystems and the resources like group							
Objective	air and	l to learn about the Environmental Assessi	ment and sustainability	y.				
UNIT-I	EVOL	UTION OF EARTH					L(9)	
Evolution of ear	rth as h	abitable planet-Evolution of continents-	oceans and landforms	s-ev	olut	ion	of life	
through geologic gravitational and		s - Exploring the earth's interior - ther ic fields.	mal and chemical str	uctu	ire ·	- or	igin o	
UNIT-II		GEOSYSTEMS					L(9)	
	C	and shaping the earth - Internal geosyster - Basic Geological processes - igneous, se	*			es -c		
excursions throug	gh time ·	- Basic Geological processes - igneous, se GROUND WATER GEOLOGY	dimentation – metamo	orphi	ic pı	roce	sses. L(9)	
excursions throug UNIT–III Geology of grou and catchment h	gh time nd water ydrology	- Basic Geological processes - igneous, se GROUND WATER GEOLOGY r occurrence –recharge process-Ground w y – Ground water as a resource - Natural g	vater movement-Grou	nd w	ic pi	roce	sses. L(9) scharge	
excursions throug UNIT–III Geology of grou and catchment hy Modelling and m	gh time nd water ydrology	- Basic Geological processes - igneous, se GROUND WATER GEOLOGY r occurrence –recharge process-Ground w y – Ground water as a resource - Natural g ground water systems.	vater movement-Groun ground water quality a	nd w	ic pi	r dis	sses. L(9) charge nation	
excursions throug UNIT–III Geology of grou and catchment hy Modelling and m UNIT–IV	gh time nd water ydrology nanaging	- Basic Geological processes - igneous, se GROUND WATER GEOLOGY r occurrence –recharge process-Ground w y – Ground water as a resource - Natural g ground water systems. ENVIRONMENTAL ASSESMENT AN	vater movement-Groun ground water quality a	nd wand o	ic pr vater cont	r dis	sses. L(9) charge nation L(9)	
excursions through UNIT–III Geology of grou and catchment hy Modelling and m UNIT–IV Engineering and	gh time nd water ydrology nanaging d sustain r scarcit	 Basic Geological processes - igneous, se GROUND WATER GEOLOGY r occurrence –recharge process-Ground way – Ground water as a resource - Natural ground water systems. ENVIRONMENTAL ASSESMENT AN nable development - population and ur y and conflict - Environmental risk - risk 	vater movement-Groun ground water quality a D SUSTAINABILITY banization - toxic ch	orphi nd wand α	vater vater cont	r dis ami	sses. L(9) charge nation L(9) d finit	
excursions throug UNIT–III Geology of grou and catchment hy Modelling and m UNIT–IV Engineering and resources - wate assessment-expo	gh time nd water ydrology nanaging d sustain r scarcit	 Basic Geological processes - igneous, se GROUND WATER GEOLOGY r occurrence –recharge process-Ground way – Ground water as a resource - Natural ground water systems. ENVIRONMENTAL ASSESMENT AN nable development - population and ur y and conflict - Environmental risk - risk 	vater movement-Groun ground water quality a D SUSTAINABILITY banization - toxic ch	orphi nd wand α	vater vater cont	r dis ami	sses. L(9) charge nation L(9) d finit	
excursions throug UNIT–III Geology of grou and catchment hy Modelling and m UNIT–IV Engineering and resources - wate assessment-expo UNIT–V Air resources	gh time nd water ydrology nanaging d sustain r scarcit osure ass enginee	Basic Geological processes - igneous, se GROUND WATER GEOLOGY r occurrencerecharge process-Ground w - Ground water as a resource - Natural g ground water systems. ENVIRONMENTAL ASSESMENT AN nable development - population and ur y and conflict - Environmental risk - risk essment. AIR AND SOLIDWASTE ring-introduction to atmospheric corr	vater movement-Groun ground water quality a ID SUSTAINABILITY banization - toxic ch assessment and chara	nd wand o	ic provide the second s	r dis ami and	sses. L(9) chargenation L(9) d finit -hazar L(9)	
excursions throug UNIT–III Geology of grou and catchment hy Modelling and m UNIT–IV Engineering and resources - wate assessment-expo UNIT–V Air resources chemistry-Solid	gh time nd water ydrology nanaging d sustain r scarcit osure ass enginee waste m	- Basic Geological processes - igneous, se GROUND WATER GEOLOGY r occurrence –recharge process-Ground w y – Ground water as a resource - Natural g ground water systems. ENVIRONMENTAL ASSESMENT AN nable development - population and ur y and conflict - Environmental risk - risk tessment. AIR AND SOLIDWASTE	vater movement-Groun ground water quality a ID SUSTAINABILITY banization - toxic ch assessment and chara	nd wand o	ic provide the second s	r dis ami and	sses. L(9) icharg nation L(9) d finit -hazar L(9)	
excursions throug UNIT–III Geology of grou and catchment hy Modelling and m UNIT–IV Engineering and resources - wate assessment-expo UNIT–V Air resources	gh time nd water ydrology nanaging d sustain r scarcit osure ass enginee waste m	Basic Geological processes - igneous, se GROUND WATER GEOLOGY r occurrencerecharge process-Ground w - Ground water as a resource - Natural g ground water systems. ENVIRONMENTAL ASSESMENT AN nable development - population and ur y and conflict - Environmental risk - risk essment. AIR AND SOLIDWASTE ring-introduction to atmospheric corr	vater movement-Groun ground water quality a ID SUSTAINABILITY banization - toxic ch assessment and chara	nd wand o	ic provide the second s	r dis ami and	sses. L(9) charge nation L(9) d finit -hazar	

REFERENCES

1	John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman,
	2010.
2	Younger, P.L., "Ground water in the Environment: An introduction", Blackwell Publishing, 2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering: Fundamentals,
	Sustainability and Design", Wiley, NJ, 2010.

	COURSE OUTCOMES: Jpon Completion of the course, the students will able to:	
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and the	K2
	Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	K3
	water and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	K3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTIC	ULATION M	ΙΑΙΚΙΛ				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	9	· P	2	2	-
CO2	3	(B) (HETA 06	1000 03 113 01	3	-	3
CO3	2	152	JUNE		-	-
CO4	-	2		-	1	-
CO5	2	2	-	- 7	-	-
23GEOE08	2	2	3	3	2	3
1-Slight, 2-Moder	ate, 3–Substar	ntial				

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	STIC DUU	-	-	100			
CAT 2	40	40	20	600	-	-	100			
Individual Assessmen t 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100			
Individual Assessmen t 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20	-	-	-	100			

23GEOE09 NATURAL HAZARDS AND MITIGATION (Common to all Branches)										
PREREQUISITE	S	CATEGORY	L	Т	Р	C				
	NIL	OE	3	0	0	3				
Course Objective	To get idea on the causes, effects and mi with case studies.	dea on the causes, effects and mitigation measures of different types of haza e studies.								
UNIT–I	EARTH QUAKES				Ι	.(9)				
causes of earthc	basic concepts-different kinds of haz uakes–effects-plate tectonics-seismic nt design concepts.	e			-					
UNIT-II	SLOPE STABILITY				Ι	.(9)				
	nd landslides-causes of landslides–p es for slope stabilization.	rinciples of stability a	analysi	s-rer	nedial	l and				
	FLOODS	2				.(9)				
Climatic Hazards-	Floods-causes of flooding-regional flo	od frequency analysis-fl	lood co	ontro	l meas	sures_				
	forecasting-warning systems.				i iiiou	54105-				
flood routing-floo	THE P ADDR A 1.5 ADDR AD 7 IF A PRODUCT TO ADDRESS					<u>.(9)</u>				
flood routing-flood UNIT-IV Droughts -causes	l forecasting-warning systems.	-hazard assessment – de			L	.(9)				
flood routing-flood UNIT–IV Droughts –causes GIS in natural haz	l forecasting-warning systems. DROUGHTS - types of droughts –effects of drought	-hazard assessment – de			L king-U	.(9)				
flood routing-flood UNIT–IV Droughts –causes GIS in natural haz UNIT–V Tsunami–causes–	l forecasting-warning systems. DROUGHTS - types of droughts –effects of drought ard assessment–mitigation-managemen	-hazard assessment – do t.	ecision	mał	L cing-U L	.(9) Jse of				
flood routing-flood UNIT–IV Droughts –causes GIS in natural haz UNIT–V Tsunami–causes–	l forecasting-warning systems. DROUGHTS - types of droughts –effects of drought ard assessment–mitigation-managemen TSUNAMI effects–under sea earthquakes–landslide l measures–precautions–case studies.	-hazard assessment – de t. es–volcanic eruptions–in	ecision	mak of sea	L king-U L	.(9) Jse of				
flood routing-flood UNIT–IV Droughts –causes GIS in natural haz UNIT–V Tsunami–causes–c meteorite–remedia Contact Periods:	I forecasting-warning systems. DROUGHTS - types of droughts –effects of drought ard assessment–mitigation-managemen TSUNAMI effects–under sea earthquakes–landslide I measures–precautions–case studies. ds Tutorial: 0 Period Practica	-hazard assessment – de t. es–volcanic eruptions–in	ecision	mak of sea	L king-U L	.(9) Jse of				
flood routing-flood UNIT–IV Droughts –causes GIS in natural haz UNIT–V Tsunami–causes–c meteorite–remedia Contact Periods: Lecture: 45 Period REFERENCES 1 Donald	I forecasting-warning systems. DROUGHTS - types of droughts –effects of drought ard assessment–mitigation-managemen TSUNAMI effects–under sea earthquakes–landslide I measures–precautions–case studies. ds Tutorial: 0 Period Practica	-hazard assessment – do t. es–volcanic eruptions–in l: 0 Period Total:	ecision npact c	mak of sea	L king-U L a	2(9) Use of 2(9)				

-	Durrard Dryant, "Tutan at Hagar as , Camoriage Conversity Press, 2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley
	& Sons, Inc, 2005.
4	AmrS.Elnashai and Luigi Di Sarno, "Fundamentals of Earthquake Engineering", John

4 AmrS.Elnashai and Lui Wiley & Sons,Inc,2008

COURSE OUTCOMES: Upon Completion of the course, the students will able to:					
CO1	Learn the basic concepts of earthquakes and the design concepts of	K2			
	earthquake Resistant buildings.				
CO2	Acquire knowledge on the causes and remedial measures of slope	K3			
	stabilization.				
CO3	As certain the causes and control measures of flood.	К3			
CO4	CO4 Know the types, causes and mitigation of droughts.				
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2			

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	Gum	m	3	2	3
CO2	3	Busdelinger	2. 1: 1.0.7	3	3	3
CO3	3	$\sqrt{2}$	3000	0 -	-	3
CO4	3			3	2	3
CO5	3	-	2	2	-	3
23GEOE09	3	1	2	3	2	3

ASSESSMENT PATTERN – THEORY

ASSESSMEN	NT PATTERN	N – THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20		-	-	100
CAT 2	40	40	20	acus /	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

23EDOE10

BUSINESS ANALYTICS

(Common to all Branches)

PREREQUI	SITES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course Objectives								
	5. To acquire insight on other analy	ytical framework						
UNIT – I	BUSINESS ANALYTICS AND H			1		L(9)		
Analytics Pro advantages of Statistical m	lytics: Overview of Business analytic ocess, Relationship of Business Analytics of Business Analytics. Statistical ethods, Review of probability dis methods overview.	ytics Process and Tools: Statistic	l organiz al Nota	ation,	, comj Dese	petitive criptive		
UNIT – II	REGRESSION ANALYSIS				1	L(9)		
Linear Regre	nd Regression Analysis: Modelling R ssion. Important Resources, Business lytics, problem solving, Visualizing a	s Analytics Perso	nnel, Da	ata and	d mod	els for		
UNIT – III	STRUCTURE OF BUSINESS A	NALYTICS			I	L(9)		
of Business predicative Methodologi	formation Policy, Outsourcing, Ensu analytics, Managing Changes. De Modelling, Predictive analytics es, Prescriptive analytics and its Modelling, nonlinear Optimization.	escriptive Analy analysis, Data	tics, pro Minin	edictiv g, D	ve an Pata	alytics, Mining		
	FORECASTING TECHNIQUE	and the second sec				L(9)		
Models, Fore with a Linear Casual Varial Risk Analysis	Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.							
	BUSINESS ANALYTICS							
Outcome Pro Making.Rece	lysis: Formulating Decision Problem babilities, Decision Trees, The Value nt Trends: Embedded and collabo a Storytelling and Data journalism	of Information,	Utility a	nd De	ecision	1		
Lecture: 45 Pe		actical: 0 Periods	Total:	45 Pe	riods			

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical
	Approach", Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge
	University Press, 2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.
	Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition,
	2016.
5	U. Dinesh Kumar; "Business Analytics: TheScience of Data-Driven Decision
	Making", Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication,
	2015.

	SE OUTCOMES:	Bloom's
Upon C	ompletion of the course, the students will able to:	Taxonomy
		Mapped
CO1	Identify the real world business problems and model with	K4
	analytical solutions.	
CO2	Solve analytical problem with relevant mathematics background	K4
	knowledge.	
CO3	Convert any real world decision making problem to hypothesis and	K4
	apply suitable statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics	K4
	using Hadoop and Map Reduce	
CO5	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	1	2	1	2	1			
CO2	1	1	1	2	1			
CO3	2	2	1	1	-			
CO4	2	2	1	-	-			
CO5	1	2	-	-	-			
23EDOE10	1	2	1	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	25	25	25	25	-	-	100		
CAT 2	20	25	25	30	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	25	30	25	20	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	20 minus 55	30 10 m pl 10	20	-	-	100		
ESE	20	30	20	30	-	-	100		

23EDOE11

INTRODUCTION TO INDUSTRIAL SAFETY (Common to all Branches)

PREREQUIS	ITES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course Objectives	5							
UNIT – I	INTRODUCTION	ie maintenance.				L(9)	
causes and pre health and safe	eventive steps/procedure, describe ety, wash rooms, drinking water la s, etc., Safety color codes. Fire pre	salient points of ayouts, light, clea	facto nline	ories ss, fi	act 1 re, gi	948 uardii	for 1g,	
UNIT – II	FUNDAMENTALS O ENGINEERING	F MAIN	TEN	IANC	CE	L(9)	
andresponsibilitapplications o	a aim of maintenance engineeri ity of maintenance department, f tools used for maintenance, l onomy, Service life of equipment. WEAR AND CORROSION AN	Types of mai Maintenance cost	ntena &	ince, its r	Typelatio	es a	nd ith	
Lubrication me ii. Pressure gr lubrication vi. affecting the co	uses, effects, wear reduction methors, general sketch, working and rease gun, iii. Splash lubrication, Side feed lubrication, vii. Ring lubrorrosion. Types of corrosion, corros	l applications, i. S iv. Gravity lubr ication, Definitio	crew rication, pri	down on, v ncipl	n gre . Wi	ase ci ck fe	up, eed	
UNIT – IV	FAULT TRACING					L(9	/	
sequence of fat in machine too like, I. Any one v. Boiler, vi. El	Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.							
UNIT - V PERIODIC AND PREVENTIVE MAINTENANCE L(9)								
Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance								
Contact Period								
Lecture: 45 Peri	iods Tutorial: 0 Periods Pra	actical: 0 Periods	Tot	al: 45	Perio	ods		

REFERENCES

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall
	London, 2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P)
	Ltd., Publishers, 2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July
	2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing;
	Third edition ,2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COURSE OUTCOMES:

COURS Upon Co	Bloom's Taxonomy Mapped	
CO1	Ability to summarize basics of industrial safety	K4
CO2	Ability to describe fundamentals of maintenance engineering	K4
CO3	Ability to explain wear and corrosion	K4
CO4	Ability to illustrate fault tracing	K4
CO5	Ability to identify preventive and periodic maintenance	K4
I		•

COURSE ARTICULAT	TION MATRI	X	R /		
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	2		1	- 1	-
CO2	2			-	1
CO3	1	8 2		1	1
CO4	2	U 1	1	1	1
CO5	2	120-	2	998 1	1
23EDOE11	2	1	1	1	1
1 – Slight, 2 – Moderat	e, 3 – Substai	ntial	61.00		

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT 1	25	25	25	25	-	-	100	
CAT 2	20	25	25	30	-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	25	30	25	20	-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	20 million	30	20	-	-	100	
ESE	20	30	20	30	-	-	100	

23EDOE12

OPERATIONS RESEARCH (Common to all Branches)

PREREQUISITESCATEGORYLTPCNILOE3003

Course	1. Solve linear programming problem and solve using graph	nical method.					
Objectives	2. Solve LPP using simplex method.						
Ū	3. Solve transportation, assignment problems.						
	4. Solve project management problems.						
	5. Solve scheduling problems.						
UNIT – I	INTRODUCTION	9 Periods					
	Techniques, Model Formulation, models, General L.R niques, Sensitivity Analysis, Inventory Control Models	Formulation					
UNIT – II	LINEAR PROGRAMMING PROBLEM	9 Periods					
	of a LPP - Graphical solution revised simplex method - duality od - sensitivity analysis - parametric programming	theory - dual					
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM	9 Periods					
	gramming problem - Kuhn-Tucker conditions min cost flow p - CPM/PERT	oroblem - max					
UNIT – IV	SEQUENCING AND INVENTORY MODEL	9 Periods					
	nd sequencing - single server and multiple server models - dels - Probabilistic inventory control models - Geometric Prog						
UNIT – V	GAME THEORY	9 Periods					
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation							
Contact Perio	240.00	- Dende de					
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical:0Periods Total: 45	5 Periods					
	00000						

1	H.A. Taha "Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan
	2021.

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:					
CO1	Formulate linear programming problem and solve using	K4				
	graphical method.					
CO2	Solve LPP using simplex method.	K4				
CO3	Formulate and solve transportation, assignment problems.	K4				
CO4	Solve project management problems.	K4				
CO5	Solve scheduling problems	K4				

COURSE ARTICULATION MATRI

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	-	-
CO2	2	2	mm		-
CO3	1	Const of a co	2	Rine	1
CO4	1	4	NON PUL IND		-
CO5	2	AP 22	STATE OF		-
23EDOE12	2	1	1	- A	1

ASSESSMEN	NT PATTER	N – THEORY	3				
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	25	25	25	25.00	1 -	-	100
CAT 2	20	25	25	30	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	25	30	25	20	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	20	30	20	-	-	100
ESE	20	30	20	30	-	-	100

OCCUPATIONAL HEALTH AND SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

EPA standard functions.	GENERAL SAFETY MEASURES	9 Periods				
Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards- Safety Management: Organisational & Safety Committee - its structure and functions						
UNIT – IV	SAFETY MANAGEMENT	9 Periods				
Principles – analysis - The	vention Techniques - Principles of accident prevention - Definit Hazard identification and analysis, Event tree analysis, Hazop stud pories and Principles of Accident causation - First Aid : Body structure Dislocation, Injuries to various body parts.	ies, Job safety				
UNIT – III	ACCIDENT PREVENTION	9 Periods				
operations - Ergonomics of	rkplace - Safe use of Machines and Tools: Safety in use of different of Machine guarding - working in different workplaces - Operation, Plant Design and Housekeeping, Industrial lighting, Vibration and Noise	Inspection and				
UNIT – II	SAFETY AT WORKPLACE	9 Periods				
Safety- History and development, National Safety Policy- Occupational Health Hazards - Ergonomics - Importance of Industrial Safety Radiation and Industrial Hazards- Machine Guards and its types, Automation.						
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS	9 Periods				
	 To learn about accident prevention and safety management. To learn about general safety measures in industries. 					
	 To gain knowledge about occupational health hazard and safe work place. 	ty measures at				

23MFOE13

1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, New Delhi,
	2008.
5	https://nptel.ac.in/courses/110105094
6	https://archive.nptel.ac.in/courses/110/105/110105094/

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Gain the knowledge about occupational health hazard and safety	K3
	measures at work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in industries.	К3
CO4	Know various laws, standards and legislations.	K2
CO5	Implement safety and proper management of industries.	K4

Cos/Pos	PO1	PO2	PO3	PO4	PO5
CO1	2		1	1	1
CO2	2	2	1		1
CO3	1	2	1 2	1	1
CO4	2	VE STAN	1000 A 12 B	1 507	1
CO5	2	- P	2	1	1
23MFOE13	2	1	1	1	1

ASSESSMEN	T PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	50	50	-	-	-	100
CAT2	-	50	30	20	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	8154 min 616 50 5 7	716-00 PUL 110- 30	20	-	-	100
ESE	-	40	40	20	-	-	100

23MFOE14

COST MANAGEMENT OF ENGINEERING PROJECTS (Common to all Branches)

PREREQ	UISITES		CATEGORY	L	Т	Р	С	
	NIL		OE	3	0	0	3	
Course Objectives								
UNIT – I	INTRODUCTION TO COSTING CO	NCEPTS				9 P	eriods	
Relevant cost,	d Overview of the Strategic Cost Manager Differential cost, Incremental cost and Op ation; Creation of a Database for operat	portunity	cost. Objectives	ofa	ı Co	sting	g System	
UNIT – II	PROJECT PLANNING ACTIVITIES	-				9 P	eriods	
nontechnical a documents Pro Project contrac	ception to commissioning. Project ex ctivities. Detailed Engineering activities ect team: Role of each member. Importan ts. Types and contents. Project execution et commissioning: mechanical and process	a. Pre project nee Project n Project	oject execution et site: Data requi	mai ired	n cl with	eara sigi	nces and nificance	
UNIT – III	COST ANALYSIS					9 P	eriods	
Absorption C	r and Profit Planning Marginal Costing osting; Break-even Analysis, Cost-Volu dard Costing and Variance Analysis.		/ JPT 6_P1 -	-			-	
UNIT – IV	PRICING STRATEGIES AND BUDG	ETORY	CONTROL			9 P	eriods	
time approach Flexible Budg	Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just-in- time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.							
UNIT – V	TQM AND OPERATIONS REASEAR	СН ТОС	DLS			9 P	eriods	
Total Quality M Balanced Scor	Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve							
Contact Peri			-i-l- T-(l-44	' D				
Lecture: 45 P	riods Tutorial: 0 Periods Pract	ical: 0 Pe	riods Total: 45	o rei	10 d	5		

REFERENCES:

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice
	Hall of India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Apply the costing concepts and their role in decision making.	K3
CO2	Apply the project management concepts and analyze their various aspects in selection.	K4
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various budgetary control techniques.	K2
CO5	Become familiar with quantitative techniques in cost management.	K3

COURSE ARTICULATION MATRIX

COs/Pos	PO1	PO2	PO3	PO4	PO5
CO1	1	1 1 8	2	1	1
CO2	2	1 0	1	1	-
CO3	2	2	2	7.88	-
CO4	1		1		1
CO5	1	0.2		OCUM	-
23MFOE14	1	5150	Lus Cont	257	1

11

ASSESSMEN	NT PATTERN -	- THEORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %
CAT1	-	-	40	60	-	-	100
CAT2	-	30	30	40	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	-	40	60	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	30 85650 0 0 0 0 0 0	30	40	-	-	100
ESE	-	20	40	40	-	-	100

23MFOE15

COMPOSITE MATERIALS (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	1. To summarize the characteristics of composite materials	and effect of					
Objectives	reinforcement in composite materials.						
	2. To identify the various reinforcements used in composite materials	5.					
	3. To compare the manufacturing process of metal matrix composites	5.					
	4. To understand the manufacturing processes of polymer matrix composites.						
	5. To analyze the strength of composite materials.	-					
UNIT – I	INTRODUCTION	9 Periods					
Definition – C	lassification and characteristics of Composite materials. Advantages and	application of					
	inctional requirements of reinforcement and matrix. Effect of reinforcer	ment on overall					
composite perf							
UNIT – II	REINFORCEMENT	9 Periods					
	rup, curing, properties and applications of glass fibers, carbon fibers, Ke						
	Properties and applications of whiskers, particle reinforcements. Mechani	cal Behavior of					
composites: Ru	le of mixtures, Inverse rule of mixtures. Isostrain and Isosteresconditions.						
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods					
	d State diffusion technique, Cladding - Hot isostatic pressing- Manufactur						
	osites: Liquid Metal Infiltration - Liquid phase sintering-Manufacturin	g of Carbon –					
Carbon compos	sites: Knitting, Braiding, Weaving- Properties and applications.						
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods					
Preparation of	Moulding compounds and prepregs - hand layup method - Autoclave me	ethod -Filament					
	d - Compression moulding - Reaction injection moulding. Properties and a						
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	9 Periods					
Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting							
Laminar Failu	re Criteria-strength ratio, maximum stress criteria, maximum strain crite	eria, interacting					
	re Criteria-strength ratio, maximum stress criteria, maximum strain crite hygrothermal failure. Laminate first play failure-insight strength; Lamin						
failure criteria,		ate strength-ply					
failure criteria,	hygrothermal failure. Laminate first play failure-insight strength; Lamin ted maximum strain criterion; strength design using caplet plots; stress cond	ate strength-ply					
failure criteria, discount trunca	hygrothermal failure. Laminate first play failure-insight strength; Lamin ted maximum strain criterion; strength design using caplet plots; stress conc ods:	ate strength-ply					

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz,
	2013.
5	https://nptel.ac.in/courses/112104168

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Know the characteristics of composite materials and effect of reinforcement in composite materials.	K2
CO2		К2
CO2 CO3	Understand and apply the manufacturing processes of metal matrix composites	K2 K3
CO4	Understand and apply the manufacturing processes of polymer matrix composites.	K3
CO5	Analyze the strength of composite materials.	K4

COs/Pos	PO1	PO2	PO3	PO4	PO5
CO1	1	2	1	1	1
CO2	2	2	1	1	2
CO3	2	1	marra 2	1	1
CO4	1	2	2	2	1
CO5	1	2	75 0 BL 110 01		1
23MFOE15	1	2	UPQ22S		1
1 - Slight, 2 - Mode	rate, 3 – Substan	tial		1	1

ASSESSMEN	NT PATTERN – '	THEORY		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	60	40		-	-	100
CAT2	-	Caller	60	40	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	60	40	27	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	-	60	40	-	-	100
ESE	-	40	40	20	-	-	100

23TEOE16

GLOBAL WARMING SCIENCE (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objectives	To make the students learn about the material consequences of cli level change due to increase in the emission of greenhouse gases ar science behind mitigation and adaptation proposals.						
UNIT – I	INTRODUCTION	9 Periods					
Terminology	relating to atmospheric particles - Aerosols - Types, characteristics,	measurements -					
Particle mass	spectrometry - Anthropogenic-sources, effects on humans.						
UNIT – II	CLIMATE MODELS	9 Periods					
model, sea ice	ate modeling- Atmospheric general circulation model - Oceanic ge e model, land model concept, paleo-climate - Weather prediction by n mate change - Climate Sensitivity - Forcing and feedback.						
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods					
Carbon cycle	-process, importance, advantages - Carbon on earth - Global car	rbon reservoirs -					
Interactions b	etween human activities and carbon cycle - Geologic time scales -	Fossil fuels and					
energy - Pertu	rbed carbon cycle.						
UNIT – IV		9 Periods					
	Blackbody radiation - Layer model - Earth's atmospheric composition and Green house gases effects on weather and climate - Radioactive equilibrium - Earth's energy balance.						
UNIT – V	GEO ENGINEERING	9 Periods					
	Solar mitigation - Strategies - Carbon dioxide removal - Solar radiation management - Recent observed trends in global warming for sea level rise, drought, glacier extent.						
001111101	Contact Periods:Lecture: 45 PeriodsTutorial: 0PeriodsPractical: 0 PeriodsTotal: 45 Periods						

1	<i>Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its Consequences", Princeton University Press, 1st Edition, 2022.</i>
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and
	Solutions for Global Warming", Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1 st edition,
	2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the global warming in relation to climate changes throughout the earth.	K2
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2
CO4	Know about current issues, including impact from society, environment, economy as well as ecology related to greenhouse gases.	K4
CO5	Know the safety measures and precautions regarding global warming.	K5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	. Butoni	2	2010 1.	1	2		
CO2	1	MUEG	2	\sim	1	1		
CO3	1	2		\sim	1	2		
CO4	1	1	1	1	1	2		
CO5	2	1	2	1	1	2		
23TEOE16	1	1		1	1	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSME	NT PATTERN –	THEORY		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	35	35	10	-	-	100
CAT2	15	25 25	25 0	20	15	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	25	20	20	35	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	20	20	35	15	10	-	100
ESE	25	20	25	20	10	-	100

23TEOE17

INTRODUCTION TO NANO ELECTRONICS (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objectives	To make the students provide strong, essential, important methods and foundations of quantum mechanics and apply quantum mechanics on engineering fields.						
UNIT – I	INTRODUCTION	9 Periods					
	Waves - Operators in quantum mechanics - The Postulates of quantum quation values and wave packet Solutions - Ehrenfest's Theorem.	mechanics - The					
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods					
Molecules, Cr	Hydrogen Atom - Many-Electron Atoms – Pseudopotentials, Nu ystals - Translational motion – Penetration through barriers – Particle um dot devices - Two terminal quantum wire devices.						
UNIT – III	SCATTERING THEORY	9 Periods					
wave stationa	on of scattering events - Scattering cross section - Stationary scattering ry scattering events - multi-channel scattering - Solution for Schro ve equation - Greens' function.						
UNIT – IV	CLASSICAL STATISTICS	9 Periods					
	nd microscopic behaviours - Kinetic theory and transport processes in naterials - The partition function.	gases - Magnetic					
UNIT – V	QUANTUM STATISTICS	9 Periods					
thermal properties a	hanics - Basic Concepts - Statistical models applied to metals and semi rties of solids- The electrical properties of materials - Black body nd degenerate systems.						
Contact Perio Lecture:45 P		tal:45 Periods					
Lecture:45 r	TIOUS IULOFIAL O FETIOUS FFACUCAL O FETIOUS TO						

-	
Ι	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to
	Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge
	University Press, 1 st Edition, 2007.
2	Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device
	Analysis", Routledge, 1 st Edition, 2020.
3	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States
	Edition, 2007.
4	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
5	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South
	Asian Edition, 2009.
6	Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied
	Quantum Statistical Mechanics", Wiley, 2004.
7	A. F. J. Levi, "Applied Quantum Mechanics", 2 nd Edition, Cambridge, 2012.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3Ddifferent applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	K2
CO5	Know about statistical models applies to metals and semiconductor.	K3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	2	2	1	1	1	1
CO3	2	2	2	1	1	1
CO4	1		E B		1	1
CO5	1	Bysein	BALGO BILLIB		1	1
23TEOE17	1	1/59	NUDER'S	EVI	1	1
1 - Slight, 2 - 1	Moderate, 3 –	Substantial				

ASSESSMENT PATTERN – THEORY

			STILL ST				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	35	25	20	20	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	25	20	25	-	-	100
ESE	20	30	30	20	-	-	100

23TEOE18	
-----------------	--

GREEN SUPPLY CHAIN MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To make the students learn and focus on the fundamental strategies, too	ls and techniques
Objectives	required to analyze and design environmentally sustainable supply chain	systems.
UNIT – I	INTRODUCTION	9 Periods
Intro to SCM -	- complexity in SCM, Facility location - Logistics - Aim, activities, impo	ortance, progress,
current trends ·	Integrating logistics with an organization.	
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT	9 Periods
	of supply chain management - Supply chain operations - Planning and se	
and delivering	- Supply chain coordination and use of technology - Developing supply ch	ain systems.
UNIT – III	PLANNING THE SUPPLY CHAIN	9 Periods
Types of decis	sions - strategic, tactical, operational - Logistics strategies, implementing	ng the strategy -
Planning resor	arces - types, capacity, schedule, controlling material flow, measuring	g and improving
C		
performance.		
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN	9 Periods
UNIT – IV Procurement –	cycle, types of purchase - Framework of e-procurement - Inventory man	9 Periods agement – EOQ,
UNIT – IV Procurement – uncertain dem	cycle, types of purchase – Framework of e-procurement - Inventory man and and safety stock, stock control - Material handling – Purpose of	9 Periods agement – EOQ, f warehouse and
UNIT – IV Procurement – uncertain dem ownership, lay	cycle, types of purchase – Framework of e-procurement - Inventory man and and safety stock, stock control - Material handling – Purpose of out, packaging - Transport – mode, ownership, vehicle routing and sch	9 Periods agement – EOQ, f warehouse and
UNIT – IV Procurement – uncertain dem ownership, lay	cycle, types of purchase – Framework of e-procurement - Inventory man and and safety stock, stock control - Material handling – Purpose of out, packaging - Transport – mode, ownership, vehicle routing and sch sman problems - Exact and heuristic methods.	9 Periods agement – EOQ, f warehouse and
UNIT – IV Procurement – uncertain dem ownership, lay Travelling sale UNIT – V	cycle, types of purchase – Framework of e-procurement - Inventory man and and safety stock, stock control - Material handling – Purpose of out, packaging - Transport – mode, ownership, vehicle routing and sch sman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES	9 Periods agement – EOQ, f warehouse and neduling models- 9 Periods
UNIT – IV Procurement – uncertain dem ownership, lay Travelling sale UNIT – V Five key conf	cycle, types of purchase – Framework of e-procurement - Inventory man and and safety stock, stock control - Material handling – Purpose of out, packaging - Transport – mode, ownership, vehicle routing and sch sman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES iguration components - Four criteria of good supply chain strategies -	9 Periods agement – EOQ, f warehouse and neduling models- 9 Periods Next generation
UNIT – IV Procurement – uncertain dem ownership, lay Travelling sale UNIT – V Five key conf strategies- New	cycle, types of purchase – Framework of e-procurement - Inventory man and and safety stock, stock control - Material handling – Purpose of out, packaging - Transport – mode, ownership, vehicle routing and sch sman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES iguration components - Four criteria of good supply chain strategies - v roles for end-to-end supply chain management - Evolution of supply cha	9 Periods agement – EOQ, f warehouse and neduling models- 9 Periods Next generation
UNIT – IV Procurement – uncertain dem ownership, lay Travelling sale UNIT – V Five key conf strategies- New International is	cycle, types of purchase – Framework of e-procurement - Inventory man and and safety stock, stock control - Material handling – Purpose of out, packaging - Transport – mode, ownership, vehicle routing and sch sman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES iguration components - Four criteria of good supply chain strategies - v roles for end-to-end supply chain management - Evolution of supply cha sues in SCM – Regional differences in logistics.	9 Periods agement – EOQ, f warehouse and neduling models- 9 Periods Next generation
UNIT – IV Procurement – uncertain dem ownership, lay Travelling sale UNIT – V Five key conf strategies- New	cycle, types of purchase – Framework of e-procurement - Inventory man and and safety stock, stock control - Material handling – Purpose of rout, packaging - Transport – mode, ownership, vehicle routing and sch sman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES iguration components - Four criteria of good supply chain strategies - v roles for end-to-end supply chain management - Evolution of supply cha ssues in SCM – Regional differences in logistics. ds:	9 Periods agement – EOQ, f warehouse and neduling models- 9 Periods Next generation

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain Management", Routledge, 1 st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle Approach", McGraw-Hill Education, 1 st Edition, 2011.
1	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1 st Edition, 2017.
2	Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach", Replica, 2021.
3	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for Sustainable Business Practice", IGI Global, 1 st Edition, 2016.
4	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.
5	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1 st Edition, 2017.

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	К3
CO4	Analyze inventory management models and dynamics of supply chain.	K4
CO5	Identify issues in international supply chain management and outsources strategies.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	lar	- Cturn	1	1	3
CO2	2	8562 i Da	B 53.51	1	1	1
CO3	2	VIC:	222	P) 1	1	1
CO4	2	2	A CONTRACTOR	1	2	2
CO5	1	1	2	1	1	3
23TEOE18	2	1	12	1	1	2
1 - Slight, 2 - Mode	rate, 3 – Substar	itial		11	•	

ASSESSMENT	FPATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	30	10	10	-	100
CAT2	30	40	20	10	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	30	20	25	15	10	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	35	30	25	10	-	-	100
ESE	30	30	20	10	10	-	100

23PSOE19

DISTRIBUTION AUTOMATION SYSTEM (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To study about the distributed automation and economic evaluation schemes of po-	wer network
Objectives		
UNIT – I	INTRODUCTION	9 Periods
Introduction to	Distribution Automation (DA) - Control system interfaces- Control and data re	equirements-
Centralized (vs)) decentralized control- DA system-DA hardware-DAS software.	
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods
DA capabilities	s - Automation system computer facilities- Management processes- Information n	nanagement-
System reliabili	ty management- System efficiency management- Voltage management- Load management-	gement.
UNIT – III	COMMUNICATION SYSTEMS	9 Periods
Communication	n requirements - reliability- Cost effectiveness- Data requirements- Two way	capability-
Communication	n during outages and faults - Ease of operation and maintenance- Conforming to the	e architecture
of flow Distril	bution line carrier- Ripple control-Zero crossing technique- Telephone, cableTV	radio AM
	button line carrier- Ripple control-zero crossing technique- relepitone, cabler v	, Iaulo, Alvi
	SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication systems	
broadcast, FM tests.	SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication systems	used in field
broadcast, FM tests. UNIT – IV	SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS	used in field 9 Periods
broadcast, FM tests. UNIT – IV Development a	SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select study period- Project I	used in field 9 Periods
broadcast, FM tests. UNIT – IV Development a	SCA, VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select study period- Project I tives- Calculate operating and maintenance costs-Evaluate alternatives.	used in field 9 Periods
broadcast, FM tests. UNIT – IV Development a	SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select study period- Project I	used in field 9 Periods
broadcast, FM tests. UNIT – IV Development a Develop alterna UNIT – V	SCA, VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select study period- Project I tives- Calculate operating and maintenance costs-Evaluate alternatives.	used in field 9 Periods load growth- 9 Periods
broadcast, FM (tests. UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require	 SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select study period- Project Intives- Calculate operating and maintenance costs-Evaluate alternatives. ECONOMIC COMPARISON aparison of alternate plans-Classification of expenses - capital expenditures-Coements of alternative plans-Book life and continuing plant analysis- Year by y 	used in field 9 Periods load growth- 9 Periods mparison of year revenue
broadcast, FM i tests. UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement and	 SCA, VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select study period- Project Intives- Calculate operating and maintenance costs-Evaluate alternatives. ECONOMIC COMPARISON parison of alternate plans-Classification of expenses - capital expenditures-Coements of alternative plans-Book life and continuing plant analysis- Year by y alysis, Short term analysis- End of study adjustment-Break even analysis, sensitivity 	used in field 9 Periods load growth- 9 Periods mparison of year revenue
broadcast, FM i tests. UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement and Computational	 SCA, VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select study period- Project Intives- Calculate operating and maintenance costs-Evaluate alternatives. ECONOMIC COMPARISON aparison of alternate plans-Classification of expenses - capital expenditures-Coements of alternative plans-Book life and continuing plant analysis- Year by yalysis, Short term analysis- End of study adjustment-Break even analysis, sensitivi aids. 	used in field 9 Periods load growth- 9 Periods mparison of year revenue
broadcast, FM i tests. UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement and	 SCA, VHF radio, microwave satellite, fiber optics-Hybrid communication systems ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select study period- Project Intives- Calculate operating and maintenance costs-Evaluate alternatives. ECONOMIC COMPARISON aparison of alternate plans-Classification of expenses - capital expenditures-Coements of alternative plans-Book life and continuing plant analysis- Year by yalysis, Short term analysis- End of study adjustment-Break even analysis, sensitivi aids. 	used in field 9 Periods load growth- 9 Periods mparison of year revenue

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications, Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design" , Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation" , IEEE Working Group on Distribution Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COUR Upon (Bloom's Taxonomy Mapped	
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	K3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COURSE ARTICULATION MATRIX

COs/Pos	PO1	PO2	PO3	PO4
CO1	2	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	3	Elim B	3	1
CO5	2. 8198 Brig	Panison out us a right		2
23PSOE19	3 5	SS ROMAN	3	2

ASSESSMENT PATTERN – THEORY

ASSESSIVIENT	PATTERN – TH	EUKI	ANI/A		•		
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	20	10	20	-	100
CAT2	20	20	20	20	20	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	20	10	30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20	30	10	20	20	-	100
ESE	30	20	20	20	10	-	100

23PSOE20

ELECTRICITY TRADING AND ELECTRICITY ACTS (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objectives	To acquire expertise on Electric supply and demand of Indian Grid, gain exposu trading in the Indian market and infer the electricity acts and regulatory authorities.	re on energy
UNIT – I	ENERGY DEMAND	9 Periods
	n Economics - Descriptive Analysis of Energy Demand - Decomposition Analysis ar	
1	nand Side Management - Load Management - Demand Side Management - Energy	
Rebound Effect	hand Side Management Boad Management Demand Side Management Energy	Efficiency
UNIT – II	ENERGY SUPPLY	9 Periods
Supply Behavio	r of a Producer - Energy Investment - Economics of Non-renewable Resources - I	Economics of
	gy Supply Setting the context - Economics of Renewable Energy Supply - Economics	
Supply	and and a second s	-
UNIT – III	ENERGY MARKET	9 Periods
Perfect Competi	tion as a Market Form - Why is the Energy Market not Perfectly Competitive? - Market	et Failure and
Monopoly - Oil	Market: Pre OPEC Era I - Oil Market: Pre OPEC Era II - Oil Market: OPEC	
UNIT – IV	LAW ON ELECTRICITY	9 Periods
Introduction of	the Electricity Law; Constitutional Design - Evolution of Laws on Electricity Salien	t Features of
Electricity Act, 2	2003 - Evolution of Laws on Electricity - Salient Features of the Electricity Act 2003	
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT	9 Periods
	missions - Appellate Tribunal - Other Institutions under the Act - Electricity (Ame	
2020/2021. A Cr	itical Comment - Renewable Energy - Role of Civil Society; Comments on Draft Renew	wable Energy
Act, 2015		
Contact Period	1 [-1]	
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

REFERENCES

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of Energy",
	Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands, 2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and Practices",
	Cambridge Univesity Press, 2014.

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	K3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical sustainability	K4

COURSE ARTICULATION MATRIX						
COs/Pos	PO1	PO2	PO3	PO4		
CO1	3	-	3	3		
CO2	3	-	1	1		
CO3	3	Humm	2	2		
CO4	3			2		
CO5	3	CALLON DICTION	3	3		
23PSOE20	3.9%	NURCE CO	2	2		
1 - Slight, 2 - Modera	ate, 3 – Substantia	.1				

1 – Siight, 2 – Moderate, 3 – Substantiar							
ASSESSMENT	PATTERN – THE	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	20	30	-	-	100
CAT2	20	20	20	20	20	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	20	30	30	20	-	-	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20	30	-	20	-	40	100
ESE	30	30	-	20	20	-	100

23PSOE21

MODERN AUTOMOTIVE SYSTEMS (Common to all Branches)

PREREQUISITESCATEGORYLTPCNILOE3003

Course Objectives	To expose the students with theory and applications of Automotive Electrical ar Systems.	nd Electronic
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS	9 Periods
	modern automotive systems and need for electronics in automobiles- Role of ele- - Sensors and actuators- Possibilities and challenges in automotive industry- Enabling ads.	
UNIT – II	SENSORS AND ACTUATORS	9 Periods
detonation sensor sensor- Speed a	water temperature sensor- Engine oil pressure sensor- Fuel metering- vehicle speed or- Pressure Sensor- Linear and angle sensors- Flow sensor- Temperature and humidity and Acceleration sensors- Knock sensor- Torque sensor- Yaw rate sensor- Tyre Pre- per motors – Relays.	sensors- Gas
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE	9 Periods
cooling and war	mission Control - Digital engine control system: Open loop and close loop control sys m up control- Acceleration- Detonation and idle speed control - Exhaust emission control stics- Future automotive powertrain systems.	
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SYSTEMS	9 Periods
Cruise Control- Steering control-	Anti-lock Braking Control- Traction and Stability control- Airbag control system- Susper HVAC Control.	nsion control-
	ELECTRONIC CONTROL UNITS (ECU)	9 Periods
UNIT – V		,

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley
	and Sons, 2001.
2	M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press,
	series on Power Engineering, 2000.
3	Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power
	SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
4	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering applications	K4
CO4	Develop modern automotive control system for electrical and electronics systems	K6
CO5	Understand the function of sensors and actuators	K2

COs/Pos	PO1	PO2	PO3	PO4
CO1	3	-	1	3
CO2	3	-	3	2
CO3	3 9	mo	3	2
CO4	8 8 2 1 Dans		3	1
CO5	22	The second	1	2
23PSOE21	3		2	2
1 - Slight, 2 - Moderate, 3	– Substantial	_	>	

ASSESSMEN	Γ PATTERN – T	HEORY	ANI/A				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	20	30	-	-	100
CAT2	20	20	20	20	20	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	20	30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20	-	30	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20	30	-	20	_	40	100
ESE	30	30	20	20	-	-	100

23PEOE22 VIRTUAL INSTRUMENTATION (Common to all Branches)						
PREREQUISI	TES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course Objectives	To comprehend the Virtual instrumentation programm control and to instill knowledge on DAQ, signal cond					
UNIT – I	INTRODUCTION	~			7 I	Periods
versus Traditio conventional pr	<u> </u>	ogramming in data f			parisc	on with
UNIT – II	GRAPHICAL PROGRAMMING AND LabVIEW					Periods
	phical programming - LabVIEW software - Concept of					
	and Graphs. Loops - structures - Arrays - Clusters- L	local and global varia	bles	– Str	ıng -	Timers
and dialog cont						
UNIT – III	MANAGING FILES & DESIGN PATTERNS				11 F	Period
High loval and	low level file I/O functions evailable in LabVIEW	mplementing File I/C) fun	ation		
write data to Communication	low-level file I/O functions available in LabVIEW – I files – Binary Files – TDMS – sequential progra between parallel loops –Race conditions – Notifier	mming – State mad	chine	e prog	s to re gramr	ad and
write data to Communication patterns	files – Binary Files – TDMS – sequential progra between parallel loops –Race conditions – Notifier	mming – State mad	chine	e prog	s to re gramr umer	ead and ning - desigr
write data to Communication patterns UNIT – IV	files – Binary Files – TDMS – sequential progra between parallel loops –Race conditions – Notifier PC BASED DATA ACQUISITION	mming – State mac s & Queues – Produ	chine ucer	e prog Cons	s to re gramr umer 9 I	ead and ning - desigr Periods
write data to Communication patterns UNIT – IV Introduction to inputs and outp interface requir	files – Binary Files – TDMS – sequential progra between parallel loops –Race conditions – Notifier	cs, DACs, Calibration counters and timers, I	chine ucer n, Re DMA	e prog Cons soluti	s to regrammer umer 9 I ion, - a acqu	ead and ning – design Periods analoguisition
write data to Communication patterns UNIT – IV Introduction to inputs and outp interface requir	files – Binary Files – TDMS – sequential progra between parallel loops –Race conditions – Notifier PC BASED DATA ACQUISITION data acquisition on PC, Sampling fundamentals, ADC uts - Single-ended and differential inputs - Digital I/O, ements - Issues involved in selection of Data acquisiti universal DAQ card.	Cs, DACs, Calibration counters and timers, I on cards - Use of tim	chine ucer n, Re DMA	e prog Cons soluti	s to regrammer umer 9 H ion, - a acqu r and	ead and ning – desigr Periods analog uisitior
write data to Communication patterns UNIT – IV Introduction to inputs and outp interface requir outputs on the u UNIT – V Components of Measurement o conditioning sy	files – Binary Files – TDMS – sequential progra between parallel loops –Race conditions – Notifier PC BASED DATA ACQUISITION data acquisition on PC, Sampling fundamentals, ADC uts - Single-ended and differential inputs - Digital I/O, ements - Issues involved in selection of Data acquisiti	State mac s & Queues – Products Cs, DACs, Calibration counters and timers, I on cards - Use of time ONING leration when choosing quisition- analog outp	chine ucer n, Re DMA ner-c	e prog Cons esolution, Dat ounte DAQ enerat	s to regrammer umer 9 I ion, - a acqu r and 9 I hard tion –	ead and ning - desigr Periods analog uisitior analog Periods ware - Signa
write data to Communication patterns UNIT – IV Introduction to inputs and outp interface requir outputs on the u UNIT – V Components of Measurement o conditioning sy	files – Binary Files – TDMS – sequential progra between parallel loops –Race conditions – Notifier PC BASED DATA ACQUISITION data acquisition on PC, Sampling fundamentals, ADC uts - Single-ended and differential inputs - Digital I/O, ements - Issues involved in selection of Data acquisiti inversal DAQ card. DATA ACQUISITION AND SIGNAL CONDITION f a DAQ system, Bus, Signal and accuracy consider f analog signal with Finite and continuous buffered accurates stems – Synchronizing measurements in single & multiple accurates accurates and accurates accu	State mac s & Queues – Products Cs, DACs, Calibration counters and timers, I on cards - Use of time ONING leration when choosing quisition- analog outp	chine ucer n, Re DMA ner-c	e prog Cons esolution, Dat ounte DAQ enerat	s to regrammer umer 9 I ion, - a acqu r and 9 I hard tion –	ead and ning - desigr Periods analog uisitior analog Periods ware - Signa

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and
	Control", Newness, 2000

	E OUTCOMES: mpletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6
CO5	Familiarize and experiment with DAQ and Signal Conditioning	K3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	A B	3	2	1
CO2	3 8 8 9	PADBASTO BILLID	3	2	1
CO3	3	- NURREN	3 2	2	2
CO4	3	1	3	3	1
CO5	3	1 -	3	3	2
23PEOE22	3		3	2	1
1 - Slight, 2 - Moderate, 1	3 – Substantial				•

ASSESSMENT	TPATTERN – TI	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	40 00 00	2 15	15	-	-	100
CAT2	15	10	25	30	20	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	10	10	20	30	20	10	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	25	40	20	15	-	-	100
ESE	30	25	15	20	5	5	100

23PEOE23	ENERGY MANAGEMENT (Common to all Brand					
PREREQUISI	ΓES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course Objectives	To Comprehend energy management schemes, perform analysis and load management in electrical systems.	n energy audit ar	nd ex	cecut	te ec	onomic
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND M	ANAGEMENT			9 I	Periods
Energy Conserv	ation Act 2001 and policies – Eight National Missions - B	asics of Energy a	nd its	forr	ns (T	Thermal
· · · · · · · · · · · · · · · · · · ·	- Energy Management and Audit - Energy Managers an Material and energy balance diagramsEnergy Monitorin	• •	es a	nd N	1ethc	odology
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENE				91	Periods
	- Types - Performance Evaluation of boilers - Energ		Onne	ortun	-	
•	Efficient Steam Utilisation - Furnaces:types and classifi	•	· ·		•	
	d furnace. Cogeneration: Need - Principle - Technica					
• •	factors influencing cogeneration choice - Prime Movers - T	-				
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS				9 I	Periods
Electricity Billin	ng - Electricity load management - Maximum Demand Co	ntrol - Power Fac	tor i	mpro	ovem	ent and
its benefits - pf	controllers - capacitors - Energy efficient transformers	and Induction mo	otors	- rev	windi	ing and
other factors inf	luencing energy efficiency - Standards and labeling progra	amme of distribut	ion t	ranst	forme	ers and
IM - Analysis of	Edistribution losses - demand side management - harmoni	cs - filters - VFD	and	its se	electi	on.
UNIT – IV	STUDY OF ELECTRICAL UTILITIES				9 I	Periods
	es - Performance - Air system components - Efficient	*	•		•	
	pacity assessment - HVAC: psychrometrics and air					
refrigeration sys	tem - Compressor types and applications - Performan	ce assessment of	refri	gerat	ion p	plants -
Lighting System	s: Energy efficient lighting controls - design of interior lig	hting - Case study	<i>y</i> .			
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMEN	Т			9 I	Periods
•	incial analysis: Fixed and variable costs - Payback perio					•
	Performance Assessment: Heat exchangers - Fans and E	Blowers - Pumps.	Ener	gy C	Conse	rvation
in buildings and						
Contact Period						
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	Fotal: 45 Periods				

1	Murphy W.R. and G.Mckay Butter worth, "Energy Management", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition,
	Nirali Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

	E OUTCOMES: mpletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	К3
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	1	1
CO2	3	2	2	1	1
CO3	3	2 2 3	2	1	1
CO4	3	Bond 2 prive	2	1	1
CO5	3	20200	2	1	1
23PEOE23	3	2	2	1	1
1 - Slight, 2 - Moderate,	3 – Substantial		5 //		

ASSESSMENT	PATTERN – T	HEORY		//			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23PEOE24	ADVANCED ENERGY STORAGE (Common to all Branch	nesj				
PREREQUISI	TES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course Objectives	To explore the fundamentals, technologies and application	ns of energy stora	ige			
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIV AND CHANGES	E, INTRODUC	CTIC	N	9 Per	riod
Storage Needs-	Variations in Energy Demand- Variations in Energy Sup	ply- Interruption	ns in	Energ	gy Sup	oply
Transmission C	ongestion - Demand for Portable Energy-Demand and sca	ale requirements	- En	vironi	nental	an
sustainability is	sues-conventional energy storage methods: battery-types.					
UNIT – II	TECHNICAL METHODS OF STORAGE				9 Per	riod
Introduction: En	nergy and Energy Transformations, Potential energy (pum	ped hydro, com	press	ed air		
	(mechanical flywheels)- Thermal energy without phase		-		-	
	l energy with phase change (ice, molten salts, steam)- C					
. ,	oil)- Electrochemical energy (batteries, fuel cells)-		· •	•		
•	c energy (superconducting magnets)- Different Types of Energy				apaen	015
		arov Storage Sve	tome			
		0. 0 .	tems		0.0	
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORAGE	GE SYSTEMS			9 Per	
UNIT – III Energy capture	PERFORMANCE FACTORS OF ENERGY STORAGE rate and efficiency- Discharge rate and efficiency-	E SYSTEMS Dispatch ability	y an	d loa	d flo	win
UNIT – III Energy capture characteristics,	PERFORMANCE FACTORS OF ENERGY STORAG e rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet	GE SYSTEMS Dispatch ability ty – Risks of fire	y an e, exp	d loa plosio	d flo n, toxi	win icity
UNIT – III Energy capture characteristics, Ease of materia	PERFORMANCE FACTORS OF ENERGY STORAG rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and	GE SYSTEMS Dispatch ability ty – Risks of fire	y an e, exp	d loa plosio	d flo n, toxi	win icity
UNIT – III Energy capture characteristics, Ease of materia different types of	PERFORMANCE FACTORS OF ENERGY STORAG e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration an of Storage.	GE SYSTEMS Dispatch ability ty – Risks of fire	y an e, exp	d loa plosio	d flo n, toxi lemeri	win city ts c
UNIT – III Energy capture characteristics, Ease of materia different types o UNIT – IV	PERFORMANCE FACTORS OF ENERGY STORAGE rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling, M	y an e, exp Ierits	d loa blosion and c	d flo n, toxi lemeri 9 Pe r	win icity its c riod
UNIT – III Energy capture characteristics, Ease of materia different types o UNIT – IV Comparing Stor	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options-	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M	y an e, exp lerits Effic	d loa blosion and c	d flo n, toxi lemeri 9 Per of En	win icity its c riod ierg
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead	y an e, exp lerits Effic 1 Ac	d loa blosion and c iency	d flo n, toxi lemeri 9 Per of En d Lith	win icity its c riod ierg ium
UNIT – III Energy capture characteristics, Ease of materia different types o UNIT – IV Comparing Stor Systems- Energ Chemistry of B	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with eattery Operation, Power storage calculations, Reversible	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg	y an e, exp lerits Effic d Ac ging	d loa blosion and c iency id and pattern	d flo n, toxi lemeri 9 Per of En d Lith	win icity its c riod ierg ium
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration at of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with eattery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energy	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg	y an e, exp lerits Effic d Ac ging p e hea	d loa blosion and c iency id and pattern t reco	d flo n, toxi lemeri 9 Per of En d Lith ns, Ba very, S	win icity its c riod ierg ium itter Sola
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with eattery Operation, Power storage calculations, Reversible	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg	y an e, exp lerits Effic d Ac ging p e hea	d loa blosion and c iency id and pattern t reco	d flo n, toxi lemeri 9 Per of En d Lith ns, Ba very, S	win icity its c riod ierg ium itter Sola
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage,	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration at of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with eattery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energy	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg	y an e, exp lerits Effic d Ac ging p e hea	d loa blosion and c iency id and pattern t reco	d flo n, toxi lemeri 9 Per of En d Lith ns, Ba very, S	win icity its c riod ierg ium itter Sola
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage,	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with eattery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc	y an e, exp lerits Effic d Ac ging p e hea	d loa blosion and c iency id and pattern t reco	d flo n, toxi lemeri 9 Per of En d Lith ns, Ba very, S	riod riod ium itter Sola
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage, storage in auton UNIT – V	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor rage Recovery - Battery Storage System: Introduction with cattery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and notive applications in hybrid and electric vehicles.	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc	y an e, exp lerits Effic d Ac ging p e hea	d loa blosion and c iency id and pattern t reco ndustr	d flor n, toxi lemeri 9 Per of En d Lith ns, Ba very, S ies, en 9 Per	win icity its c riod ium itter Sola nerg
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage, storage in auton UNIT – V Hydrogen Econ	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration at of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with cattery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and notive applications in hybrid and electric vehicles. HYDROGEN FUEL CELLS AND FLOW BATTERIE	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc	y an e, exp lerits Effic d Ac ging p e hea ess in n - S	d loa blosion and c iency id and pattern t reco ndustr	d flor n, toxi lemeri 9 Per of En d Lith ns, Ba very, S ies, en 9 Per capaci	win icity its c riod nerg ium tter Sola nerg
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage, storage in auton UNIT – V Hydrogen Ecom properties, pow	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- term and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor term optication, Power storage calculations, Reversible terms, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and notive applications in hybrid and electric vehicles. HYDROGEN FUEL CELLS AND FLOW BATTERIE nomy and Generation Techniques, Storage of Hydrogen, E	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc ES Energy generatio Energy Storage	y an e, exp lerits Effic 1 Ac ging p e hea ess in n - S : Mar	d loa olosion and c iency id and pattern t reco ndustr	d flor n, toxi lemeri 9 Per of En d Lith ns, Ba very, S ies, en 9 Per capaci g peak	win icity its c riod ium tter Sola nerg riod itor
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage, storage in auton UNIT – V Hydrogen Econ properties, pow Continuous po	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration at of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with eattery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and notive applications in hybrid and electric vehicles. HYDROGEN FUEL CELLS AND FLOW BATTERIE omy and Generation Techniques, Storage of Hydrogen, E er calculations – Operation and Design methods - Hybrid	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc ES Energy generatio Energy Storage ion) Bacitor "E	y an e, exp lerits Effic d Ac ging p e hea ess in n - S : Mai Batter	d loa blosion and c iency id and pattern t reco ndustr buper naging y +	d flor n, toxi lemeri 9 Per of En d Lith ns, Ba very, S ies, en 9 Per capaci g peak Capac	win icity its (rioc ierg ium itter Sola ierg rioc itor an itor
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage, storage in auton UNIT – V Hydrogen Ecom properties, pow Continuous por Combinations:	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration and of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor rage Recovery - Battery Storage System: Introduction with cattery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and notive applications in hybrid and electric vehicles. HYDROGEN FUEL CELLS AND FLOW BATTERIE romy and Generation Techniques, Storage of Hydrogen, E er calculations – Operation and Design methods - Hybrid wer needs, options - Level 1: (Hybrid Power generation need, operation and Merits; Level 2: (Hybrid Power Generation	SE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc ES Energy generatio Energy Storage ion) Bacitor "E eration) Bacitor	y an e, exp lerits Effic 1 Ac ging p e hea ess in n - S : Mat Batter + Fu	d loa olosion and c and c iency id and pattern t recondustr buper naging y + iel Ce	d flor n, toxi lemeri 9 Per of En d Lith ns, Ba very, S ies, en 9 Per capaci g peak Capac	win icity its c rioc ierg ium itter Sola ierg itor itor itor Flo
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage, storage in auton UNIT – V Hydrogen Econ properties, pow Continuous por Combinations: Battery operatio	PERFORMANCE FACTORS OF ENERGY STORAGE e rate and efficiency- Discharge rate and efficiency- scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery- Environmental consideration at of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor gy Recovery - Battery Storage System: Introduction with sattery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and notive applications in hybrid and electric vehicles. HYDROGEN FUEL CELLS AND FLOW BATTERIE tomy and Generation Techniques, Storage of Hydrogen, E er calculations – Operation and Design methods - Hybrid wer needs, options - Level 1: (Hybrid Power generation need, operation and Merits; Level 2: (Hybrid Power Generation on-Applications: Storage for Hybrid Electric Vehicles, Regeneration	SE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc ES Energy generatio Energy Storage ion) Bacitor "E eration) Bacitor	y an e, exp lerits Effic 1 Ac ging p e hea ess in n - S : Mat Batter + Fu	d loa olosion and c and c iency id and pattern t recondustr buper naging y + iel Ce	d flor n, toxi lemeri 9 Per of En d Lith ns, Ba very, S ies, en 9 Per capaci g peak Capac	win icity its c riod ierg ium itter Sola ierg itor itor itor itor Flo
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage, storage in auton UNIT – V Hydrogen Ecom properties, pow Continuous po Combinations: Battery operatio Contact Period	PERFORMANCE FACTORS OF ENERGY STORAGE rate and efficiency-Discharge rate and efficiency-scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery-Environmental consideration at of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor age Recovery - Battery Storage System: Introduction with attery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and notive applications in hybrid and electric vehicles. HYDROGEN FUEL CELLS AND FLOW BATTERIE tomy and Generation Techniques, Storage of Hydrogen, E er calculations – Operation and Design methods - Hybrid wer needs, options - Level 1: (Hybrid Power generation end, operation and Merits; Level 2: (Hybrid Power Generations: Storage for Hybrid Electric Vehicles, Regenerations: Storage for Hybrid Electric Vehicles, Regenerat	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc ES Energy generatio Energy Storage ion) Bacitor "E eration) Bacitor nerative Power, of	y an e, exp lerits Effic d Ac ging p e hea eess in n - S : Mar Batter + Fu captu	d loa olosion and c and c iency id and pattern t recondustr buper naging y + iel Ce	d flor n, toxi lemeri 9 Per of En d Lith ns, Ba very, S ies, en 9 Per capaci g peak Capac	win icity its c riod ierg ium itter Sola ierg itor itor itor itor Flo
UNIT – III Energy capture characteristics, Ease of materia different types of UNIT – IV Comparing Stor Systems- Energ Chemistry of B Management sy energy storage, storage in auton UNIT – V Hydrogen Econ properties, pow Continuous por Combinations: Battery operatio	PERFORMANCE FACTORS OF ENERGY STORAGE rate and efficiency-Discharge rate and efficiency-scale flexibility, durability – Cycle lifetime, mass and safet ls, recycling and recovery-Environmental consideration at of Storage. APPLICATION CONSIDERATION rage Technologies- Technology options- Performance factor age Recovery - Battery Storage System: Introduction with attery Operation, Power storage calculations, Reversible stems, System Performance, Areas of Application of Energ Green house heating, Power plant applications, Drying and notive applications in hybrid and electric vehicles. HYDROGEN FUEL CELLS AND FLOW BATTERIE tomy and Generation Techniques, Storage of Hydrogen, E er calculations – Operation and Design methods - Hybrid wer needs, options - Level 1: (Hybrid Power generation end, operation and Merits; Level 2: (Hybrid Power Generations: Storage for Hybrid Electric Vehicles, Regenerations: Storage for Hybrid Electric Vehicles, Regenerat	GE SYSTEMS Dispatch ability ty – Risks of fire nd recycling , M ors and metrics- h focus on Lead reactions, Charg y Storage: Waste heating for proc ES Energy generatio Energy Storage ion) Bacitor "E eration) Bacitor nerative Power, of	y an e, exp lerits Effic d Ac ging p e hea eess in n - S : Mar Batter + Fu captu	d loa olosion and c and c iency id and pattern t recondustr buper naging y + iel Ce	d flor n, toxi lemeri 9 Per of En d Lith ns, Ba very, S ies, en 9 Per capaci g peak Capac	win icity its c riod ierg ium itter Sola itors itors c an itor Flov

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy
	Storage and Conversion", John Wiley and Sons, 2012.
3	Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.

_		
ſ	Δ	Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The
		Electrochemical Society, New Jersy, 2010.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COs/POs	PO1	PO2 5	PO3	PO4	PO5
CO1	3. 8	"Dansa DILIA	3)	3	3
CO2	3 3	Shupper	3	3	3
CO3	3	1	3	3	3
CO4	3	1 -	3	3	3
CO5	3	1	3	3	3
23PEOE24	3		3	3	3
1 - Slight, 2 - Moderate	, 3 – Substantial	N SWE	. //	I	

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

DESIGN OF DIGITAL SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

asynchronous sequential circuits, PLD's and the basic concepts of testing in				
	VLSI			
circuits				
IRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods			
ked Synchronous Sequential Circuits - Modeling, state table reduction, state a	ssignment,			
onous Sequential circuits, Design of iterative circuits- ASM chart -ASM real	ization.			
CHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods			
nchronous Sequential Circuits - Races in ASC - Primitive Flow Table - I	Flow Table			
iques, State Assignment Problem and the Transition Table - Design of ASC -	- Static and			
s – Essential Hazards– Data Synchronizers.				
EM DESIGN USING PLDS	9 Periods			
- Programming Technologies - Programmable Logic Element (PLE) - Pro	grammable			
A)-Programmable Array Logic (PAL) -Design of combinational and sequen	tial circuits			
nplex PLDs (CPLDs).				
CODUCTION TO VHDL	9 Periods			
tware tools - VHDL: Data Objects-Data types - Operators - Entities and Arch	itectures			
- Components and Configurations - Signal Assignment - Concurrent and Sequential statements -				
flow and Structural modeling- Transport and Inertial delays -Delta delays-	Attributes -			
es and Libraries.				
C CIRCUIT TESTING AND TESTABLE DESIGN	9 Periods			
uit testing - Fault models - Combinational logic circuit testing - Sequential lo	gic circuit			
testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study:				
troller.				
:				
ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds			
	flow and Structural modeling– Transport and Inertial delays –Delta delayses and Libraries. C CIRCUIT TESTING AND TESTABLE DESIGN cuit testing - Fault models - Combinational logic circuit testing - Sequential log r Testability - Built-in Self-test, Board and System Level Boundary Scan - Ca throller.			

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and
	Design", Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning, 2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage2ndEdition2012.
6	NripendraN.Biswas, "Logic Design Theory" PrenticeHallofIndia, 2001.

COURSEOUTCOMES: Upon completion of the course ,students will be able to/have:		
CO1	To design synchronous sequential circuits based on specifications.	K3
CO2	To design asynchronous sequential circuits based on specifications	K3
CO3	Ability to illustrate digital design implementation using PLDs.	K2
CO4	To develop algorithm and VHDL code for design of digital circuits.	K3
CO5	Understand the different testing methods for combinational and sequential	K2
	circuits.	

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	-	-	1
CO2	3		2	-	-	1
CO3	3	4	2		-	1
CO4	3	10 Dates Da	7 y 21 B BT.	5 SY-	-	1
CO5	3		9772		-	1
23AEOE25	3		2		-	1
1 - Slight, 2 - Mod	derate, 3 – Su	bstantial	-	77	•	

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20		-	-	100
CAT2	40	40 00 2	20	Dicula	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	20	45	35	-	-	-	100

23AEOE26

BASICS OF NANO ELECTRONICS (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	The students will be able to acquire knowledge about nano	device fabrication		
Objective	technology, nano structures, nano technology for memory devices and applications o			
3	nano electronics in data transmission.			
UNIT – I TECH	NOLOGY AND ANALYSIS	9 Periods		
Fundamentals : D	ielectric, Ferroelectric and Optical properties - Film Deposition Method	ds – Lithography		
Material removing	g techniques - Etching and Chemical Mechanical Polishing - Scann	ing Probe		
Techniques.				
UNIT – II CARF	SON NANO STRUCTURES	9 Periods		
Principles and co	ncepts of Carbon Nano tubes - Fabrication - Electrical, Mechanica	and Vibration		
Properties - Applic	cations of Carbon Nano tubes.			
UNIT – III LO	OGIC DEVICES	9 Periods		
Silicon MOSFET's: Novel materials and alternative concepts - Single electron devices for logic				
applications - Supe	er conductor digital electronics - Carbon Nano tubes for data processing	· ·		
UNIT – IV MEN	IORY DEVICES AND MASS STORAGE DEVICES	9 Periods		
Flash memories -	Capacitor based Random Access Memories - Magnetic Random Ac	ccess Memories -		
Information storage	e based on phase change materials - Resistive Random Access Memor	ries - Holographic		
Data storage.				
	UNIT – V DATA TRANSMISSION AND INTERFACING DISPLAYS 9 Perio			
UNIT – V DATA	TRANSMISSION AND INTERFACING DISPLAYS	9 Periods		
	TRANSMISSION AND INTERFACING DISPLAYS s - RF and Microwave Communication System - Liquid Crystal Displays			
	s - RF and Microwave Communication System - Liquid Crystal Dis			
Photonic Network	s - RF and Microwave Communication System - Liquid Crystal Dis	9 Periods splays - Organic		

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials
	and novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
4	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
F	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics",
5	Springer, 2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS Upon Co	Bloom's Taxonomy Mapped	
CO1	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
CO4	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	(and As	2	CIDIO C	-	1
CO2	3	19m	20012		-	1
CO3	3		2000	500	-	1
CO4	3		2	-	-	1
CO5	3		2	9-/	-	1
23AEOE26	3	1	2	⊼ -∥	-	1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	25	25		-	-	100
CAT2	50	25	25	00000 23/7	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	25	25	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50	25	2	-	-	-	100
ESE	50	25	25	-	-	-	100

23AEOE27

ADVANCED PROCESSOR

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	The students will be able to acquire knowledge about the high performance RI	SC, CISC and
Objective	special purpose processors.	,
0		
UNIT – I MICRO	PROCESSOR ARCHITECTURE	9 Periods
Instruction set – D	ata formats – Instruction formats – Addressing modes – Memory hierarchy – re	
	emory and paging – Segmentation – Pipelining – The instruction pipeline – pipel	•
	parallelism – reduced instruction set – Computer principles – RISC versus CI	
properties – RISC		SC - MSC
	PERFORMANCE CISC ARCHITECTURE –PENTIUM	9 Periods
	el – functional description – CPU pin descriptions – Addressing modes – Pro	
	us operations - Super scalar architecture - Pipe lining - Branch prediction - T	The instruction
and caches – Float	ing point unit- Programming the Pentium processor.	
UNIT – III HIGH	PERFORMANCE CISC ARCHITECTURE – PENTIUM INTERFACE	9 Periods
Protected mode op	eration - Segmentation - paging - Protection - multitasking - Exception and inte	errupts
- Input /Output – V	irtual 8086 model – Interrupt processing.	
UNIT – IV HIGH	PERFORMANCE RISC ARCHITECTURE: ARM	9 Periods
ARM architecture	- ARM assembly language program - ARM organization and implementa	tion – ARM
	umb instruction set.	
UNIT – V SPE	CIAL PURPOSE PROCESSORS	9 Periods
Altera Cyclone Pro	ocessor - Audio codec - Video codec design - Platforms - General purpose proc	essor –Digital
-	Embedded processor - Media Processor - Video signal Processor - Custom H	•
Processor.		
Contact Periods:		
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System –On –Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

	OUTCOMES: pletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe the fundamentals of various processor architecture.	K2
CO2	Interpret and understand the high performance features in CISC architecture.	K2
CO3	Describe the concepts of Exception and interrupt processing.	K2
CO4	Develop programming skill for ARM processor.	K3
CO5	Explain various special purpose processor	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	-	-	1
CO2	3	Nam	2	-	-	1
CO3	3		2	-	-	1
CO4	3	Barbo OL	2	-	-	1
CO5	3	- MORE	~ 2	-	-	1
23AEOE27	3	-	2	-	-	1
1 - Slight, 2 - Mod	erate, 3 – Substant	ial	4			•

ASSESSMEN	T PATTERN – 1	THEORY		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20		-	-	100
CAT2	40	40	20		-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	- T	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	30	40	30	-	-	-	100

23VI	.OE28
23 V L	IO L'EU

HDL PROGRAMMING LANGUAGES (Common to all Branches)

PREREQUIS	SITES	CATEGORY	L	Т	Р	С	
	NIL	OE	3	0	0	3	
Course Objective • To code and simulate any digital function in Verilog HDL and understand the difference between synthesizable and non-synthesizable codes.							
UNIT – I	VERILOGINTRODUCTIONANDMOI	DELING			9	Period	
Modeling at	to Verilog HDL, Language Constructs ar Dataflow Level, Behavioral Modeling, S Compiler Directives.						
UNIT – II	SEQUENTIALMODELINGANDTEST	ING			9	Period	
Components, Combinationa Verification, A	Iodels - Feedback Model, Capacitive M Functional Register, Static Machine Codi I Circuits Testing, Sequential Circuit Te Assertion Verification.	ing, Sequential Sy	nthe	sis.	Test ques	Bench	
		V 1 1 1 1 1 1 V	1	1	-		
Types, System	System Verilog declaration spaces, System a Verilog User-Defined and Enumerated Typ n verilog Procedural Blocks, Tasks and Fun	es, system Verilog					
UNIT – IV	SYSTEMVERILOGMODELING				9	Period	
	ilog Procedural Statements, Modeling stem Verilog Design Hierarchy.	Finite State Mac	hine	s wi	th S	System	
UNIT – V	UNIT – V INTERFACES AND DESIGN MODEL 9 Peri						
	og Interfaces, A Complete Design Modele evel Modeling.	d with System Ve	erilog	g, Bo	ehav	ioral an	
Contact Perio Lecture: 45 P		cal: 0 Periods T	otal:	45 I	Perio	ods	
EFERENCES	100 gr. 43 63 68 68	T					

1	T.R.Padmanabhan, B Bala Tripura Sundari, "Design through Verilog HDL", Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation
	of Projects on FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using
	System Verilog for Hardware Design and Modeling" 1st Edition, 2003

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain the verilog coding and simulate any digital function using Verilog HDL	K2
CO2	Develop sequential modeling based Verilog HDL code and develop the test bench for the modeling	K3
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	K3
CO5	Apply good coding techniques on system verilog interfaces and complete design model	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	-	2	-	2
CO2	3	3	aller	2	-	2
CO3	3	3	1 and a	2		2
CO4	3	3	கொடுல	2		2
CO5	3	3	0 200	Ch 2 C	<u> </u>	2
23VLOE28	3	3	-	2	-	2
1 - Slight, 2 - M	oderate, 3 – S	ubstantial			77	•

1 – Slight, 2 –	Moderate, 3 – Su	bstantial		= 7					
ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	40	20		-	-	100		
CAT2	40	40 40	20	Ocu-	-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	Į.	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100		
ESE	40	40	20	-	-	-	100		

CMOS VLSI DESIGN (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To gain knowledge on CMOS Circuits with its ch	paracterization and to
Objective	5 5	laracterization and to
Objective	design CMOS logic and sub-system with low power	
UNIT – I	INTRODUCTION TO MOS CIRCUITS	9 Periods
	tor Theory -Introduction MOS Device Design Equations -MOS Transmission	
	or - CMOS Transmission Gate -Complementary CMOS Inverte	
	verters with NMOS loads - Differential Inverter - Tri State Inverter	- BiCMOS Inverter.
UNIT – II	CIRCUIT CHARACTERIZATION AND	9 Periods
	PERFORMANCE ESTIMATION	
Delay Estir	nation, Logical Effort and Transistor Sizing, Power Dissipati	on, Sizing Routing
Conductors	, Charge Sharing, Design Margin and Reliability.	
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Periods
CMOS Log	ic Gate Design, Physical Design of CMOS Gate, Designing	with Transmission
Gates, CMC	OS Logic Structures, Clocking Strategies, I/O Structures.	
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods
DataPath	Operations-Addition/Subtraction, Parity Generators, Comp	parators, Zero/One
Detectors, 1	Binary Counters, ALUs, Multipliers, Shifters, Memory Elem	ents, Control-FSM,
	gic Implementation.	
UNIT – V	LOWPOWERCMOS VLSIDESIGN	9 Periods
Introduction	n to Low Power Design, Power Dissipation in FET Devices, P	ower Dissipation in
	w-Power Design through Voltage Scaling - VTCMOS C	
	chitectural Level Approach - Pipelining and Parallel Processin	-
	cs CMOS Gate and Adder Design.	
Contact Peri		
Lecture: 45 I		: 45 Periods
1		

1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata
	Mc-Graw Hill, 2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley, 1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M.Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain the MOS circuits and Transmission gates	K2
CO2	Illustrate the CMOS Circuits with its characterization	K2
CO3	Design CMOS logic circuits	К3
CO4	Design CMOS sub-system	К3
CO5	Discuss low power CMOS VLSI Design	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	-	2	-	3
CO2	2	1	-	2	-	3
CO3	2	1	-	2	-	3
CO4	3	1	NUM	2	-	3
CO5	3	100	9.52	2	-	3
23VLOE29	3 70	1000	SO BILLID OIL	2	-	3
1 - Slight, 2 - M	loderate, 3 – S	ubstantial	Jacob			•

ASSESSMEN	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	40	20	- 1	-	-	100		
CAT2	40	40	20	- 3	-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50 50	50 40 (Port	A ab	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100		
ESE	40	40	20	-	-	-	100		

			H LEVEL S common to all	YNTHESIS Branchas)						
PREREQUI	SITES	(00		CATEGORY	L	Т	Р	С		
IKEREQUI	511125							-		
		NIL		OE	3	0	0	3		
Course	• T	o provide students	with found	ations in High	lev	vel	syntl	hesis		
Objective	vormeuton und Crib Tools									
UNIT – I		CVEL SYNTHESIS (H					9 Pe			
	,	eduling Techniques, Re	esource sharin	g and Binding Te	chnic	jues,	Data	ı-patl		
and Controlle		n Techniques.					0 D.	wied		
	-	HDL to DFG, operat	tion scheduli	na: constrained	and		9 Pe			
		P, List scheduling, Fo								
		nodels, setup time, hole								
		False paths, Arrival time								
UNIT – III	HIGH-LF	VEL SYNTHESIS VI	ERIFICATIO	DN			9 Pe	riod		
Simulation b	ased verific	ation - Formal Verific	cation of digit	al systems- BDD	bas	ed a	pproa	aches		
functional equ		nite state automata, ω-a	and the second se	A verification.						
UNIT – IV		DLS FOR SYNTHESI	1111 000 0101	\mathcal{N}			9 Pe			
		optimization, simulati								
		ations and structures s								
Technology n	happing for	FPGAs. Low power iss	sues in high le	vel synthesis and	logic	syn	thesis	s.		
UNIT – V	ADVANC	ED TOPICS	_ *	//			9 Pe	riod		
Relative Sche	duling, IO	scheduling modes - cyc				xed	sched	luling		
Relative Sche modes, free-	duling, IO s floating sch					xed	sched	luling		
Relative Sche modes, free- Synthesis for	duling, IO s floating sch FPGA.	scheduling modes - cyc				xed	sched	luling		
Relative Sche modes, free- Synthesis for Contact Peri	duling, IO s floating sch FPGA. ods:	scheduling modes - cyc neduling mode, Pipeli	ining, Handsh	aking, System I	Desig	xed n, H	sched Iigh-I	luling		
Relative Sche modes, free- Synthesis for	duling, IO s floating sch FPGA. ods:	scheduling modes - cyc	ining, Handsh	aking, System I	Desig	xed n, H	sched ligh-l	luling		
Relative Sche modes, free- Synthesis for Contact Peri	duling, IO s floating sch FPGA. ods:	scheduling modes - cyc neduling mode, Pipeli	ining, Handsh	aking, System I	Desig	xed n, H	sched ligh-l	luling		
Relative Sche modes, free- Synthesis for Contact Peri	duling, IO s floating sch FPGA. ods:	scheduling modes - cyc neduling mode, Pipeli	ining, Handsh	aking, System I	Desig	xed n, H	sched ligh-l	luling		
Relative Sche modes, free- Synthesis for Contact Peri Lecture: 45 I	duling, IO s floating sch FPGA. ods: Periods	scheduling modes - cyc neduling mode, Pipeli	ining, Handsh	aking, System I	Desig	xed n, H	sched ligh-l	luling		
Relative Sche modes, free- Synthesis for Contact Peri	duling, IO s floating sch FPGA. ods: Periods	scheduling modes - cyc neduling mode, Pipeli	ining, Handsh	aking, System I	Desig	xed n, H	sched ligh-l	luling		
Relative Sche modes, free- Synthesis for Contact Peri Lecture: 45 I REFEREN	duling, IO s floating sch FPGA. ods: Periods	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods	ning, Handsh Practical:	0 Periods Tota	Desig 1: 45	xed n, H Per	sched Tigh- iods	lulin; Leve		
Relative Sche modes, free- Synthesis for Contact Peri Lecture: 45 I REFEREN 1 Philip	duling, IO s floating sch FPGA. ods: Periods CES : pe Coussy	scheduling modes - cyc neduling mode, Pipeli	ning, Handsh Practical:	0 Periods Tota	Desig 1: 45	xed n, H Per	sched Tigh- iods	lulin; Leve		
Relative Sche modes, free- Synthesis for Contact Peri Lecture: 45 I REFEREN	duling, IO s floating sch FPGA. ods: Periods CES : pe Coussy I Circuit".	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods	ning, Handsh Practical: c, "High-leve	0 Periods Tota	Desig 1: 45	xed n, H Per	sched High- iods	luling Leve		
Relative Sche modes, free- Synthesis for Contact Peri Lecture: 45 I REFEREN	duling, IO s floating sch FPGA. ods: Periods CES : pe Coussy I Circuit".	scheduling modes - cyc neduling mode, Pipelin Tutorial: 0 Periods and Adam Morawiec	ning, Handsh Practical: c, "High-leve	0 Periods Tota	Desig 1: 45	xed n, H Per	sched High- iods	luling Leve		
Relative Sche modes, free-i Synthesis for Contact Peri Lecture: 45 I REFEREN 1 Philip Digita 2 Sherw 2005.	duling, IO s floating sch FPGA. ods: Periods CES : pe Coussy I Circuit", ani, N., "A	scheduling modes - cyc neduling mode, Pipelin Tutorial: 0 Periods and Adam Morawiec	ning, Handsh Practical: c, "High-leve hysicsl Design	0 Periods Tota	Desig l: 45	xed n, H Per	sched High-H iods thm 3rd ed	luling Leve		
Relative Sche modes, free- Synthesis for Contact Peri Lecture: 45 I REFEREN 1 Philip Digita 2 Sherw 2005. 3 D. Mid	duling, IO s floating sch FPGA. ods: Periods CES : pe Coussy I Circuit", ani, N., "A cheli, "Synti	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods and Adam Morawiec Igorithms for VLSI Ph hesis and optimization	ning, Handsh Practical: c, "High-leve hysicsl Design of digital syst	0 Periods Tota 0 Periods Tota of Synthesis from a Automation", Sj ems", Mc Graw	Desig l: 45	xed n, H Per	sched High-H iods thm 3rd ed	to		
Relative Schemodes, free-1 Synthesis for Contact Peri Lecture: 45 I REFEREN 1 Philip Digita 2 Sherw 2005. 3 3 D. Mid 4 Dutt, it	duling, IO s floating sch FPGA. ods: Periods CES : ve Coussy I Circuit", ani, N., "A cheli, "Synth N. D. and G	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods and Adam Morawiec Igorithms for VLSI Ph hesis and optimization ajski, D. D., "High lev	ning, Handsh Practical: c, "High-leve hysicsl Design of digital syst rel synthesis",	0 Periods Tota 0 Periods Tota 1 Synthesis from a Automation", Sj ems", Mc Graw Kluwer, 2000.	n Al	xed n, H Per	sched High-H iods thm 3rd ed	luling Leve		
Relative Sche modes, free-i Synthesis for Contact Peri Lecture: 45 I REFEREN 1 Philip Digita 2 Sherw 2005. 3 D. Mid 4 Dutt, 1 5 Gerez	duling, IO s floating sch FPGA. ods: Periods CES : pe Coussy <u>I Circuit",</u> ani, N., "A cheli, " Synth N. D. and G S.H., "Algo	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods and Adam Morawiec Igorithms for VLSI Ph hesis and optimization ajski, D. D., "High leve prithms for VLSI Desig	ning, Handsh Practical: c, "High-leve hysicsl Design of digital syst rel synthesis", gn Automation	aking, System I 0 Periods Tota 1 Synthesis from a Automation", S ems", Mc Graw Kluwer, 2000. a", John Wiley (19	Desig 1: 45 <i>n Al</i> <i>pring</i> <i>Hill</i> , 998)	xed n, H Per gori ger, 2 200.	sched High- iods <i>thm</i> 3rd ea	luling Leve		
Relative Sche modes, free- Synthesis for Contact Peri Lecture: 45 I REFEREN 1 Philip Digita 2 Sherw 2005. 3 D. Mid 4 Dutt, 1 5 Gerez 6 David	duling, IO s floating sch FPGA. ods: Periods CES : De Coussy I Circuit", ani, N., "A cheli, "Synth N. D. and G S.H., "Algo C. Ku and	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods and Adam Morawiec Igorithms for VLSI Ph hesis and optimization ajski, D. D., "High leve prithms for VLSI Desig G. De Micheli, "High-	ning, Handsh Practical: c, "High-leve hysicsl Design of digital syst rel synthesis", gn Automation level Syntehs	ems", Mc Graw Kluwer, 2000. ", John Wiley (19) is of ASICS Under	Desig 1: 45 <i>n Al</i> <i>pring</i> <i>Hill</i> , 998)	xed n, H Per gori ger, 2 200.	sched High- iods <i>thm</i> 3rd ea	luling Leve		
Relative Schemodes, free-isynthesis for Synthesis for Contact Perile Lecture: 45 I REFEREN 1 Philip Digita 2 Sherw 2005. 3 3 D. Mid 4 Dutt, 1 5 Gerez 6 David Synch	duling, IO s floating sch FPGA. ods: Periods CES : De Coussy I Circuit", ani, N., "A cheli, "Synti N. D. and G S.H., "Algo C. Ku and ronization	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods and Adam Morawiec Igorithms for VLSI Ph hesis and optimization ajski, D. D., "High lew prithms for VLSI Desig G. De Micheli, "High- Constraints", Kluwer A	ning, Handsh Practical: c, "High-leve hysicsl Design of digital syst rel synthesis", gn Automation level Syntehs Academic Pub	aking, System I 0 Periods Tota 1 Synthesis from 1 Automation ", S ems ", Mc Graw Kluwer, 2000. 1 ", John Wiley (19) is of ASICs Unde lishers, 1992.	Desig 1: 45 n Al pring Hill, 998) r Tim	xed n, H Per gori ger, 2 200.	sched Tigh-T iods <i>thm</i> 3rd ec 5. and	<i>to</i>		
Relative Schemodes, free-isynthesis for Synthesis for Contact Perile Lecture: 45 I REFEREN 1 Philip Digita 2 Sherw 2005. 3 3 D. Mid 4 Dutt, it 5 Gerez 6 David 7 K. Pa	duling, IO s floating sch FPGA. ods: Periods CES : De Coussy <u>I Circuit",</u> ani, N., "A cheli, "Synth N. D. and G S.H., "Algo C. Ku and ronization of rhi, "VLSI	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods and Adam Morawiec Igorithms for VLSI Ph hesis and optimization ajski, D. D., "High leve prithms for VLSI Desig G. De Micheli, "High-	ning, Handsh Practical: c, "High-leve hysicsl Design of digital syst rel synthesis", gn Automation level Syntehs Academic Pub	aking, System I 0 Periods Tota 1 Synthesis from 1 Automation ", S ems ", Mc Graw Kluwer, 2000. 1 ", John Wiley (19) is of ASICs Unde lishers, 1992.	Desig 1: 45 n Al pring Hill, 998) r Tim	xed n, H Per gori ger, 2 200.	sched Tigh-T iods <i>thm</i> 3rd ec 5. and	<i>to</i>		
Relative Schemodes, free-1 Synthesis for Contact Peri Lecture: 45 I REFEREN 1 Philip Digita 2 2 Sherw 2005. 3 3 D. Mid 4 Dutt, 11 5 Gerez 6 David 7 K. Pa Jan 19	duling, IO s floating sch FPGA. ods: Periods CES : De Coussy I Circuit", ani, N., "A cheli, "Synth N. D. and G S.H., "Algo C. Ku and ronization orhi, "VLSI 099, Wiley.	scheduling modes - cyc neduling mode, Pipeli Tutorial: 0 Periods and Adam Morawiec Igorithms for VLSI Ph hesis and optimization ajski, D. D., "High lew prithms for VLSI Desig G. De Micheli, "High- Constraints", Kluwer A	ning, Handsh Practical: c, "High-leve hysicsl Design of digital syst rel synthesis", gn Automation level Syntehs Academic Pub ssing Systems	0 Periods Tota 0 Periods Tota 1 Synthesis from 1 Automation ", Sj ems", Mc Graw Kluwer, 2000. 1", John Wiley (19) is of ASICs Under lishers, 1992. 5: Design and In	Desig 1: 45 n Al pring pring P98) r Tim nplen	xed n, F Per gori. ger, 2 200. ning ment	sched High- iods thm 3rd ea 5. and fation	to d.,		

COUR	COURSE OUTCOMES:					
Upon (Taxonomy					
	Mapped					
CO1	Understand the fundamentals of High level synthesis	K2				
CO2	Synthesis the HDL for operation scheduling	K2				
CO3	Simulate and verify any digital systems	K2				
CO4	Apply CAD tools for synthesis	K2				
CO5	Have knowledge on various scheduling modes	K2				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VL0E30	2	2	001-	2	2	-
1 – Slight, 2 – Mo	derate, 3 – Su	bstantial	R			

ASSESSMEN	T PATTERN – 1	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50		· - //	-	-	100
CAT2	50	50		- 1	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100
ESE	50	50		-	-	-	100

23CSOE31	
LOCDOLDI	

ARTIFICIAL INTELLIGENCE (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objectives	Identify and apply AI techniques in the design of systems that act intellig automatic decisions and learn from experience.	gently, making
UNIT – I	SEARCH STRATEGIES	L(9)
	rategies – BFS, DFS, Djisktra, Informed Strategies – A* search, Heuristic resarial Search – Min-max algorithm, Alpha-beta Pruning	functions, Hill
UNIT – II	PLANNING AND REASONING	L(9)
	earch, Planning Graphs, Partial order planning, Uncertain Reasoning – vesian Networks, Dempster Shafer Theory, Fuzzy logic	- Probabilistic
UNIT – III	PROBABILISTIC REASONING	L(9)
	easoning over Time - Hidden Markov Models, Kalman Filters, Dyna wledge Representations – Ontological Engineering, Semantic Networks a	
UNIT – IV	DECISION MAKING	L(9)
	, Utility Functions, Decision Networks – Sequential Decision Problem DPs – Game Theory.	ns – Partially
UNIT – V	REINFORCEMENT LEARNING	L(9)
	Learning - Passive and active reinforcement learning - Generations in l cy Search – Deep Reinforcement Learning.	Reinforcement
Contact Period Lecture: 45 Pe		

REFERENCES :

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice Hall, 2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill, 2009.

5000

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	К3
CO3	Examine data using statistical codes and solve complex AI problems	K6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	K6

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	12-	3	3
CO2	3	BUSA	2	118 B 6 19 10 1	3	3
CO3	3	14M	3	and V	3	3
CO4	3	YE	3		3	3
CO5	3	~	3	_	3	3
23CSOE31	3	1-	3		3	3
1 – Slight, 2 – N	Moderate, 3	– Substant	tial	A 11		

ASSESSME	NT PATTERN -	THEORY				-	-
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	20	40	20	20	-	100
CAT2	-	10 ⁰ m	20	40	10	20	100
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	-	-000	-	-	50	50	100
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	-	-	-	50	50	100
ESE	30	30	40	-	-	-	100

COMPUTER NETWORK MANAGEMENT (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	After the completion of the course, the students will be able to under	
Objectives	layering in networks, functions of protocols of each layer of TC	
	concepts related to network addressing and routing and build simple l	
	configurations for routers and switches, and implement IPv4 at	nd IPv6 addressing
	schemes using Cisco Packet Tracer.	I
UNIT – I	INTRODUCTION AND APPLICATION LAYER	L(9)
	ork - Network Edge and Core - Layered Architecture - OSI Model -	
	vorking Devices: Hubs, Bridges, Switches, Routers, and Gateways - Pe	
	vorking - Introduction to Sockets - Application Layer protocols -	HTTP – FTP Email
Protocols – DI		1
UNIT – II	TRANSPORT LAYER AND ROUTING	L(9)
	er functions -User Datagram Protocol - Transmission Control Protoc	
	n Strategies - Congestion Control - Routing Principles - Distance Ve	
	- RIP - OSPF - BGP - Introduction to Quality of Service (QoS).Case	e Study: Configuring
RIP, OSPF BC	P using Packet tracer	
UNIT – III	NETWORK LAYER	L(9)
Network Lay	er: Switching concepts - Internet Protocol - IPV4 Packet Format	- IP Addressing -
Subnetting – C	Classless Inter Domain Routing (CIDR) - Variable Length Subnet Mask	(VLSM) – DHCP –
ARP – Netwo	rk Address Translation (NAT) – ICMP – Concept of SDN.Case Study:	Configuring VLAN,
DHCP, NAT u	sing Packet tracer	
UNIT – IV	INTERNETWORK MANAGEMENT	L(9)
Introduction t	o the Cisco IOS - Router User Interface - CLI - Router and Sw	vitch Administrative
	outer Interfaces - Viewing, Saving, and Erasing Configurations - S	
	witches - Managing Configuration Registers - Backing Up and Resto	
Up and Restor	ing the Configuration - Using Discovery Protocol (CDP) - Checking N	etwork Connectivity
UNIT – V	TRAFFIC MANAGEMENT AND WAN PROTOCOLS	L(9)
Managing Tra	ffic with Access Lists: Introduction to Access Lists - Standard Acce	
	- Named Access Lists - Monitoring Access Lists - Wide Area Ne	
	Wide Area Networks - Cabling the Wide Area Network - High-Leve	
	ocol - Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay	
· · · · ·	Integrated Services Digital Network (ISDN) - Dial-on-Deman	
Configuring D		5 ()
Contact Perio		
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 l	Periods

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education, 2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNATM: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003

5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	K3
CO4	Build simple LANs, perform basic configurations for routers and switches	K6
CO5	Illustrate various WAN protocols	K2

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		19 3 TOR	S.S.C.	2	1
CO2	3	- /	3		2	2
CO3	3	- 5	3	7	3	2
CO4	3	-)//	3	· //	3	3
CO5	3	- 11	3		3	3
23CSOE32	3	- 11	3		3	2
1 - Slight, 2 - N	Aoderate, 3	– Substantial				
		1				

ASSESSMEN	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	30	30 00	20	20	-	-	100			
CAT2	-	30	20	30	10	10	100			
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20	20	20	20	20	100			
ESE	20	40	40	-	-	-	100			

B 23CSOE33	BLOCKCHAIN TECHNOLOGIES (Common to all Branches)				
PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objectives	5 I E5						
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	L(9)					
History of B	lockchain - Types of blockchain- CAP theorem and blockchain -	- benefits and					
	Blockchain – Decentalization using blockchain – Blockchain impleme	entations- Block					
chain in practi	cal use - Legal and Governance Use Cases						
UNIT – II	BITCOIN AND CRYPTOCURRENCY	L(9)					
Bitcoin Waller Double-Spend	Introduction to Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining Developments, Bitcoin Wallets, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM), Merkle Tree, Double-Spend Problem, Blockchain and Digital Currency, Transactional Blocks, Impact of Blockchain Technology on Cryptocurrency						
UNIT – III	ETHEREUM	L(9)					
	to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Receiving Ethers, Smart Contracts	n Accounts, ,					
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAMMING	L(9)					
	Hyperledger, Distributed Ledger Technology & its Challenges, Hyperledg ogy, Hyperledger Fabric, Hyperledger Composer. Solidity – Programming wi						
	BLOCKCHAIN APPLICATIONS	L(9)					
	Ten Steps to build your Blockchain application – Application: Internet of Things, Medical Record Management System, Domain Name Service and Future of Blockchain, Alt Coins						
Contact Perio							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 4	5 Periods					
1							

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and
	Technology Solutions", McGraw Hill Education ,2018.
3	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A
	Comprehensive Introduction" Princeton University Press, 2016.
4	Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
5	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018
6	NPTEL Course : Blockchain and its applications
	https://archive.nptel.ac.in/courses/106/105/106105235/

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	К3
CO3	Comprehend the working of Hyperledger in an real time application	K2
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	K3
CO5	Develop applications on Blockchain	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	101	19.3	2	-	3
CO2	2	3	3	3	2	3
CO3	3	1	3	2	7 -	3
CO4	3	3	3	3	2	3
CO5	3	3	3	3	2	3
23CSOE33	3	3	3	3	2	3
1 – Slight, 2 – 1	Moderate, 3 -	- Substantial	2			

ASSESSMENT	PATTERN – TH	HEORY		7.998			
Test / Bloom's Category*	Remembering (K1)%	Understanding (K2) %	Applying (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	a 40 O	2 -	-	-	100
CAT2	20	30	50	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	30	70	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	40	60	-	-	-	100
ESE	10	60	30	-	-	-	100

ENGLISH FOR RESEARCH PAPER WRITING (Common to all Branches)

PREREQUISITES		CATEGORY	L	Т	Р	С			
	NIL	AC	2	0	0	0			
Course	The objective of the course is to make the lear	rners understand	the for	mat a	nd				
Objectives	intricacies involved in writing a research pap	ricacies involved in writing a research paper.							
UNIT – I	PLANNING AND PREPARATION			6	6 Periods				
Need for publishin	g articles, Choosing the journal, Identifying a	model journal paj	per, Cr	eation	of fi	es for			
each section, Exped	ctations of Referees, Online Resources.								
UNIT – II	SENTENCES AND PARAGRAPHS			6	i Peri	ods			
Basic word in Engl	ish, Word order in English and Vernacular, plac	cing nouns, Verbs,	Adject	ives, a	and A	dverb			
suitably in a sent	ence, Using Short Sentences, Discourse Ma	rkers and Punct	lations	- Stru	icture	of a			
Paragraph, Breakin	ig up lengthy Paragraphs.								
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) (OF WRITING		6	6 Peri	ods			
Accuracy, Brevity a	nd Clarity in Writing, Reducing the linking wor	ds, Avoiding redur	ndancy,	Appr	opria	te use			
of Relative and Re	eflexive Pronouns, Monologophobia, verifying	g the journal sty	le, Log	ical C	onne	ctions			
between others aut	thor's findings and yours.	7							
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND H	PARAPHRASING		6	6 Periods				
Making your findi	ngs stand out, Using bullet points headings, Ta	ables and Graphs-	· Availi	ng r	ion-e	xperts			
opinions, Hedging,	Toning Down Verbs, Adjectives, Not over hedgi	ng, Limitations of	your re	esearc	h.				
UNIT - V SECTIONS OF A PAPER					6 Periods				
Titles, Abstracts, Introduction, Review of Literature, Methods, Results, Discussion, Conclusions, References.									
Thes, Abstracts, In									
Contact Periods:	A V	A							

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book,
	1998.
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht
	Heidelberg London, 2011.

COURSE OUTCOMES: Upon Completion of the course, the students will able to:		
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	K4
CO3	Practice unambiguous writing.	К3
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	К3

PO1	PO2	PO3	PO4	PO5	PO6
3	3	0132	1	1	1
3	(15° 3° 060	50 01 118 01	3 DY	1	1
3	327	Juche		1	1
3	3			1	1
3	3	1		1	1
3	3	1 🖷	1	1	1
rate, 3 – Substan	ıtial				
			. 11		
	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3	3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1

ASSESSMENT P	ATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20		-	-	100
CAT2	40	40	20		-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	-	50	50		-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100
ESE	30	30	40	-	-	-	100

DISASTER MANAGEMENT (Common to all Branches)

PREREQUISIT	ſES	CATEGORY	L	Т	Р	С			
	NIL	AC	2	0	0	0			
Course	1. To become familiar in key concepts an	nd consequences a	bout	hazar	ds, d	isaste			
Objectives	and area of occurrence.	•							
	2. To know the various steps in disaster planning.								
	3. To create awareness on disaster prepar	edness and manage	ement						
UNIT – I	INTRODUCTION				6 Pe	eriods			
Disasters: Diffe	tion, Factors and Significance; Difference betwee rence, Nature, Types and Magnitude. Areas pro- lone and Coastal Hazards with Special Reference t	eto ,EarthquakesFloo							
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZAR	DS			6 Pe	eriods			
Vokanisms, Cyc Nuclear Reactor	age, Loss of Human and Animal Life, Destruction Iones, Tsunamis, Floods, Droughts and Famines, I r Meltdown, Industrial Accidents, Oil Slicks and S	andslides and Avalan	ches, N	Man-n	nade o	lisaste			
Vokanisms, Cyc	lones, Tsunamis, Floods, Droughts and Famines, I	andslides and Avalan	ches, N	Man-n	nade o Didem	lisaste			
Vokanisms, Cyc Nuclear Reactor and Conflicts. UNIT – III Disaster Planni	bones, Tsunamis, Floods, Droughts and Famines, J Meltdown, Industrial Accidents, Oil Slicks and S DISASTER PLANNING ng-Disaster Response Personnel roles and dut	andslides and Avalan pills, Outbreaks of Dis ies, Community Miti	ches, N sease a gation(Man-m nd Ep Goals,	nade o bidem 6 Po Pre-1	lisaste ics, Wa eriods			
Vokanisms, Cyc Nuclear Reactor and Conflicts. UNIT – III Disaster Planni	bones, Tsunamis, Floods, Droughts and Famines, J Meltdown, Industrial Accidents, Oil Slicks and S DISASTER PLANNING	andslides and Avalan pills, Outbreaks of Dis ies, Community Miti	ches, N sease a gation(Man-m nd Ep Goals,	nade o bidem 6 Po Pre-1	lisaste ics, Wa eriods			
Vokanisms, Cyc Nuclear Reactor and Conflicts. UNIT – III Disaster Planni Mitigation Plan,	bones, Tsunamis, Floods, Droughts and Famines, J Meltdown, Industrial Accidents, Oil Slicks and S DISASTER PLANNING ng-Disaster Response Personnel roles and dut	Landslides and Avalan bills, Outbreaks of Dis ies, Community Miti Management, Early W	ches, N sease a gation(Man-m nd Ep Goals,	nade o bidem 6 Po Pre-1 ms.	lisaste ics, Wa eriods			
Vokanisms, Cyc Nuclear Reactor and Conflicts. UNIT – III Disaster Planni Mitigation Plan, UNIT – IV Preparedness:	Cones, Tsunamis, Floods, Droughts and Famines, Meltdown, Industrial Accidents, Oil Slicks and S DISASTER PLANNING ng-Disaster Response Personnel roles and dut Personnel Training, Comprehensive Emergency P	Landslides and Avalan pills, Outbreaks of Dis ies, Community Miti Management, Early W NT or Hazard; Evaluatio	ches, M sease a gation arning on of R	Man-m nd Ep Goals, Syste Lisk: A	6 Po 6 Po 6 Po 7 Pre-1 ms. 6 Po 6 Po	lisaste ics, Wa eriods Disaste eriods ation o			
Vokanisms, Cyc Nuclear Reactor and Conflicts. UNIT – III Disaster Planni Mitigation Plan, UNIT – IV Preparedness: Remote Sensing Preparedness.	bones, Tsunamis, Floods, Droughts and Famines, J Meltdown, Industrial Accidents, Oil Slicks and S DISASTER PLANNING Ing-Disaster Response Personnel roles and dut Personnel Training, Comprehensive Emergency I DISASTER PREPAREDNESS AND MANAGEME Monitoring of Phenomena Triggering a Disaster	Landslides and Avalan pills, Outbreaks of Dis ies, Community Miti Management, Early W NT or Hazard; Evaluatio	ches, M sease a gation arning on of R	Man-m nd Ep Goals, Syste Lisk: A	6 Po bidem 6 Po Pre-I ms. 6 Po Applic d Con	lisaste ics, Wa eriods Disaste eriods ation o			
Vokanisms, Cyc Nuclear Reactor and Conflicts. UNIT – III Disaster Planni Mitigation Plan, UNIT – IV Preparedness: Remote Sensing Preparedness. UNIT – V Disaster Risk: Techniques of F	bones, Tsunamis, Floods, Droughts and Famines, J Meltdown, Industrial Accidents, Oil Slicks and S DISASTER PLANNING ng-Disaster Response Personnel roles and dut Personnel Training, Comprehensive Emergency I DISASTER PREPAREDNESS AND MANAGEMEN Monitoring of Phenomena Triggering a Disaster g, Data from Meteorological and other Agencies,	andslides and Avalan bills, Outbreaks of Dis ies, Community Miti Aanagement, Early W VT or Hazard; Evaluatio Media Reports: Gover	ches, N sease a gation arning on of R rnmen	Man-m nd Ep Goals, Syste Sisk: A tal and ster R	6 Po 6 Po Pre-J ms. 6 Po Applic d Con 6 Po isk Si	disaste ics, Wa eriods Disaste eriods ation o nmunit eriods ituatio			
Vokanisms, Cyc Nuclear Reactor and Conflicts. UNIT – III Disaster Planni Mitigation Plan, UNIT – IV Preparedness: Remote Sensing Preparedness. UNIT – V Disaster Risk: Techniques of F	 Bones, Tsunamis, Floods, Droughts and Famines, I Meltdown, Industrial Accidents, Oil Slicks and S DISASTER PLANNING ng-Disaster Response Personnel roles and dut Personnel Training, Comprehensive Emergency I DISASTER PREPAREDNESS AND MANAGEMEI Monitoring of Phenomena Triggering a Disaster g, Data from Meteorological and other Agencies, RISK ASSESSMENT Concept and Elements, Disaster Risk Reduction Risk Assessment, Global Co-Operation in Risk Ass at, Strategies for Survival. 	andslides and Avalan bills, Outbreaks of Dis ies, Community Miti Aanagement, Early W VT or Hazard; Evaluatio Media Reports: Gover	ches, N sease a gation arning on of R rnmen	Man-m nd Ep Goals, Syste Sisk: A tal and ster R	6 Po 6 Po Pre-J ms. 6 Po Applic d Con 6 Po isk Si	disaste ics, Wa eriods Disaste eriods ation o nmunit eriods ituatio			

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New
	Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New
	Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt.
	Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing
	House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COS/POS	PO1	PO2	PO3	PO4	PO5			
CO1	2	1	1	2	2			
CO2	1	2mm	6 1	1	1			
CO3	1		1	2	2			
CO4	1 /0 /	0.6 A 5 N BL		2	2			
CO5	2	1 ANDRE	250	2	2			
23CSACZ2	1		T	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	50	50	V		-	-	100		
CAT2	-		100	S S	-	-	100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50		A CON	-	-	100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	-	100	-	-	-	100		
ESE	25	25	50	-	-	-	100		

VALUE EDUCATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. Value of education and self- development					
Objectives	2. Requirements of good values in students					
	3. Importance of character					
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods				
Social values and in	dividual attitudes. Work ethics, Indian vision of humanism. Moral	and non-moral				
valuation. Standards	and principles. Value judgements.					
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods				
	Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.					
UNIT – III	VALUES IN HUMAN LIFE	6 Periods				
	vation of values, Sense of duty. Devotion, Self-reliance. Confiden- liness. Honesty, Humanity. Power of faith, National Unity. Pat					
UNIT – IV	VALUES IN SOCIETY	6 Periods				
•	ppiness Vs suffering, love for truth. Aware of self-destructive h ing best for saving nature.	abits. Association				
UNIT – V	POSITIVE VALUES	6 Periods				
reincarnation. Equal your Mind, Self-con	petence –Holy books vs Blind faith. Self-management and Good lity, Nonviolence, Humility, Role of Women. All religions and sar trol. Honesty, Studying effectively.					
Contact Periods: Lecture: 30 Period	s Tutorial: 0 Periods Practical: 0 Periods Total: 30	Periods				

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice" , Oxford University Press, New Delhi, 1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004
4	https://nptel.ac.in/courses/109104068/36

COUR	SE OUTCOMES:						B	loom's
Upon C	ompletion of the c	ourse, the students	s will able to:				Ta	xonomy
							Μ	apped
CO1	Know the values	ow the values and work ethics.						
CO2	Enhance persona	ality and 164ehav	vior developmer	nt.				K3
CO3	Apply the values	s in human life.						K3
CO4	Gain Knowledge	e of values in soc	iety.					K3
CO5	Learn the import	tance of positive	values in humar	n life.				K3
COU	RSE ARTICULA	TION MATRIX	X					
	Cos/Pos	PO1	PO2	PO3	PO4	P	05	PO6
CO1		-	-	3	-		-	1
CO2		-	-	3	-		-	1
CO3		-	-	3	-		-	1
CO4			Chumb.	3	-		-	1
CO5		- 81	Alena O	a brug 3	-		-	1
23CSA	CZ3	- (97	Contra the	3	-		-	1
1 - Sli	ight, 2 – Moderate	, 3 – Substantial		200	×.			-
				4				

ASSESSMEN	T PATTERN – '	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30	1	-	-	100
CAT2	20	50	30		-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	5000	30	A ab	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100
ESE	20	50	30	-	-	-	100

CONSTITUTION OF INDIA (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	To address the importance of constitutional vielts and dution	
Objectives	 To address the importance of constitutional rights and duties To familiarize about Indian governance and local administration. 	
	 To hand the functions of election commission. 	
UNIT – I	INDIAN CONSTITUTION	6 Periods
	ing of the Indian Constitution: History Drafting Committee, (Composition of Indian Constitution: Preamble Salient Features.	& Working) -
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES	6 Periods
against Exploita	nstitutional Rights & Duties: Fundamental Rights , Right to Equality, Right to Fu tion, Right to Freedom of Religion, Cultural and Educational Rights, Right to e tive Principles of State Policy, Fundamental Duties.	
UNIT – III	ORGANS OF GOVERNANCE	6 Periods
Functions, Exec	vernance: Parliament, Composition, Qualifications and Disqualifications, rutive, President, Governor, Council of Ministers, Judiciary, Appointment an ations, Powers and Functions.	
UNIT – IV	LOCAL ADMINISTRATION	6 Periods
Mayor and role Zila Panchayat. Organizational	ration: District's Administration head: Role and Importance, Municipalities: of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Intro Elected officials and their roles, CEO Zila Panchayat: Position and role Hierarchy (Different departments), Village level: Role of Elected and Appoi rass root democracy.	oduction, PRI: Block level:
UNIT – V	ELECTION COMMISSION	6 Periods
Election Comm	ission: Election Commission: Role and Functioning. Chief Election Commissioners. State Election Commission: Role and Functioning. Institute and B Γ /OBC and women.	
Contact Period Lecture: 30 Per	-	

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	K2
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	1	1	1	1
CO2	-	-	L. COMPANY	1	1	2
CO3	-		Q10	RI	2	1
CO4	-	1. Billion	In Pan 500 OLL	In P I P I W	1	1
CO5	-	U S	Salar	2SE V	1	1
23CSACZ4	-	-//			1	1
1 – Slight, 2 – Mo	oderate, 3 – Su	bstantial		- Lol	77	

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30		-	-	100
CAT2	20	50	30		- 1	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	50	30 10	225	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100
ESE	20	50	30	-	-	-	100

H

23CSACZ5

PEDAGOGY STUDIES (Common to all Branches)

PREREQUIS	ITES	CATEGORY	L	Т	Р	C
	NIL	AC	2	0	0	(
Course Objectives	 To Understand of various theories of learning, predesign of curriculum in engineering studies. Application of knowledge in modification of of introduction of innovation in teaching methodology. 		•			
UNIT – I	INTRODUCTION		6	Per	riods	;
terminology T	nd Methodology: Aims and rationale, Policy backgro heories of learning, Curriculum, Teacher education. (rview of methodology and Searching.					
UNIT – II	PEDAGOGICAL PRACTICES		6	Per	riods	;
	developing countries. Curriculum, Teacher education. actices Methodology for the in depth stage: quality asse PEDAGOGICAL APPROACHES		d stud	lies.		
materials best evidence for effective	her education (curriculum and practicum) and the support effective pedagogy? Theory of change. Stre fective pedagogical practices. Pedagogic theory and pe eliefs and Pedagogic strategies.	ength and nature	of the	e bo	ody o	of
UNIT – IV	PROFESSIONAL DEVELOPMENT		6	Per	riods	;
Support from	evelopment: alignment with classroom practices and the head teacher and the community. Curriculum and ces and large class sizes.					
UNIT – V	CURRICULUM AND ASSESSMENT	30	6	Per	riods	;
	s and future directions Research design Context d assessment Dissemination and research impact.	s Pedagogy Tea	cher	edu	catio	n
Curriculum an	u assessment Dissemmation and research impact.					

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-
	261, 2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education. Oxford
	and Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths
	and reading in Africa: Does teacher preparation count? International Journal Educational
	Development, 33 (3): 272–282, 2013.
4	Agrawal M , Curricular reform in schools: The importance of evaluation, Journal of Curriculum
	Studies, 36 (3): 361-379, 2004

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain the concept of curriculum, formal and informal education systems and teacher education.	K3
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	K3
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	K3
CO4	Perform research in design a problem in pedagogy and curriculum development.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	Canada	Proprieto pr		2	1
CO2	-	L'S	- Myree	18 C	1	2
CO3	-		1	T	2	1
CO4	-	1-	1	Q1 /	2	1
23CSACZ5	_			⊼1 //	2	1

ASSESSM	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	50	30		-	-	100			
CAT2	20	50 00	30	BUUG	-	-	100			
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20	50	30		-	-	100			
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100			
ESE	20	50	30	-	-	-	100			

23CSACZ6	CZ6 STRESS MANAGEMENT BY YOGA (Common to all Branches)									
PREREQUISI	TES	CATEGORY	L	Т	Р	С				
	NIL AC 2 0									
Course Objectives	 To create awareness on the benefits of yoga an To understand the significance of Asana and P 		<u> </u>			1				
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCT	IONS			6 F	Periods				
hand exercise, acupressure, boo	structure, Importance of physical exercise, Rules leg exercise, breathing exercise, eye exercis ly relaxation.									
UNIT – II	YOGA TERMINOLOGIES				6 F	Periods				
	, satya, astheya, bramhacharya, aparigraha a, santosha, tapas, svadhyaya, Ishvara pranidhana.									
UNIT – III	ASANA	ABIOS			6 F	Periods				
Asana - Rules &	Regulations – Types & Benefits									
UNIT – IV	PRANAYAMA				6 F	Periods				
Regularization of	f breathing techniques and its effects-Types of pra	nayama								
UNIT – V	MIND				6 F	Periods				
		agnanimity, receptivity, a	idapta	ability	y, crea					
	E S : Swami Yogabhyasi Mandal , "Yogic Asanas vekananda, "Rajayoga or conquering th				01					
(Publicati	on Department), Kolkata.									
New Daw	ambu Nath, "Speaking of Stress Manage n Press, New Delhi, 2016.									
4 K. N. Uda Delhi, 200	upa, "Stress and its management by Yoga 07.	", Motilal Banarsida	ss P	ubli	shers,	New				

COURSE OUTCOMES: Upon Completion of the course, the students will able to:		Bloom's Taxonomy Mapped
CO1	Practice physical exercises and maintain good health.	K3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	K3
CO4	Practice breathing techniques in a precise manner.	K3
CO5	Attain emotional stability and higher level of consciousness.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	-	_	_	-	2
CO2	-	dum	6	-	3
CO3			A CIRIA	- 1	2
CO4	-0-2	BILS ON OF		_	1
CO5		a marce		_	1
23CSACZ6	-//	-	-	_	2
1 - Slight, 2 - Moderate	e, 3 – Substanti	al	6		

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	30	30	A	-	-	100	
CAT2	30	40	30		-	-	100	
Individual Assessment1/ Case study1/ Seminar 1/Project1	40	40	20	100	-	-	100	
Individual Assessment2/ Case study2/ Seminar 2 /Project2	30	30	40	-	-	-	100	
ESE	30	30	40	-	-	-	100	

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course Objectives	 To familiar with Techniques to achieve the highest goal in life. To become a person with stable mind, pleasing personality and determination. 								
UNIT – I		6 Periods							
	Neetisatakam-Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verses29,31,32 (pride heroism)-Verses- 26,28,6.								
UNIT – II		6 Periods							
	Verses- 52,53,59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work and duties Shrimad BhagwadGeeta - Chapter 2-Verses 41, 47,48,								
UNIT – III	BISBERT DE DE DE UN BESSON	6 Periods							
Shrimad Bhagw Verses 45, 46, 4	vadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35 8.	,- Chapter 18-							
UNIT – IV		6 Periods							
	asic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 68 -Chap 7, 18-Personality of Role model.	ter 12 -Verses							
UNIT – V		6 Periods							
-	Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-Chapter18 – Verses 37,38,63.								
Contact Period Lecture: 30 Pe									

1	Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam " Bhartrihari's Three Satakam " (Niti-sringar- vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001

K4
K4
K4
K4
K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	1	-	-	-
CO2	-	-	1	-	-	-
CO3	-	-	1	-	-	-
CO4	-	-	10	mm	-	-
CO5	-	- 67	Bight Dri Da	1	S19100	-
23CSACZ7	-	- (6	VIA	ALL ALL		-
1 – Slight, 2 –	Moderate,	3 – Substant	ial			
1 – Slight, 2 –	· Moderate,	<u>3 – Substant</u>	lai			

<u> </u>			_	- >			
ASSESSME	CNT PATTERN	– THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30	- 1	-	-	100
CAT2	20	50	30		-	-	100
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	20	50 00	30 30		-	-	100
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100
ESE	20	50	30	-	-	-	100

23CSACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all Branches)							
PREREQUISI	CATEGORY	L	Т	Р	С			
	NIL	AC	2	0	0	0		

Course	1. To get a working knowledge in illustrious Sanskrit, the scientific	language in the				
Objectives	world.					
	2. Learning of Sanskrit to improve brain functioning.					
3. Enhancing the memory power.						
	4. Learning of Sanskrit to develop the logic in mathematics, science	e & other subjects.				
UNIT – I	BASICS OF SANSKRIT					
Alphabets in	Sanskrit, Past/Present/Future Tense.					
UNIT – II	SENTENCES AND ROOTS	6 Periods				
Simple Senter	nces - Order, Introduction of roots					
UNIT – III	SANSKRIT LITERATURE	6 Periods				
Technical info	ormation about Sanskrit Literature					
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods				
Technical cor	cepts of Engineering-Electrical, Mechanical					
UNIT – V	TECHNICAL CONCEPTS -2	6 Periods				
Technical cor	cepts of Engineering-Architecture, Mathematics					
reenneur cor						
Contact Peri	ods:					
		30 Periods				

1	Dr.Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.						
2	Prathama Deeksha Vempati Kutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit						
	Sansthanam, New Delhi, Publication, 2009.						
3	Suresh Soni, "India's Glorious Scientific Tradition ", Ocean books (P) Ltd., New Delhi,2006.						

	SE OUTCOMES: completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Recognize ancient literature and their basics	K3
CO2	Formulate the sentences with order and understand the roots of Sanskrit	K2
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	K3
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K2
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	-	1	2	1
CO2	-	-		1	2	-
CO3	-		- 2m	a B	1	1
CO4	-		A COLORADO	2.6.61	201 1	1
CO5	-	- (~	1525	REFER	2	1
23CSACZ8	-	- 7		1	2	1
1 - Slight, 2 - M	Ioderate, 3 -	- Substantia	1	-	77	

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	50	30	-	- 5	-	100	
CAT2	20	50	30	ALUS .	<u> </u>	-	100	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	50	30	C	-	-	100	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100	
ESE	20	50	30	-	-	-	100	