

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University) Coimbatore - 641 013

Curriculum For M. E. MANUFACTURING ENGINEERING

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY

THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 E.mail: <u>gctcoe@gct.ac.in</u>

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- > To enhance employability and entrepreneurship.
- > To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution affiliated to Anna University)

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution affiliated to Anna University)

M.E. MANUFACTURING ENGINEERING

PROGRAMME EDUCATIONAL OUTCOMES (PEOs)

The PEO's are to facilitate graduating students to

- PEO1 : Develop the skills for examining the real life problems and to identify the mechanism for finding the feasible solution.
- PEO2 : Prepare a technical report to imply the Manufacturing Engineering principles and concepts on Local and Global societial needs.
- PEO3 : Become effective and excellent need based engineer, to provide solutions for social and technical Challenges through innovative technologies and modern machineries.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution affiliated to Anna University)

M.E. MANUFACTURING ENGINEERING

PROGRAMME OUTCOMES (POs)

On successful completion of the programme the graduates will be able,

PO1 : Independently conduct investigation and develop methodology to solve practical problems.

PO2: Prepare, write and present comprehensive technical reports / documents.

PO3: Demonstrate the degree of Mastery of Expertise in Manufacturing Engineering.

PO4: Develop the sustainable research attitude through lifelong learning to full fill the global needs.

PO5: Acquire the competency for resolving the societal issues in Product Geometry / Environment/

Recyclable / Disposal through inter disciplinary activities.

c	Course			<u> </u>		Total	H	lours/	Weel	C C
S. No	Code	Course Title	Category	CA Marks	Marks	Marks	L	Т	Р	С
		Т	HEORY CO	OURSES						
		RESEARCH METHODOLOGY								
1.	23MFFCZ1	AND IPR	FC	40	60	100	3	0	0	3
		(Common to all branches)								
		APPLIED MATHEMATICS FOR								
2.	23MFFC02	MANUFACTURING	FC	40	60	100	3	1	0	4
		ENGINEERING								
3	23MEDC01	THEORY OF METAL CUTTING	PC	40	60	100	3	1	0	4
5.	250111001	AND PRACTICES	I.C.	40	00	100	5	Ŧ	0	т
А.	23MEPC02	ADVANCES IN CASTING AND	PC	40	60	100	3	0	0	2
т.	251411 602	WELDING TECHNOLOGIES	I.C.	40	00	100	5	U	U	5
5	23MEDC03	CORROSION AND SURFACE	DC	40	60	100	3	1	0	4
5.	251111 605	ENGINEERING	I.C.	40	00	100	5	T	0	т
6.	23MFPEXX	PROFESSIONAL ELECTIVE - I	PE	40	60	100	3	0	0	3
7.	23MFACXX	AUDIT COURSE - I	AC	40	60	100	2*	0	0	0
		PR	ACTICAL C	COURSES	;					
0	22MEDC04	PROCESS MODELING AND	DC	60	40	100	0	0	4	2
0.	23MFPC04	SIMULATION LABORATORY	PL	00	40	100	0	0	4	2
		TOTAL	6	340	440	800	20	3	4	23
		1	: 30	61	·1					

FIRST SEMESTER

SECOND SEMESTER

S.	Course	Courses Title		СА	End Sem	Total	H	lours/	Weeł	K
No	Code	Course little	Lategory	Marks	Marks	Marks	L	Т	Р	С
		1	HEORY CO	URSES						
1.	23MFPC05	OPTIMIZATION TECHNIQUES IN MANUFACTURING	РС	40	60	100	3	1	0	4
2	23MFPC06	MATERIAL TESTING AND CHARACTERIZATION	РС	40	60	100	3	1	0	4
3.	23MFPC07	INDUSTRIAL AUTOMATION	PC	40	60	100	3	0	0	3
4.	23MFPEXX	PROFESSIONAL ELECTIVE - II	PE	40	60	100	3	0	0	3
5.	23MFPEXX	PROFESSIONAL ELECTIVE - III	PE	40	60	100	3	0	0	3
6.	23MFACXX	AUDIT COURSE - II	AC	40	60	100	2*	0	0	0
		PR	ACTICAL C	OURSES	;					
7.	23MFPC08	MODERN MANUFACTURING ENGINEERING LABORATORY	РС	60	40	100	0	0	4	2
8.	23MFEE01	MINI PROJECT	EEC	60	40	100	0	0	4	2
		TOTAL		360	440	800	17	2	8	21

THIRD SEMESTER

S. No	Course	Course Course Title Category CA Mar	CA Marke	End	Total	Hours/Week							
No	Code	course ritte	Category	CA Mai KS	Marks	Marks	L	Т	Р	С			
	THEORY COURSES												
1	23MFPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3			
2	23MFOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3			
		PR	ACTICAL (COURSES									
3	23MFEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	-	-	*	2			
4	4 23MFEE03 PROJECT - I EE		EEC	60	40	100	0	0	24	12			
	TOTAL			240	160	400	6	0	24	20			

* - FOUR WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

FOURTH SEMESTER

S.	Course	Course Title	Category CA	CA	End Sem	Total	Hours/Week					
No	Code	Gourse Thie	category	Marks	Marks	Marks	L	Т	Р	С		
PRA	CTICAL CO	URSES	·									
1	23MFEE04	PROJECT - II	EEC	60	40	100	0	0	48	24		
		TOTAL	·	60	40	100	0	0	48	24		

Note:* No Credit Courses

TOTAL CREDITS : 88

	LIST OF PROFESSIONAL ELECTIVES												
S. No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	Т	Р	С			
		PROFESS	IONAL ELEC	CTIVE I				1					
1	23MFPE01	DIGITAL MANUFACTURING	PE	40	60	100	3	0	0	3			
2	23MFPE02	ADVANCES IN METROLOGY AND MEASUREMENTS	PE	40	60	100	3	0	0	3			
3	23MFPE03	INDUSTRY 4.0 AND IoT	PE	40	60	100	3	0	0	3			
4	23MFPE04	ADVANCED ENGINEERING MATERIALS AND METALLURGY	PE	40	60	100	3	0	0	3			
5	23MFPE05	ADVANCED FINITE ELEMENT METHODS	PE	40	60	100	3	0	0	3			
		PROFESS	IONAL ELEC	TIVE II									
6	23MFPE06	WEAR ANALYSIS AND CONTROL	PE	40	60	100	3	0	0	3			
7	23MFPE07	MACHINE TOOL DRIVES AND CONTROL	PE	40	60	100	3	0	0	3			
8	23MFPE08	SENSORS FOR INTELLIGENT MANUFACTURING	PE	40	60	100	3	0	0	3			
9	23MFPE09	MEMS AND NEMS	PE	40	60	100	3	0	0	3			
10	23MFPE10	LEAN MANUFACTURING SYSTEMS AND IMPLEMENTATION	PE	40	60	100	3	0	0	3			
	1	PROFESSI	ONAL ELEC	TIVE III		1		1		1			
11	23MFPE11	HIGH SPEED MACHINING	PE	40	60	100	3	0	0	3			
12	23MFPE12	SUPPLY CHAIN MANAGEMENT	PE	40	60	100	3	0	0	3			
13	23MFPE13	DESIGN FOR MANUFACTURE, ASSEMBLY AND MANUFACTURING ENVIRONMENT	PE	40	60	100	3	0	0	3			
14	23MFPE14	THEORY OF METAL FORMING	PE	40	60	100	3	0	0	3			
15	23MFPE15	NON-DESTRUCTIVE EVALUATION	PE	40	60	100	3	0	0	3			

	PROFESSIONAL ELECTIVE IV												
S. No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	Т	Р	С			
16	23MFPE16	GREEN MANUFACTURING	PE	40	60	100	3	0	0	3			
17	23MFPE17	VIBRATION CONTROL AND CONDITION MONITORING	PE	40	60	100	3	0	0	3			
18	23MFPE18	PRODUCT DESIGN AND DEVELOPMENT	PE	40	60	100	3	0	0	3			
19	23MFPE19	RELIABILITY AND QUALITY ENGINEERING	PE	40	60	100	3	0	0	3			
20	23MFPE20	ADVANCES IN MANUFACTURING PROCESSES	PE	40	60	100	3	0	0	3			

LIST OF OPEN ELECTIVE COURSES

SI.	Course	Course Title	Catagomy	СА	End	Total	Но	ours/	'Wee	ek
No	Code	course rue	category	Marks	Marks	Marks	L	Т	Р	С
1	23SEOE01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SEOE02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EEOE05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23EDOE10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23EDOE12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MFOE13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3

SI.	Course	Course Title	Course Title Category	СА	End	Total	Н	ours/	'Wee	k
No	Code	course rite	Category	Marks	Marks	Marks	L	Т	Р	С
18	23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PEOE22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES

(Common to all branches)

S. No	Course	Course Title	Category	CA	End Sem	Total		HOU	RS	
bino	Code		Gutegory	Marks	Marks	Marks	L	Т	Р	C
1	23MFACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23MFACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23MFACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23MFACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23MFACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23MFACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23MFACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT	AC	40	60	100	2	0	0	0
8	23MFACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

C No	Course /			Credits			Doncontogo
3.INU	Subject Area	I SEM	IISEM	IIISEM	IVSEM	Total	Percentage
1.	FC	7	-	-	-	07	7.95 %
2.	РС	13	13	-	-	26	29.54%
3.	PE	3	6	3	-	12	13.63%
4.	OE	-	-	3	-	03	3.40%
5.	AC	0	0	-	-	(Non Credit)	0%
6.	EEC	-	2	14	24	40	45.45 %
	Total Credits	23	21	20	12	88	100.00%

CATEGORY-WISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

S.	Course	Course Title	Category	CA Morka	End Sem	Total	ŀ	Hours/Week					
INO	Code			Marks	магкѕ	Marks	L	Т	Р	C			
1.	23MFFCZ1	RESEARCH METHODOLOGY AND IPR	FC	40	60	100	3	0	0	3			
2.	23MFFC02	APPLIED MATHEMATICS FOR MANUFACTURING	FC	40	60	100	3	1	0	4			
		Total		80	120	200	6	1	0	7			

PROFESSIONAL CORE (PC)

S.	Course Code	Course Title	Category	СА	End	Total	Н	ours/	/Week	
No	course coue	course ritte	category	Marks	Marks	Marks	L	Т	Р	С
1.	23MFPC01	THEORY OF METAL CUTTING AND PRACTICES	РС	40	60	100	3	1	0	4
2.	23MFPC02	ADVANCES IN CASTING AND WELDING TECHNOLOGIES	РС	40	60	100	3	0	0	3
3.	23MFPC03	CORROSION AND SURFACE ENGINEERING	PC	40	60	100	3	1	0	4
4.	23MFPC04	PROCESS MODELING AND SIMULATION LABORATORY	РС	60	40	100	0	0	4	2
5.	23MFPC05	OPTIMIZATION TECHNIQUES IN MANUFACTURING	РС	40	60	100	3	1	0	4
6.	23MFPC06	MATERIAL TESTING AND CHARACTERIZATION	РС	40	60	100	3	1	0	4
7.	23MFPC07	INDUSTRIAL AUTOMATION	РС	40	60	100	3	0	0	3
8.	8. 23MFPC08 MODERN MANUFACTURING ENGINEERING LABORATORY		РС	60	40	100	0	0	4	2
	Total			360	440	800	18	4	8	26

PROFESSIONAL ELECTIVE (PE)

S.	Course	Course Title	Category	CA	End Sem	Sem Total		Hours/Week			
No	Code	oourse mile	dutegory	Marks	Marks	Marks	L	Т	Р	С	
1.	23MFPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3	
2.	23MFPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3	
3.	23MFPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3	
4.	23MFPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3	
Total				160	240	400	12	0	0	12	

OPEN ELECTIVE (OE)

S.	Course Code	Course Title	Category CA Marl	СА	End Sem Marks	Total	Hours/Week				
No				Marks		Marks	L	Т	Р	С	
1.	23MFOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3	
		Total		40	60	100	3	0	0	3	
	N X										

AUDIT COURSE (AC)

S. No			e Category CA CA Marks Marks	Total	Hours/Week					
	o Course Code	Course Title		Marks	Sem Marks	Marks	L	Т	Р	C
1.	23MFACXX	AUDIT COURSE - I	AC	40	60	100	2	0	0	0
2.	23MFACXX	AUDIT COURSE - II	AC	40	60	100	2	0	0	0
		Total		80	120	200	4	0	0	0

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

		ourse Code Course Title	<u>.</u>	CA	End	Total	Hours/Week			
S. No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	C
1	23MFEE01	MINI PROJECT	EEC	60	40	100	0	0	4	2
2	23MFEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	0	100	0	0	**	2
3	23MFEE03	PROJECT - I	EEC	60	40	100	0	0	24	12
4	23MFEE04	PROJECT - II	EEC	60	40	100	0	0	48	24
				280	120	400	0	0	76	40

**4 WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

23MFFCZ1

RESEARCH METHODOLOGY AND IPR (Common to all branches)

I

PREREQUISITI	ES	CATEGORY	L	Т	P	С		
	NIL	FC	3	0	0	3		
Course	1.To impart knowledge on research methodology,Q	uantitative metho	ods fo	r				
Objectives	problem solving, data interpretation and report w	riting						
	2. To know the importance of IPR and patent rights.							
UNIT – I	INTRODUCTION		9	Per	riods			
Definition and	objectives of Research - Types of research, Va	arious Steps in 1	Resea	arch	pro	cess,		
Mathematical t	ools for analysis, Developing a research question-Ch	oice of a problem	Liter	atur	e rev	iew,		
Surveying, synt	thesizing, critical analysis, reading materials, reviev	ving, rethinking, (critic	al ev	valuat	tion,		
interpretation,	Research Purposes, Ethics in research – APA Ethics co	ode.						
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOLVI	NG	9	Per	riods			
Statistical Mod	elling and Analysis, Time Series Analysis Probabil	ity Distributions,	Fun	dam	ental	s of		
Statistical Ana	lysis and Inference, Multivariate methods, Concep	ots of Correlation	n and	l Re	gress	sion,		
Fundamentals	of Time Series Analysis and Spectral Analysis, Erro	r Analysis, Applic	catior	ns of	Spe	ctral		
Analysis.								
UNIT – III	- III DATA DESCRIPTION AND REPORT WRITING			9 Periods				
Tabular and gr	aphical description of data: Tables and graphs of fre	quency data of or	ie va	riabl	le, Ta	bles		
and graphs that	t show the relationship between two variables , Relati	ion between frequ	ency	dist	ribut	ions		
and other grap	hs, preparing data for analysis. Structure and Compo	onents of Researc	h Rep	oort,	Туре	es of		
Report, Layout	of Research Report, Mechanism of writing a research	rch report, refere	ncing	g in a	acade	emic		
writing.								
UNIT – IV	INTELLECTUAL PROPERTY		9	Per	riods			
Nature of Inte	llectual Property: Patents, Designs, Trade and Co	pyright. Process	of P	aten	ting	and		
Development: t	echnological research, innovation, patenting, develop	oment.						
International S	cenario: International cooperation on Intellectual	Property. Proced	ure	for g	grant	s of		
patents, Patent	ing under PCT.							
UNIT – V	PATENT RIGHTS		9	Per	riods			
Patent Rights:	Scope of Patent Rights. Licensing and transfer of t	echnology. Paten	t info	orma	ation	and		
databases. Geographical Indications.								
Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								
REFERENCES	REFERENCES							

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science &
	engineering students", Juta Academic, 1996.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
4	Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, Fourth Edition, 2018.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Formulate research question for conducting research.	K4
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K4
C04	Develop a structured content to write technical report.	K4
C05	Summarize the importance of IPR and protect their research work through intellectual property.	K4

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	1	2	1	1	2		
CO2	2	-	-	-	-		
CO3	3	3	3	2	2		
CO4	2	2	2	2	2		
CO5	1	1	1	1	1		
23MFFCZ1	2	2	1	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ATTERN – THEOF	RY MAR	STORY NO				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual		1000					
Assessment 1		13.65					
/Case Study 1/	-	50	30	20	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2							
/Case Study 2/	-	50	30	20	-	-	100
Seminar 2 /							
Project 2							
ESE	30	30	20	20	-	-	100

23MFF	C02
--------------	-----

APPLIED MATHEMATICS FOR MANUFACTURING ENGINEERING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	FC	3	1	0	4

Course	To gain the concents of probability, random variables, test of by	nothesis numerical				
Objectives	interpolation numerical differentiation numerical integration n	umerical solution of				
objectives	ordinary differential equations and nartial differential equations.					
UNIT – I	PROBABILITY AND RANDOM VARIABLES	9+3 Periods				
Sample Space	es. Events. Probability Axioms. Conditional Probability. Indepen	dent Events, Bayes'				
Theorem. Ra	ndom Variables: Distribution Functions. Expectation. Moments.	Moment Generating				
Functions.	та по стана стан					
UNIT – II	TESTING OF HYPOTHESIS	9+3 Periods				
Large sample	es: Tests for Mean and Proportions, Small Samples: Tests for	Mean, Variance and				
Attributes usi	ng t, F, Chi–Square Distribution.					
	INTERPOLATION, NUMERICAL DIFFERENTIATION AND	9+3 Periods				
UNII – III	INTEGRATION					
Interpolation with equal interval: Newton's forward and backward difference methods -Interpolation						
with unequa	al intervals: Newton's divided difference and Lagrange's	method-Numerical				
Differentiatio	n: Newton's methods-Numerical integration: Trapezoidal rule and	Simpson's 1/3 rd and				
3/8 rules.	a constant a station of					
IINIT – IV	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL	9+3 Periods				
UNIT - IV	EQUATIONS					
Ordinary diffe	erential equations: Taylor's series method-Euler and modified Euler	's methods – Runge-				
Kutta methoo	d of fourth order for solving first and second order equations-	Milne's and Adam's				
predicator-co	rrector methods					
UNIT – V	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL	9+3 Periods				
	EQUATIONS					
Partial differ	ential equations: Finite difference solution two dimensional La	place equation and				
Poisson equation- Implicit and explicit methods for one dimensional heat equation (Bender-Schmidt						
and Crank-Nicholson methods)-Finite difference explicit method for wave equation.						
Contact Periods:						
Lecture: 45 F	eriods Tutorial: 15 Periods Practical: 0 Periods Total: 6	0 Periods				

1	B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44thEdition,
	2018.
2	Veerarajan T, "Probability and Random Processes:, (with Queuing Theory and Queuing
	Networks), McGraw Hill Education(India) Pvt Ltd., New Delhi, 4 th Edition,2016.
3	Gupta S.C and Kapoor V.K., "Fundamentals of Mathematical Statistics", Sultan Chand &
	Sons, New Delhi, 2015.
4	S.S. Sastry, "Introductory Methods of Numerical Analysis", PHI, New Delhi, 5th Edition, 2015.
5	Ward Cheney, David Kincaid, "Numerical Methods and Computin", Cengage Learning,
	Delhi, 7 th Edition 2013.
6	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3 rd
	Edition, Reprint 2013.
7	S. Larsson, V. Thomee, "Partial Differential Equations with Numerical Methods", Springer,
	2003.
8	Trivedi K.S, "Probability and Statistics with Reliability, Queuing and Computer Science
	Applications", Prentice Hall of India, New Delhi.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Acquire fluency in solving probability oriented problems	K4
CO2	Test for significance of hypothesis connected to small and large samples using different parameters.	K4
CO3	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations, derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	К4
CO4	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations and systems of such equations.	K4
C05	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	P03	P04	P05
		and the second s			
C01	3	2	1	2	1
CO2	1	807-150-PV	2	1	3
CO3	3	3	1	1	1
C04	1	2	3	1	2
CO5	3	1	1	2	1
23MFFC02	3	2	1	1	1
		AX	NA.		
		Barrow and			

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	20	30	30	20	-	-	100				
CAT2	20	30	30	20	-	-	100				
Individual											
Assessment 1											
/Case Study	20	30	30	20	-	-	100				
1/ Seminar 1											
/ Project1											
Individual											
Assessment 2											
/Case Study	20	30	30	20	-	-	100				
2/ Seminar 2											
/ Project 2											
ESE	20	30	30	20	-	-	100				

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	РС	3	1	0	4

Course Objectives	ourse To acquire knowledge in orthogonal cutting, oblique cutting, thermal aspects, cutting fluids, cutting tool materials, tool life, tool wear and design of cutting tools.					
UNIT – I	ORTHOGONAL CUTTING	9+3 Periods				
Introduction	- Machining fundamentals – Metal Cutting - Chip formation -	types of chips – Chip				
breakers - Expression for Shear plane angle - Cutting force and velocity relationship - Ernst and						
Merchant Up	per bound solution - Lee and Shaffer Lower bound solution	- Oxley's thin shear				
zone model -	Stress and Strain in the chip - Energy consideration in machini	ng.				
UNIT– II	OBLIQUE CUTTING	9+3 Periods				
Direction of C	Thip flow - Normal, Velocity and Effective Rake angles - Relation	onship between rake				
angles - Cuttin	ng ratio in oblique cutting - Shear angle and Velocity relationsh	nip - Stabler's rule.				
UNIT – III	THERMAL ASPECTS AND CUTTING FLUIDS	9+3 Periods				
Heat distribut	tions in machining - Experimental determination and Analytica	al calculation of				
Cutting tool to	emperature -Methods of Controlling Cutting Temperature - Cu	utting fluids - Effects				
of cutting flui	d - Functions - Requirements -Types and Selection of Cutting F	luids.				
_						
UNIT – IV	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL	9+3 Periods				
UNIT - IV	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR	9+3 Periods				
UNIT – IV Essential requ	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials	9+3 Periods				
UNIT – IV Essential requ of Cutting T Machinability	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials fool Materials, Indexable inserts Coated tools - Tool we	9+3 Periods erials, Characteristics ear and Tool life -				
UNIT – IV Essential requ of Cutting T Machinability and tool hold	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we r - Economics of metal machining - Theory of Chatter – ISO spec	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts				
UNIT – IV Essential requ of Cutting T Machinability and tool holdo	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR airements of tool materials – Desirable Properties of tool materials bool Materials, Indexable inserts Coated tools - Tool we r - Economics of metal machining - Theory of Chatter – ISO spec- ers.	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts				
UNIT – IV Essential requ of Cutting T Machinability and tool holde UNIT – V	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR airements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts 9+3 Periods				
UNIT – IV Essential requ of Cutting T Machinability and tool holde UNIT – V Geometry of s	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Single-point cutting tool: Tool-in hand system, OPS). Converse	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts 9+3 Periods gnificance of various				
UNIT – IV Essential requ of Cutting T Machinability and tool holdo UNIT – V Geometry of s angles of sing	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we r - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Si- gle point cutting tools, Orthogonal Rake System (ORS), Conver-	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts 9+3 Periods gnificance of various ersions between ASA				
UNIT – IV Essential requ of Cutting T Machinability and tool holde UNIT – V Geometry of s angles of sing and ORS syst	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Si- gle point cutting tools, Orthogonal Rake System (ORS), Conve- erms – Graphical and Analytical Methods, Normal Rake System ill Coometers and Mechanian of Deilling Process.	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts 9+3 Periods gnificance of various ersions between ASA em (NRS) & relation				
UNIT – IV Essential requ of Cutting T Machinability and tool holde UNIT – V Geometry of s angles of sing and ORS syst with ORS. Dr.	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Si- gle point cutting tools, Orthogonal Rake System (ORS), Conve- rems – Graphical and Analytical Methods, Normal Rake System ill Geometry and Mechanics of Drilling Process, Geometry of Milling process.	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts 9+3 Periods gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and				
UNIT – IV Essential requ of Cutting T Machinability and tool holdo UNIT – V Geometry of s angles of sing and ORS syst with ORS. Dr Mechanics of	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we r - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Si- gle point cutting tools, Orthogonal Rake System (ORS), Conve- tems – Graphical and Analytical Methods, Normal Rake System ill Geometry and Mechanics of Drilling Process, Geometry of Milling process, Mechanics of Grinding (plunge grinding an olymoar	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts 9+3 Periods gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and ad surface grinding),				
UNIT – IV Essential requ of Cutting T Machinability and tool hold UNIT – V Geometry of s angles of sing and ORS syst with ORS. Dr Mechanics of Grinding whe	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR airements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we r - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Si- gle point cutting tools, Orthogonal Rake System (ORS), Conve- rems – Graphical and Analytical Methods, Normal Rake System ill Geometry and Mechanics of Drilling Process, Geometry of Milling process, Mechanics of Grinding (plunge grinding an el wear.	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts 9+3 Periods gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and ad surface grinding),				
UNIT – IV Essential requ of Cutting T Machinability and tool holde UNIT – V Geometry of s angles of sing and ORS syst with ORS. Dr Mechanics of Grinding whe Contact Perio	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Si- gle point cutting tools, Orthogonal Rake System (ORS), Conve- rems – Graphical and Analytical Methods, Normal Rake Syste ill Geometry and Mechanics of Drilling Process, Geometry of Milling process, Mechanics of Grinding (plunge grinding an el wear.	9+3 Periods erials, Characteristics ear and Tool life - cifications for inserts 9+3 Periods gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and ad surface grinding),				

1	A. Bhattacharyya, "Metal Cutting Theory and Practice", Central Book Publishers, Calcutta,
	2012.
2	Geoffrey Boothroyd and W.A. Knight, "Fundamentals of Machining and Machine Tools",
	Marcel Dekkor, New York, 2006.
3	M C Shaw, "Metal Cutting Principles", Oxford Press, 2005.
4	B.LJuneja and G.S. Sekhon, "Fundamentals of Metal Cutting and Machine Tools", New Age
	International Publishers Limited, 2003.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the metal cutting theory in engineering materials and employ the	КЗ
	various aspects in orthogonal cutting activities.	
CO2	Evaluate the oblique cutting principle in machinability and practice its	V A
	various aspects.	Κ4
CO3	Select cutting fluids for different machining conditions	КЗ
C04	Choose appropriate cutting tools and machining conditions for different	КЗ
	materials.	
C05	Design the cutting tools for metal removal process.	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05				
C01	2	1	1	1	3				
CO2	1	1	3	2	1				
CO3	3	2	2	1	1				
CO4	1	3	1	1	2				
CO5	3	1	2	3	1				
23MFPC01	3	1.1	2	1	1				
1 – Slight, 2 – Moderate, 3 –	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1			50	50			100		
CAT2			50	50			100		
Individual			50	50			100		
Assessment 1									
/Case Study 1/									
Seminar 1 /									
Project1									
Individual			50	50			100		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE			50	50			100		

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Course	To acquire the metallurgical concepts during solidification of meta	ls & alloys,					
Objectives	special casting processes, metallurgical concepts during welding m	ietallurgy,					
	special welding processes, recent advances in casting and welding.						
UNIT – I	CASTING METALLURGY AND DESIGN	9 Periods					
Heat Transfer	Heat Transfer Between Metal and Mould – Solidification of Pure Metal and Alloys – Shrinkage in						
Cast Metals - Progressive and Directional Solidification - Principles of Gating and Rising -							
Degasificatior	n of the Melt - Design Considerations in Casting - Designing	for Directional					
Solidification	and Minimum Stress – Casting Defects.						
UNIT – II	SPECIAL CASTING PROCESSES	9 Periods					
Shell Molding	– Precision Investment Casting – CO ₂ Molding – Centrifugal Casting	– Die Casting –					
Continuous Ca	asting.						
UNIT – III	WELDING METALLURGY AND DESIGN	9 Periods					
Heat Affected	Zone and its characteristics – Weldability of Steels, Cast Iron,	Stainless Steel,					
Aluminium ar	nd Titanium Alloys – Hydrogen Embrittlement – Lamellar Tearing –	Residual Stress					
– Heat transf	er and Solidification - Analysis of Stress in Welded Structures -	- Pre and Post					
Welding Heat	Treatments - Weld Joint Design - Welding Defects - Testing of Weld	dment.					
UNIT – IV	UNCONVENTIONAL AND SPECIAL WELDING PROCESSES	9 Periods					
Friction Weld	ing -Friction Stir Welding-Friction Stir Processing-Explosive Weld	ing – Diffusion					
Bonding – Hig	gh Frequency Induction Welding – Ultrasonic Welding – Electron B	eam Welding –					
Laser Beam W	/elding.						
UNIT – V	RECENT ADVANCES IN CASTING AND WELDING	9 Periods					
Layout of Mee	chanized Foundry – Sand Reclamation – Material Handling in Foun	dry – Pollution					
Control in Fo	oundry - Recent Trends in Casting - Computer Aided Design of	Castings, Low					
Pressure Die Casting, Squeeze Casting and Full Mould Casting Process – Automation in Welding							
– Welding R	- Welding Robots - Overview of Automation of Welding in Aerospace, Nuclear, Surface						
Transport Vel	Transport Vehicles and Under Water Welding.						
Contact Perio	ods:						
Lecture: 45 P	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods					

1	Richard W. Heine, Carl R. Loper, Philip C. Rosenthal, "Principles of Metal Casting", McGraw
	Hill Education, 2014.
2	Ghosh, Ghosh Amitabha, Mallik AsokKumar, " Manufacturing Science ", EAST WEST, 2010.
3	Chakrabarti A K, "Casting technology and casting alloys", PHI Publishing Co, New Delhi,
	2015.
4	P.N.Rao, "Manufacturing Technology (Foundry, Forming and Welding)", 2 nd Edition, Tata
	McGraw Hill Pub.Co. Ltd, 2004.
5	R S Parmar, "Welding Processes and Technology", Khanna Publications, 2013.

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the Thermal, Metallurgical aspects during solidification in Casting.	K2
CO2	Apply on special casting process for specific applications.	КЗ
CO3	Analyze the metallurgical aspects during solidification in welding.	КЗ
CO4	Relate the Unconventional and Special Welding processes for Industrial production of components.	КЗ
C05	Evaluate the recent advances in Casting and Welding in Industrial applications.	КЗ

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05
 	1	1	2	1	2
	1	1	<u> </u>	1	3
CO2	3	2	3	2	1
CO3	2	1	2	2	3
CO4	3	2	1	2	1
C05	1	3	1	2	2
23MFPC02	2	2	2	2	2
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1		50	50				100	
CAT2			100				100	
Individual		50	50				100	
Assessment 1								
/Case Study 1/								
Seminar 1 /								
Project1								
Individual			100				100	
Assessment 2								
/Case Study 2/								
Seminar 2 /								
Project 2								
ESE		50	50				100	

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	1	0	4

Course	Course To understand the different types of corrosion on engineering structures and						
Objectives	testing and prevention of corrosion.						
UNIT – I	MECHANISMS AND TYPES OF CORROSION	(9+3 Periods)					
Principles of a	Principles of direct and Electro Chemical Corrosion, Hydrogen evolution and Oxygen absorption						
mechanisms -	mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform,						
Pitting, Interg	granular, Cavitation's, Crevice Fretting, Erosion and Stress	Given Corrosion – Factors					
influencing co	prrosion						
UNIT – II	TESTING AND PREVENTION OF CORROSION	(9+3 Periods)					
Corrosion tes	sting techniques and procedures - Prevention of Corros	ion – Design against					
corrosion -M	Iodifications of corrosive environment – Inhibitors – (Catholic Protection -					
Protective sur	face coatings.						
UNIT – III	CORROSION BEHAVIOR OF MATERIALS	(9+3 Periods)					
Corrosion of	steels, stainless steel, Aluminum alloys, copper alloys, Nicke	el and Titanium alloys					
corrosion of P	olymers, Ceramics and Composite materials.						
UNIT – IV	SURFACE ENGINEERING FOR WEAR AND CORROSION	(9+3 Periods)					
	RESISTANCE						
Diffusion coa	tings - Electro and Electro less Plating - Hot dip coating	– Hard facing, Metal					
spraying, Flai	ne and Arc processes - Conversion coating - Selection of	coating for wear and					
Corrosion res	istance.						
UNIT – V	THIN LAYER ENGINEERING PROCESSES	(9+3 Periods)					
Laser and Ele	ctron Beam hardening – Effect of process variables such as j	power and scan speed					
- Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating -							
Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating – Properties							
and applications of thin coatings.							
Contact Periods:							
Lecture: 45 F	Periods Tutorial: 15 Periods Practical: 0 Periods T	otal: 60 Periods					
1							

1	Ken N. Strafford, "Surface Engineering: Processes and Applications", A Technomic
1	Publication, Lanchester, Pennsylvania, 2018.
2	P. A. Dearnley, "Surface Engineering Basics", Published online by Cambridge University Press,
4	2017.
	J. DuttaMajumdar; I. Manna,"Laser Surface Engineering of Titanium and Its Alloys for
3	Improved Wear, Corrosion and High-Temperature Oxidation Resistance", Indian Institute
	of Technology, Kharagpur, India, 2015.
4	Andrew W Batchelor, MargamChandrasekaran Material, "Degradation and Its Control by
4	Surface Engineering", Bio-Scaffold International Pvt, Ltd, Singapore, 2013.

COUI	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify the mechanisms and types of corrosion	K1
CO2	Analyze the corrosion and know the prevention of corrosion	K1
CO3	Select the type of corrosion in the different materials and its behavior	К3
CO4	Evaluate the surface coating for wear and corrosion resistance	К3
CO5	Apply thin layer engineering processes for engineering materials	К3

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	PO3	P04	P05
C01	1	1	2	2	2
CO2	1	1	2	2	2
CO3	1	1	2	2	3
CO4	1	1	2	3	3
CO5	1	2	2	3	3
23MFPC03	1	1	2	1	3
1 – Slight, 2 – Moderate, 3 –	Substantial				

ACCECCMENT DAT	TEDN THEODY	7 927.20	1.0000				
ASSESSMENT PAT	IERN – IHEURY	126.22	2213455321		r	n	n
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	100						100
CAT2		1 3	100				100
Individual	100	8					100
Assessment 1		& X.	14	0			
/Case Study 1/							
Seminar 1 /		1999					
Project1			00-0-0				
Individual			100				100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	50		50				100

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	0	0	4	2

Course	To give an overview of various methods of process modeling and different
Objectives	computational techniques for simulation.

List of Exercises:

- 1. Model and simulate the Coupling Joint used in Railway Passenger Coaches
- 2. Model and simulate the Impeller Assembly
- 3. Model and simulate the Stapler Assembly
- 4. Model and simulate the Oldham's Coupling
- 5. Model and analyse the Crane Hook
- 6. Model and analyse the 3D Printed Components
- 7. Conduct stress analysis of Axis Symmetric Components using ANSYS
- 8. Conduct dynamic analysis of Mechanical Engineering Components
- 9. Make CNC Turning and Milling simulations

Contact Periods:	A 8.		
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 60 Periods	Total: 60 Periods
		12.57	

COUF	RSE OUTCOMES:	Bloom's
Unon	completion of the course, the students will be able to:	Taxonomy Manned
C01	Apply the concept of modeling and simulation techniques for different mechanical joints	K3
CO2	Apply the techniques in model and simulation for manufacturing assembly	КЗ
CO3	Analyze structural problems for mechanical engineering components	K4
CO4	Analyze dynamic problems for mechanical engineering components	K4
CO5	Apply the knowledge in the simulation practices in CNC machining	К3

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	PO3	P04	PO5
C01	2	3	2	1	1
CO2	2	3	2	1	1
CO3	2	3	3	1	1
CO4	3	3	2	1	1
CO5	2	3	2	1	1
23MFPC04	2	3	2	1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

23MFPC05

OPTIMIZATION TECHNIQUES IN MANUFACTURING

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	РС	3	1	0	4

Course	1. To impart knowledge on theory of optimization and condition	s for optimality	
Objectives	for unconstrained and constrained optimization problems.		
	2. To inculcate modeling skills necessary to describe a	and formulate	
	optimization problems in design and manufacturing.		
	3. To familiarize with the working principle of optimization algo	rithms used to	
	solve linear and non–linear problems.		
	4. To know the basics of non linear programming and integer	[·] programming	
	techniques to solve Engineering problems.		
	5. To understand and differentiate traditional and non-tradition	nal methods of	
	Optimization.		
UNIT – I	EVOLUTION OF OPTIMIZATION	9+3 Periods	
Optimization	- Historical Development - Engineering applications of optimization	on – Statement	
of an Optimiz	ation problem – Classification of optimization problems.		
UNIT – II	CLASSIC OPTIMIZATION TECHNIQUES	9+3 Periods	
Linear progra	amming - Graphical method - Simplex method - Dual simplex me	thod – Revised	
simplex meth	od – Duality in LP – Parametric Linear programming – Goal Program	ıming.	
UNIT – III	NON-LINEAR PROGRAMMING	9+3 Periods	
Introduction	Introduction - Lagrangian Method - Kuhn-Tucker conditions - Quadratic programming -		
Separable pro	gramming – Stochastic programming – Geometric programming		
UNIT – IV	INTEGERPROGRAMMING, AND DYNAMIC PROGRAMMING	9+3 Periods	
	NETWORK TECHNIQUES		
Integer progr	amming – Cutting plane algorithm, Branch and bound technique, Ze	ro–one implicit	
enumeration	- Dynamic Programming - Formulation, Various applications	using Dynamic	
Programming. Network Techniques – Shortest Path Model – Minimum Spanning Tree Problem –			
Maximal flow	problem.		
UNIT – V	ADVANCES IN SIMULATION	9+3 Periods	
Genetic algor	ithms – Simulated annealing – Neural Network, Fuzzy systems and	Particle swam	
optimization-	Data Analytics and optimization using Machine learning approach		
Contact Peri	ods:		
Lecture: 45 F	Periods Tutorial: 15 Periods Practical: 0 Periods Total: (60 Periods	

1	R. Panneerselvam, Operations Research, Prentice Hall of India Private Limited, New Delhi L,
	2019.
2	P.K. Guptha and Man–Mohan, Problems in Operations Research, Sultan Chand & Sons, 2014.
3	Ravindran, Philips and Solberg, Operations Research Principles and Practice, John Wiley &
	Sons, Singapore, 2017.
4	J.K.Sharma, Operations Research – Theory and Applications , Macmillan India Ltd., 2017.
5	Hamdy A. Taha Operations Research – An Introduction, Pearson Education Ltd., 2017.
6	https://nptel.ac.in/courses/106106139
7	https://nptel.ac.in/courses/111105039

COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy
-	-	Mapped
C01	Apply basic theoretical principles in optimization and formulate the	К3
	optimization models.	
CO2	Implement optimization techniques in engineering problems.	K4
CO3	Solve the constraints for optimal solution to interface in industrial scenario.	K4
CO4	Interpret and apply modern heuristic algorithms for solving optimization	К3
	problems.	
CO5	Understand and apply different evolutionary algorithms for solving	K2
	engineering problems.	

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	PO5
C01	2	2	1	3	1
CO2	3	2	2	3	2
C03	3	1	1	2	3
CO4	1	1	2	3	1
C05	1	2	2	2	1
23MFPC05	2	2	2	3	2
1 – Slight, 2 – Moderate, 3 –	Substantial		100		

ASSESSMENT PATTERN – THEORY

HODEDONIENT		UNI	The case of the second s				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		A. %.	50	50			100
CAT2		30	40	30			100
Individual			50	50			100
Assessment 1			0.000				
/Case Study							
1/ Seminar 1							
/ Project1							
Individual		30	50	20			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		20	40	40			100

٦

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	1	0	4

Course	1. To make them acquainted with microscopic techniques to	analyse crystal			
Objectives	structures.				
	2. To acquire an understanding on the electron microscopic	techniques for			
	characterization.				
	3. To familiarize with a fundamental knowledge on chemic	cal and thermal			
	analysis.				
	4. To enable students to widen knowledge on various sta	atic methods to			
	characterize materials.				
	5. To study the failure of materials under dynamic stresses.				
UNIT – I	MICRO AND CRYSTAL STRUCTURE ANALYSIS	9+3 Periods			
Principles of (Optical Microscopy –Polishing and Etching – Polarization Techniqu	es – Quantitative			
Metallography	y – grain size and ASTM number – Microstructure of Enginee	ring Materials –			
Crystallograp	hy – X– ray Diffraction– Geiger Diffractometer – Analysis of patter	ns – Inter planer			
spacing – Ide	ntification of Crystal Structure, Elements of Electron Diffraction	- Estimation of			
residual stres	s and grain size.				
UNIT – II	ELECTRON MICROSCOPY	9+3 Periods			
Interaction of	Electron Beam with Materials – Transmission Electron Microscopy	v – Specimen			
Preparation –	Imaging Techniques - BF and DF - SAD - Electron Probe Microana	lysis – Scanning.			
Electron Micr	oscopy –Atomic Force Microscopy– Construction &Applications.				
UNIT – III	CHEMICAL AND THERMAL ANALYSIS	9+3 Periods			
X–Ray Spectr	ometry- Energy dispersive and Wave Dispersive X-Ray Spect	rometry- Auger			
Spectroscopy	- Secondary Ion Mass Spectroscopy- Fourier Transform Infra-R	ed Spectroscopy			
(FTIR)- Prot	ton Induced X-Ray Emission Spectroscopy- Differential The	ermal Analysis-			
Differential S	canning Calorimetry (DSC)- Thermo Gravity metric Analysis (T	ſGA)– Dynamic			
Mechanical A	nalysis (DMA)				
UNIT – IV	MECHANICAL TESTING – STATIC TESTS	9+3 Periods			
Hardness –	Brinell, Vickers, Rockwell and Micro Hardness Test, Rebound	d hardness and			
Indendation	- Tensile Test - Stress-Strain plot, Proof Stress - Torsion	Test – Ductility			
Measurement – Impact Test – Charpy and Izod – DWTT – Fracture Toughness Test-Codes and					
standards for	testing metallic and composite materials.				
UNIT – V	MECHANICAL TESTING – DYNAMIC TESTS	9+3 Periods			
Fatigue – Low	v and High Cycle Fatigues – Rotating Beam and Plate Bending HCF t	cests – S–N curve			
– LCF tests –	Crack Growth studies - Creep Tests - LM parameters - AE Tests-	modal analysis –			
Applications of	of Dynamic Tests – Fatigue life estimation.				
Contact Perio	ods:				
Lecture: 45 P	Periods Tutorial : 15 Periods Practical: 0 Periods To	otal: 60 Periods			

REFERENCES:

Cullity B.D., Stock S.R and Stock S., Elements of X ray Diffraction, 3rdEdition. Prentice Hall, 2018.
 Skoog, Holler and Nieman, Principles of Instrumental Analysis, 7th edition, Cengage

Learning, 2017. Learning, 2017.

3 Angelo P C, **Material characterization**, Cengage Learning India, 2016.

4	Yang Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic
	Methods, Hong Kong University Of Science And Technology, John Wiley and Sons (Asia) Pte
	<i>Ltd., 2nd Edition, 2013.</i>
5	Suryanarayana A. V. K., Testing of metallic materials , BSP Books Private Limited
	publications, 2 nd Edition, 2018.
6	https://nptel.ac.in/courses/115103030
7	https://nptel.ac.in/courses/113105101

COUF Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Identify the test and quantify the mechanical properties of Engineering Materials.	К2
CO2	Characterize the microstructure of various materials and apply to various applications.	К3
CO3	Perform Chemical and Thermal Analysis on Engineering Materials	K3
CO4	Analyze the behavior of various materials under static and dynamic condition.	K4
C05	Characterize novel engineering materials using standard tests.	K3

Course Articulation Mat	rix	Real Press			
COs/POs	P01	PO2	P03	P04	P05
C01	1	2	1	3	1
CO2	3	3	2	2	2
CO3	3	2	2	2	1
CO4	2	3	3	1	1
CO5	2	1	2	3	1
23MFPC05	2	3	2	3	1
1 – Slight, 2 – Moderate, 3	– Substantial	10000			

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1		30	40	30			100	
CAT2			50	50			100	
Individual		30	40	30			100	
Assessment 1								
/Case Study								
1/ Seminar 1								
/ Project1								
Individual			50	50			100	
Assessment 2								
/Case Study								
2/Seminar 2								
/ Project 2								
ESE		20	40	40			100	

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PC	3	0	0	3

Course	1. To familiarize with the concepts of robot manipulator and buil	d confidence to			
Objectives	choose, evaluate and incorporate robots in engineering system	S.			
	2. To inculcate the significance of simple sensor systems in automation.				
	3. To understand the basic concept of automation and the Progr	rammable logic			
	controllers.				
	4. To acquire knowledge on supervisory control and data acquisit	tion system.			
	5. To gain knowledge about distributed control system.				
UNIT – I	AUTOMATION COMPONENTS	9 Periods			
Sensors for te	emperature – pressure – force – displacement – speed – flow– level	 humidity and 			
pH measuren	nent. Actuators – process control valves – power electronic drives	DIAC– TRIAC –			
power MOSFI	ET – IGBT– Introduction to DC and AC servo drives for motion contro	ol			
UNIT – II	ROBOTS AND CONTROLS	9 Periods			
Controlling th	ne robot motion-Position and velocity sensing devices-Design of	drive systems-			
Hydraulic an	d Pneumatic drives-Linear and rotary actuators and control	valves-Electro			
hydraulic ser	vo valves, electric drives- Motors-designing of end effectors-Vac	uum, magnetic			
and air opera	ted grippers.				
UNIT – III	PROGRAMMABLE LOGIC CONTROLLERS	9 Periods			
PLC Hardwa	re – PLC programming – Ladder diagram – Sequential flow	chart – PLC			
communicatio	on and networking – PLC selection – PLC installation – Advantages -	- Application of			
PLC to proces	s control industries and Robotics.				
UNIT – IV	SCADA	9 Periods			
Introduction	- Supervisory Control and Data Acquisition Systems (SCADA)	– SCADA HMI			
Essentials –	SCADA Components - SCADA Configuration and Software - HMI	hardware and			
software					
UNIT – V	DISTRIBUTED CONTROL SYSTEM (DCS)	9 Periods			
Overview of DCS – DCS hardware – DCS software configuration – DCS communication – DCS					
supervisory computer tasks – DCS integration with PLC and Computers– Case studies.					
Contact Peri	ods:				
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods			

1	Cameron Hughes, Trarey Hughes, Robot Programming , Pearson, 5 th Edition., 2016.
2	Groover, M.P. Industrial Robotics - Technology, Programming and Applications, McGraw-
	Hill, 2012.
3	
	Frank D. Petruzella, Programmable Logic Controllers , 5 th Edition, McGraw Hill, 2016.
4	M. P. Lukcas, Distributed Control Systems, Van Nostrand Reinhold Co., 1986.
5	W. Bolton, Mechatronics, 5 th edition, Addison Wesley Longman Ltd, 2010
6	https://nptel.ac.in/courses/108105063
7	https://archive.nptel.ac.in/courses/108/106/108106022/

COUF	RSE OUTCOMES:	Bloom's
Unon	completion of the course, the students will be able to:	Taxonomy Manned
C01	Explain automation components and systems application.	K2
CO2	Appreciate the importance of robot in the emerging trend of manufacturing and to select and design robots for various applications taking kinematic aspects and precision into account	К3
CO3	Construct ladder logic diagram using PLC basic functions, timer and counter functions for simple applications	КЗ
C04	Describe the basics of SCADA technology	К2
CO5	Illustrate the functionary components and supervisory control of DCS with relevant diagrams	K2

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	1	1	3	2	3		
C02	3	2	3	2	1		
C03	2	1	2	2	3		
CO4	3	2	1	2	1		
C05	1	3	1	3	2		
23MFPC07	3	2	2	3	2		
	201						
	16						

ASSESSMENT I	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1		50	50				100			
CAT2		60	40	9			100			
Individual		50	50				100			
Assessment 1		1233	100000							
/Case Study										
1/ Seminar 1										
/ Project1										
Individual		60	40				100			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE		60	40				100			

23MFPC08

PRE-REQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	0	0	4	2

	1. To familiarize the students with extrusion based additive manufacturing
	2. To acquaint the students with nontraditional machining processes.
Course	3. To introduce the application of 3D scanners and 3D printing in reverse
Objectives	engineering.
-	4. To familiarize with the process capabilities of Friction Stir Welding and Stir
	Casting.

List of Exercises

- 1. Study on 3D printing technologies, and its impacts on manufacturing industries.
- 2. Study on commercially available slicing software and its challenges involved.
- 3. Make a 3D model using PLA filament and evaluate the printed properties.
- 4. Make a 3D model using TPU blended with PLA filament and evaluate the printed properties.
- 5. Make a 3D model using Bio-polymer filaments and evaluate the printed properties.
- 6. Make a 3D model using SLS and evaluate its properties.
- 7. Evaluate the performance characteristics of ECDM of Ceramics.
- 8. Scan any commercially available engineering components using high resolution 3D scanners and make a product using available 3D printing technique.
- 9. Determine the tribological characteristics of the given 3D Printed specimens.
- 10. Prepare the composites samples using stir casting/squeeze casting and evaluate their mechanical properties.
- 11. Develop a water hammer setup and evaluate the product formability.
- 12. Conduct images analysis of 3D printed products using metallurgical microscope and SEM.
- 13. Study on joining of dissimilar materials using Friction Stir Welding.

Contact Periods: Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods **Total: 60 Periods**

COURSE OUTCOMES:

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to	Taxonomy
		Mapped
C01	Create 3D printed models and evaluate their characteristics	К6
CO2	Analyze the characteristics of ECDM	K4
CO3	Develop and analyze new composite materials for modern	K6
	engineering applications.	no
C04	Evaluate the tribological characteristics of mechanical products	K5
C05	Understand the dissimilar materials joining using Friction Stir	K3
	Welding	112

COURSE ARTICULATION MATRIX					
COs/POs	P01	P02	P03	P04	P05
C01	3	3	2	1	1
CO2	3	2	3	1	1
CO3	2	3	3	3	2
CO4	3	2	3	2	2
CO5	2	2	2	1	1
23MFPC08	3	3	2	1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

23MFEE01

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	4	2

Course	To make the student to feel/understand the magnitude of manufacturing					
Objectives	engineering and then apply Engineering knowledge to provide feasible solutions.					
SYLLABUS						
Students can	take up small problems in the field of design engineering as mini project. It can be					
related to solution to engineering problems, verification and analysis of experimental data						
available, conducting experiments on various engineering subjects, material characterization,						
studying a software tool for the feasible solution of engineering problems etc.						
Lecture: 0 Pe	eriods Tutorial: 0 Periods Practical: 60 Periods Total:60 Periods					

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Get an opportunity to work in actual industrial environment if they opt for internship.	К5
CO2	Solve a live problem using software/analytical/computational tools.	K6
CO3	Learn to write technical reports.	K3
CO4	Develop skills to present and defend their work in front of technically qualified audience.	K4
C05	Able to do the Project experimental Work	K6

COURSE ARTICULATION MATRIX :						
COs/POs	P01	P02	P03	P04	P05	
C01	3	3	3	3	3	
CO2	3	2	3	2	1	
CO3	3	2	3	3	3	
CO4	1	1	2	1	2	
C05	1	2	1	1	1	
23MFEE01	3	2	3	3	2	
1 – Slight, 2 – Moderate, 3 – S	1 – Slight, 2 – Moderate, 3 – Substantial					

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	EEC	0	0	0	2

Course		1. To make students industry ready to become an entrepreneur or an effective administrator.			
0	ojectives	2. To acquire the knowledge about industrial scenario.			
LIS	ST OF EXP	ERIMENTS			
1.	Conduct	literature survey on selected technical domain. (Minimum 20 literatures to be			
	reviewed) and prepare a survey report.				
2.	2. Visit any two industry and prepare a technical report about the visit				
3.	3. Conduct market survey and prepare report on any selected product by meeting the				
	customers / retailers using any methods. (Questionnaire, Audio / Video recording etc.)				
4.	4. Assess the risk involved in any industries. (Existing risk or upcoming risk in the market).				
5.	Perform p	process planning and estimate the cost of production for a product.			

- 6. Design an alternate mechanism for an existing product to perform the same function or a function in addition to the existing function.
- 7. Perform tolerance analysis in production and assembly drawings.

Total Periods: 4 Weeks

	All and a second	
COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify gaps in published literatures and find scope of improvement.	K1
CO2	Write technical report about any industrial activity.	K4
CO3	Perform market survey and risk assessment to find an area of scope in	VE
	the market.	КЭ
C04	Innovate new mechanism design and estimate cost for a product or	K6
	process.	
C05	Read Engineering drawings and analyze tolerances.	K4

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	PO5
C01	2	2	3	1	1
CO2	1	3	2	1	1
CO3	2	1	1	2	1
CO4	2	1	3	1	2
CO5	1	2	3	1	1
23MFEE02	2	2	3	1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

23MFEE03

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	EEC	0	0	24	12

Course Objectives	To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature and to develop the methodology to solve the identified problem then publish paper at					
	least in conference.					
SYLLABUS						
1. The stude	ent individually works on a specific topic approved by the head of the division					
under the guidance of a faculty member who is familiar in this area of interest.						
2. The student can select any topic which is relevant to the area of Engineering Design. The						
topic may	topic may be theoretical or case studies.					
3. At the en	. At the end of the semester, a detailed report on the work done should be submitted which					

- contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work and report on the preliminary study conducted.
- 4. The students will be evaluated through a viva-voce examination.

Lecture: 0 Periods Tutorial: 0 Periods	Practical: 360 Periods	Total: 360 Periods
--	------------------------	--------------------

	II. MAR STOCK VIA II		
COUF	Bloom's		
		Taxonomy	
Upon	Mapped		
C01	Identify the project work/research gap scientifically in a systematic	K1	
	way.		
CO2	Analyze the problem and data of literatures clearly to explore the ideas	17.4	
	and methods.	K4	
CO3	Formulate the objectives and methodology to solve the identified	VE	
	problem.	K5	

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	3	3	3	3	3		
CO2	2	2	3	2	2		
CO3	3	2	3	3	1		
23MFEE03	3	2	3	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial							
23MFEE04

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	48	24

CourseTo solve the identified problem based on the formulated methodology and toObjectivesdevelop skills to analyze and discuss the test results and make conclusions.SYLLABUS

1. The student should continue the phase I work on the selected topic as per the formulated methodology under the same supervisor.

2. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department.

3. The students will be evaluated based on the report submitted and the viva-voce examination by a panel of examiners including one external examiner

Lecture: 0 Periods Tutorial: 0 Periods Practical: 720 Periods Total: 720 Periods

COURSE OUT	COMES:	Bloom's
Upon complet	ion of the course, the students will be able to:	Taxonomy Mapped
CO1 Execut structu	e the project work on challenging practical problem in a red manner.	K4
CO2 Investi	gate the findings and infer observations logically.	K5
CO3 Evaluation and soc	te the results and confirm the solution to the practical application real benefit.	K6

COURSE ARTICULATION MATRIX:							
COs/POs	P01	PO2	PO3	P04	PO5		
C01	3	2	3	3	2		
CO2	3	2	2	2	3		
CO3	2	3	3	3	3		
23MFEE04	3	2	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial							

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To gain knowledge in concepts of rapid product development, va	rious software			
Objectives	tools, processes, techniques of additive manufacturing, industry	4.0, IoT, cloud			
	computing and data analytics.				
UNIT – I	INTRODUCTION	9 Periods			
Rapid Produc	rt Development (RPD) – Product Development Cycle – Detail Des	ign– Prototype			
and Tooling I	Principle of AM Technologies and Their Classification of AM Syster	ns-Selection of			
AM Process; I	ssues in AM – IOT.				
UNIT – II	ADDITIVE MANUFACTURING (AM)	9 Periods			
Stereo Lithogi	raphy Systems – Fusion Deposition Modeling – Laminated Object M	lanufacturing –			
Selective Lase	er Sintering - Direct Metal Laser Sintering (DMLS) - Three Dimensi	onal Printing -			
Reverse Engin	eering - Engineering Applications – 4D Printing – Medical Applicati	ons – Principle			
– Process Para	ameters – Process Details – Applications – Case Study.				
UNIT – III	PROCESSING POLYHEDRAL DATA	9 Periods			
Polyhedral B-	Rep Modeling–STL Format – Defects and Repair of STL Files– Proce	ssing STL Files			
- Overview o	f the Algorithms Required for RP and RT - Slicing, Support Gene	ration, Feature			
Recognition.					
UNIT – IV	ADDITIVE TOOLING (AT)	9 Periods			
Introduction	to AT –Indirect AT Processes – Silicon Rubber Molding, Epoxy Tooli	ng, Spray Metal			
Tooling and I	nvestment Casting Direct AT Processes – Laminated Tooling, Pow	der Metallurgy			
Based Techno	ologies, Welding Based Technologies, Direct Pattern Making (Quick	Cast, Full Mold			
Casting); Eme	erging Trends in AT.				
UNIT – V	INDUSTRY 4.0	9 Periods			
Digitalization	and the Networked Economy - Introduction to Industry 4.0 -	Comparison of			
Industry 4.0 Factory and Today's Factory - Internet of Things (IoT) - Industrial Internet of					
Things (IoT) - Smart Devices and Products - Smart Logistics - Support System for Industry 4.0 –					
Cyber- Physical Systems Requirements - Data as a New Resource for Organizations - Cloud					
Computing - Trends of Industrial Big Data and Predictive Analytics for Smart Business-					
Architecture of	of Industry 4.0.				
Contact Perio	ods:				
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods			

1	Kaushik Kumar Divya Zindani, J.Paulo Davim., "Digital Manufacturing and Assembly
	Systems in Industry 4.0", CRC Press, 2022.
2	Chee Kai & K F Leong "3D Printing and Additive Manufacturing - Principles and
	Applications", 5thEditionBSP Publishers, 2019.
3	Kaushik Kumar, Divya Zindani, J.Paulo Davim., "Additive Manufacturing Technologies From
	an Optimization Perspective", IGI Global. 2019.
4	Alp Ustundag, Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation",
	Springer, 2018.

5 Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A Press, 2016.

6 Gibson, I, Rosen, D.W., Stucker, B., "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", 2nd Edition, Springer, 2015.

-		
COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	Completion of the Course, the Students will be Able to:	Mapped
C01	Apply the Concept of Liquid, Solid and Powder Based Rapid Prototyping	V2
	Techniques for Rapid Product Development.	K3
CO2	Apply the Rapid Tooling and Software for Rapid Manufacturing to Meet	K3
	International Needs.	K5
CO3	Select Appropriate Process for Production of a Part/Component that	K3
	Meet International Standards of Quality and Time Constraints	K5
C04	To Demonstrate the Basic Technical Understanding of the Physical	KA
	Principles, Materials, and Operation of the Types of AM Processes.	174
C05	Realize the Need of Industry 4.0 and it's Inter- Connectivity.	K2

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	P03	P04	P05			
C01	1	2	1	1	1			
C02	1	1	2	2	1			
CO3	2	2	2	1	1			
CO4	2	1	2	2	2			
CO5	1	2	1	2	3			
23MFPE01	1	2	2	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

and the second

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1			100				100	
CAT2			50	50			100	
Individual			100				100	
Assessment 1								
/Case Study								
1/ Seminar 1								
/ Project1								
Individual			50	50			100	
Assessment 2								
/Case Study								
2/Seminar 2								
/ Project 2								
ESE			50	50			100	

23MFPE02

PREREQUISITES	CATEGORY	L	Τ	Ρ	С
NIL	PE	3	0	0	3

Course	To gain knowledge in the methods of measurement selection	of moscuring		
Objectives	in gain knowledge in the methods of measurement, selection	in atrum anta		
Objectives	instruments, standards of measurement, various measuring	g instruments,		
	accurate and precise measurement of a given quantity.			
UNIT – I	LASER METROLOGY	9 Periods		
Introduction	– Types of Lasers – Laser in Engineering Metrology – Metrological	Laser Methods		
for Application	ns in Machine Systems - Interferometer Applications - Speckle In	terferometer –		
Laser Interfe	rometers in Manufacturing and Machine Tool Alignment Testing	g – Calibration		
Systems for Ir	ndustrial Robot's Laser Doppler Technique – Laser Doppler Anemon	netry.		
UNIT – II	MEASUREMENT OF SURFACE FINISH AND MEASURING	9 Periods		
	MACHINES			
Definitions – '	Types of Surface Texture: Surface Roughness Measurement Method	s– Comparison,		
Profilometer,	3D Surface Roughness Measurement – Instruments.	_		
UNIT – III	CO-ORDINATE MEASURING MACHINE	9 Periods		
Co-Ordinate	Metrology – CMM Configurations – Hardware Components – Sof	tware – Probe		
Sensors – Dis	placement Devices - Performance Evaluations - Software - Hardw	vare – Dynamic		
Errors – Th	ermal Effects Diagram – Temperature Variations Environme	ent Control –		
Applications.	T I			
UNIT – IV	OPTO ELECTRONICS AND VISION SYSTEM	9 Periods		
Optoelectroni	c Devices – CCD – On-Line and In-Process Monitoring in Production	n –Applications		
Image Analys	is and Computer Vision - Image Analysis Techniques - Spatial Fe	eature – Image		
Extraction –	Segmentation - Digital Image Processing - Vision System for M	leasurement –		
Comparison L	aser Scanning with Vision System.			
UNIT – V	QUALITY IN MANUFACTURING ENGINEERING	9 Periods		
Importance of Manufacturing Planning for Quality - Concepts of Controllability - Need or				
Quality Management System and Models – Quality Engineering Tools and Techniques –				
Statistical Process Control – Six Sigma Concepts – Poka Yoke – Computer Controlled Systems				
Used in Inspection.				
Contact Periods:				
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45	5 Periods		

1	N.V. Raghavendra, L. Krishnamurthy, "Engineering Metrology and Measurements", Oxford
	University Press, USA, 2013.
2	Brian cantor, "Automotive Engineering: Light Weight, Functional and Novel Materials",
	Taylor and Francis, 2010.
3	S. K. Singh, "Industrial Instrumentation and Control", 3 rd Edition, McGraw Hill Education
	(India) Private Limited, New Delhi, 2009.
4	B.C. Nakra and K.K. Choudhary, "Instrumentation measurement and analysis", 3rd Edition,
	McGraw Hill Education (India) Private Limited, New Delhi, 2009.
5	A.K. Sawhney and Puneet Sawhney, "Mechanical Measurement and Instrumentation and
	Control ", 12 th Edition, Dhanpat Rai& Co, 2009.
6	Thomas G. Beckwith, Roy D. Marangoni and John H. Lienhard V, "Mechanical Measurements"
	6 th Edition, by, Published by Addison Wesley, 2007.

COUF	COURSE OUTCOMES:					
		Taxonomy				
Upon	completion of the course, the students will be able to:	Mapped				
C01	Apply principle of metrology in working of various measuring	K2				
	instruments.					
CO2	Select the different measuring in the manufacturing inspection	К3				
CO3	Use the different measuring instruments to measure the qualitative and	K2				
	quantitative characteristics of components.					
CO4	Analyze the data statistically	К3				
CO5	Evaluate the data and decision to be taken for controlling the quality	КЗ				
	complying with international standards.					

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05				
C01	1	1	1	2	1				
CO2	1	2	2	2	1				
CO3	1	2	3	2	1				
CO4	2	1	1	2	1				
CO5	1 99	2	3	2	2				
23MFPE02	1	2	2	2	1				
1 – Slight, 2 – Moderate, 3 –	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1		50	50				100			
CAT2		50	50				100			
Individual		50	50				100			
Assessment 1										
/Case Study										
1/ Seminar 1										
/ Project1										
Individual		50	50				100			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE		50	50				100			

23MFPE03

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	To introduce and familiarize the industry 4.0 physi interconnectivity, architecture, IoT, cloud computing, data analyti integrated IoT, cloud computing and data analytics.	cal structure, cs, concepts of				
UNIT – I	INDUSTRY 4.0	9 Periods				
Digitalization	and the Networked Economy –Introduction to Industry 4.0 -	Comparison of				
Industry 4.0 F	actory and Today's Factory –Internet of Things (101) –Industrial Int	ernet of Things				
(101) -Smart	Devices and Products – Smart Logistics – Support System for Industrian for Smart Logistics – Support System for Smart	stry 4.0 -Cloud				
Architecture	of Industry 4.0.	art dusiness -				
UNIT – II	IoT AND ITS PROTOCOLS	9 Periods				
Definitions an	nd Functional Requirements – Motivation – Architecture - Web 3.0	View of IoT –				
Ubiquitous Io	T Applications – Four Pillars of IoT – DNA of IoT – Communication	Middleware for				
IoT – IoT Info	rmation Security. IoT Reference Architecture - Unified Data Standard	ls – Protocols –				
IEEE 802.15.4	4 – BAC Net Protocol – Modbus –KNX – Zigbee Architecture – Netw	ork Layer APS				
Layer – Secur	ity.					
UNIT – III	CLOUD COMPUTING	9 Periods				
Web of Thing	Web of Things versus Internet of Things – Two Pillars of the Web – Architecture Standardization					
for WoT – Pla	tform Middleware for WoT – Unified Multitier WoT Architecture – W	oT Portals and				
Business Inte	lligence. Cloud of Things: Grid/SOA and Cloud Computing – Cloud	Middleware –				
Cloud Standa	ds – Cloud Providers and Systems – Mobile Cloud Computing – The C	Cloud of Things				
Architecture a	and Data Analytics.					
UNIT – IV	IN TEGRATED TO T	9 Periods				
Integrated Bil	ling Solutions in the Internet of Things Business Models for the Inter	net of Things –				
Network Dyn	amics: Population Models – Information Cascades – Network Effe	ects - Network				
Dynamics: S	tructural Models – Cascading Behavior in Networks – The	Small–World				
Phenomenon.	ADDITCATIONS	0 Domio da				
UNII - V	APPLICATIONS	9 Perious				
The Role of	the Internet of Things for Increased Autonomy and Agility in	Collaborative				
The Role of Production E	the Internet of Things for Increased Autonomy and Agility in Invironments – Resource Management in the Internet of Thin	collaborative gs: Clustering,				
The Role of Production E Synchronizati	the Internet of Things for Increased Autonomy and Agility in Invironments – Resource Management in the Internet of Thin on and Software Agents–Industry 4.0 in Car Manufacturing	Collaborative gs: Clustering, – Electronics				
The Role of Production E Synchronizati Manufacturin	the Internet of Things for Increased Autonomy and Agility in Invironments – Resource Management in the Internet of Thin on and Software Agents–Industry 4.0 in Car Manufacturing g – IOT Based Building Automation – Agricultural Automation.	Collaborative gs: Clustering, – Electronics				
The Role of Production E Synchronizati Manufacturin Contact Perio Lecture 45 P	the Internet of Things for Increased Autonomy and Agility in Invironments – Resource Management in the Internet of Thin on and Software Agents–Industry 4.0 in Car Manufacturing g – IOT Based Building Automation – Agricultural Automation. ods: eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Collaborative gs: Clustering, – Electronics				

1	Kiran Kumar Pabbathi, "Quick Start Guide to Industry 4.0: One-Stop Reference Guide for							
	Industry 4.0", Create space Independent Publishing Platform, 2018.							
2	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A Press, 2016.							
3	Natalie Enright Jerger and Li ShiuanPeh, "On-Chip Networks, Synthesis Lectures on							
	Computer Architecture", Morgan and Claypool Publishers, 2009.							
4	Duato J, Yalamanchili S, and Lionel Ni, "Interconnection Networks: An Engineering							
	Approach", Morgan Kaufmann Publishers, 2004.							

COUF Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Realize the need of industry 4.0 and its inter-connectivity.	K4
CO2	Interpret the architecture of IoT and its protocols	K4
CO3	Recognize the uses of cloud computing and data analytics	K4
CO4	Familiar the concepts of integrated IoT.	K4
C05	Plan the uses of IoT, cloud computing, data analytics and Industry 4.0	K4
	technologies.	

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	P03	P04	P05				
C01	2	1	2	1	1				
C02	1	2	2	1	2				
CO3	1	2	1	2	3				
CO4	1	1	2	1	3				
CO5	2	2	3	2	2				
23MFPE03	1 %	2	2	1	3				
1 – Slight, 2 – Moderate, 3 –	1 – Slight, 2 – Moderate, 3 – Substantial.								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1				100			100			
CAT2				100			100			
Individual				100			100			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual				100			100			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE				100			100			

23MFPE04

ADVANCED ENGINEERING MATERIALS AND METALLURGY

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	Course To Gain the Concepts, Fracture Behavior, selection of modern metallic materials								
Objectives	and non - metallic materials.								
UNIT – I	ELASTIC AND PLASTIC BEHAVIOR	9 Periods							
Elasticity in M	Aetals and Polymers An Elastic and Visco- Elastic Behavior – Mecha	anism of Plastic							
Deformation	Deformation and Non- Metallic Shear Strength of Perfect and Real Crystals – Strengthening								
Mechanisms,	Mechanisms, Work Hardening, Solid Solutioning, Grain Boundary Strengthening, Poly Phase								
Mixture, Pred	cipitation, Particle, Fiber and Dispersion Strengthening. Effect of	f Temperature,							
Strain and Str	rain Rate on Plastic Behavior – Super Plasticity – Deformation of No	on – Crystalline							
Materials.									
UNIT – II	FRACTURE BEHAVIOUR	9 Periods							
Griffith's theo	ory, Stress Intensity Factor and Fracture Toughness – Toughening	Mechanisms –							
Ductile, Britt	tle Transition in Steel – High Temperature Fracture, Creep ·	-Larson Miller							
Parameter – I	Deformation and Fracture Mechanism Maps – Fatigue, Low and Hig	h Cycle Fatigue							
Test, Crack	Initiation and Propagation Mechanisms and Paris Law Effect of	of Surface and							
Metallurgical	Parameters on Fatigue - Fracture of Non - Metallic Materials - Fa	ailure Analysis,							
Sources of Fai	ilure, Procedure of Failure Analysis.								
UNIT – III	SELECTION OF MATERIALS	9 Periods							
Motivation for	or Selection, Cost Basis and Service Requirements - Selection	for Mechanical							
Properties,Str	rength, Toughness, Fatigue and Creep – Selection for Surface Dural	oility Corrosion							
and Wear Res	sistance – Relationship Between Materials Selection and Processing	g – Case Studies							
in Materials	Selection With Relevance to Aero, Auto, Marine, Machinery	v and Nuclear							
Applications -	- Computer Aided Materials Selection.								
UNIT – IV	MODERN METALLIC MATERIALS	9 Periods							
Dual Phase S	teels, High Strength Low Alloy (HSLA) Steel, Transformation Ind	luced Plasticity							
(TRIP) Steel,	Maraging Steel, Nitrogen Steel - Intermetallics, Ni and Ti-Alum	inides – Smart							
Materials, Sha	ape Memory Alloys – Metallic Glass and Nano Crystalline Materials.								
UNIT – V	NON - METALLIC MATERIALS	9 Periods							
Bio Materials	- Polymeric Materials - Formation of Polymer Structure - Product	ion Techniques							
of Fibers, Foams, Adhesives and Coating – Structure, Properties and Applications of Engineering									
Polymers – A	dvanced Structural Ceramics, WC, TiC, TaC, Al_2O_3 , SiC, Si_3N_4 CBN a	and Diamond –							
Properties, Pr	rocessing and Applications.								
Contact Peri	ods								
Lecture: 45 I	Lecture: 45 Periods Tutorial: 0 Periods Practical:0 Periods Total: 45 Periods								

1	Pravin Kumar, "Basic Mechanical Engineering", Pearson Education; 2 nd Edition. 2018.
2	Yongchang Liu, Yingquan Peng, "Advanced Material Engineering - Proceedings Of The

- 2015 International Conference", World Scientific Publishing Co Pt Ltd, 2015.
- 3 R. Balasubramaniam, Callister's, "Materials Science and Engineering", Wiley; 2ndEdition 2014.
- 4 Datta B.K, **"Powder Metallurgy: An Advanced Technique of Processing Engineering Materials"**, Prentice Hall India Learning Private Limited; 2ndedition 2013.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze the Concepts of Material Behavior for Specific Applications.	K3
CO2	Identify the Performance Requirements of a Desired Material for a	K2
	Specific Engineering Application.	
CO3	Select Modern Materials for Automotive and Aerospace Applications.	K2
C04	Identify and Describe Different Types of Material Processing Techniques	КЗ
	for Advanced Materials	
CO5	Ability to Select Suitable Material for Specific Applications	K2

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	P03	P04	P05
C01	1	2	2	1	3
CO2	1	1	2	1	1
CO3	2	1	2	1	2
C04	2	1	2	1	3
CO5	1	2	2	1	3
23MFPE04	1	2	2	1	3
1 – Slight, 2 – Modera	ate, 3 – Substan	tial			

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1		50	50				100	
CAT2		50	50				100	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50	50				100	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50	50				100	
ESE		50	50				100	

23	MFPE05	

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To introduce non-linear computational methods to solve problems	s in solids &				
Objectives	structure, basic principles of finite element analysis procedure, solutions to					
	structural, thermal, dynamic and formulation methods in FEM.					
UNIT – I	MATHEMATICAL MODELS	9 Periods				
Modeling an	d Discretization – Interpolation, Elements, Nodes and degre	es-of-freedom.				
Computationa	al Procedures–Stiffness Matrices – Boundary Conditions–Solution of	Equations Ritz				
Method, Varia	tion Method, Method of Weighted residuals					
UNIT – II	BASIC ELEMENTS	9 Periods				
Interpolation	and Shape Functions - Element Matrices - Linear Triangular Ele	ements (CST) –				
Quadratic Tr	iangular Elements – Bilinear Rectangular Elements – Quadrat	ic Rectangular				
Elements -So	blid Elements – Higher Order Elements – Nodal Loads-Stress	Calculations –				
Example Prob	olems.					
UNIT – III	ISOPARAMETRIC ELEMENTS	9 Periods				
Introduction-	Bilinear Quadrilateral Elements – Quadratic Quadrilaterals	– Hexahedral				
Elements – D	etermination of Shape Functions - Numerical Integration - Quad	rature – Static				
Condensation	- Load Considerations - Stress Calculations - Examples O	f 2D and 3D				
Applications.						
UNIT – IV	FINITE ELEMENT FORMULATION FOR STRUCTURAL	9 Periods				
	APPLICATIONS					
Linear Elastic	c Stress Analysis -2D, 3D and Ax Symmetric Problems - Analysi	s of Structural				
Vibration – M	lass And Damping Matrices – Damping – Harmonic Response – Dir	ect Integration				
Techniques – Explicit And Implicit Methods.						
UNIT – V	HEAT TRANSFER AND FLUID MECHANICS APPLICATIONS	9 Periods				
Nonlinear Problems - Element Formulation - Heat Conduction, Fluid flow, etc-Transient						
Thermal Analysis–Acoustic Frequencies and Modes- Incompressible and Rotational Flows.						
Contact Peri	ods:					
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 4	5 Periods				

1	Gilbert Strang & George Fix, "An Analysis of the Finite Element Method", Wellesley-
	Cambridge Press,2018.
2	W.B. Bickford, "Advanced Mechanics of Materials", Pearson; 1st Edition, 2015
3	Thomas Apel, "Advanced Finite Element Methods and Applications", Springer; 2013th
	edition 2014.
4	R. D. Cook & W. C. Young, "Advanced Mechanics of Materials", Pearson; 2nd edition, 2003

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply numerical solutions to elasticity and possibly heat transfer	K2
	problems using the finite element method.	
CO2	Describe Energy Theorems and their implementation in the finite	K2
	element setting	
CO3	Evaluate approximations associated with the finite element method	К3
C04	Apply convergence requirements and associated modeling techniques	K4
001	and methods.	
C05	Select appropriate elements and analysis types given a physical system.	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05
C01	1	2	2	1	3
C02	1	2	1	3	3
CO3	1	1	3	2	2
C04	1 2	2	2	3	1
C05	1	11	2	2	3
23MFPE05	1	2	2	2	2
1 – Slight, 2 – Moderate, 3	– Substantial.				·

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1		100					100	
CAT2			50	50			100	
Individual		100					100	
Assessment 1								
/Case Study 1/								
Seminar 1 /								
Project1								
Individual			50	50			100	
Assessment 2								
/Case Study 2/								
Seminar 2 /								
Project 2								
ESE		50	25	25			100	

PREREQUISITES CATEGORY L T					Ρ	С
	NIL	PE	3	0	0	3
Course ObjectivesUpon completion of this course, the students will be able;1.To acquire knowledge on wear and its types.2.To familiar with parameters of surface roughness and wear measurements.3.To observe and identify wear in lubricated contacts.4.To formulate the diagnosis and mitigation of wear.5.To understand the nature of wear in mechanical components.					ts.	
UNIT-I	INTRODUCTION TO WEAR	-		9	Pe	riods
Types of w cavitations w	ear, Adhesive wear, two-body and three-body year, wear due to surface fatigue – Chemical reaction	v abrasive wea	ır, e	eros	ive	wear,
UNIT- II	SURFACE ROUGHNESS AND WEAR MEASURE	EMENTS		9	Pe	riods
Tribo systems and tribo-elements, Characteristics of surface layers, Roughness parameters, Multi scale characterization of surface topography, Surface roughness measurement using pin- on-ring (POR) and pin-on-disc (POD) machines, Advanced techniques for surface topography evaluation. Contact of ideally smooth surfaces, contact of rough surfaces.				eters, g pin- raphy		
UNIT-III	WEAR IN LUBRICATED CONTACTS			9	Pe	riods
Rheological sharing in l example	lubrication regime, Functional lubrication regir ubricated contacts, Adhesive wear equation, Fa	ne, Fractional t tigue wear equ	film Iatic	def on, l	ect, Num	Load erical
UNIT- IV	DIAGNOSIS AND CONTROL OF WEAR			9	Pe	riods
Diagnosis of wear mechanisms using optical microscopy and scanning electron microscopy, Wear resistant materials, wear resistant coatings, eco-friendly coatings designing for wear, systematic wear analysis, wear coefficients, filtration for wear control.						
UNIT-V	UNIT-V WEAR IN MECHANICAL COMPONENTS 9 Periods					
Component wear, bushings, lubricated piston rings and cylinder bore wear, dry piston rings, rolling bearings, seal wear, gear wear, gear couplings, wear of brake materials, wear of cutting tools, chain wear.						
Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods						

1	B. Pugh, Friction & Wear, Wiley India Pvt. Ltd., New Delhi, 2012.
2	Harish Hirani, Fundamentals of Engineering Tribology with Applications, Cambridge
3	Ludema K C, Friction, Wear, Lubrication:A textbook in Tribology, CRC Press, 2010.
4	Paulo Davim. Triboloav for Engineers:A practical auide . Woodhead publishing. 2011
5	Basy Sen Gunta and Ahuia Fundamentals of Tribology PHI 2000
5	
6	https://nptel.ac.in/courses/113108083
7	https://nptel.ac.in/courses/113105086

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Formulate wear behaviour of materials under different environmental	КЗ
	conditions.	
CO2	Analyze contact behaviour of smooth and rough surfaces and identify	КЛ
	the type of wear.	N 4
CO3	Analyze the friction phenomena and select a suitable lubricant for a	КЛ
	specific application.	КŦ
C04	Diagnose and control wear in metallic parts.	КЗ
C05	Determine the cause of wear in mechanical components.	K2

COs/POs	P01	P02	P03	P04	P05
C01	2	2	2	3	3
CO2	2	1	1	2	3
CO3	1	1	1	2	3
CO4	2	2	1	3	2
CO5	2	2	2	2	2
23MFPE06	2	2	1	2	3
1 – Slight, 2 – Moderate, 3 – Substantial					

		1000					
			-77				
ASSESSMENT H	ASSESSMENT PATTERN – THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			40	60			100
CAT2		30	40	30			100
Individual		10.83	40	60			100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual		30	40	30			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		20	40	40			100

PREREQUISITES			CATEGORY	L	Т	Р	С
		NIL	PE	3	0	0	3
Course	1.	To understand the fundamental concepts in	n machine tool de	sigr	1.		
Objectives	2.	To be acquainted with different influenc	ing factors, and	the	met	hod	s of
		controlling, the quality of products, in p	particular streng	th, 1	rigid	lity	and
		dimensional accuracy.					
	3.	To know about various common technic	jues used in des	ign	of r	nacł	nine
		components					
UNIT – I	IN	TRODUCTION TO MACHINE TOOL DESIGN			9 Pe	erio	ds
Introduction	to N	Aachine Tool Drives and Mechanisms - Auxi	liary Motions in l	Mac	hine	Тос	ols -
Kinematics of	f Ma	chine Tools - Motion Transmission.					
UNIT – II	RE	GULATION OF SPEEDS AND FEEDS			9 Pe	erio	ds
Aim of Speed	d and	d Feed Regulation - Stepped Regulation of S	Speeds - Multiple	Spe	ed I	Note	ors -
Ray Diagram	is an	d Design Considerations - Design of Speed	Gear Boxes - Feed	d Dr	ives	- F	eed
Box Design.							
UNIT – III	DE	ESIGN OF MACHINE TOOL STRUCTURES			9 Pe	erio	ds
Functions of	Mac	hine Tool Structures and their Requirement	ts - Design for Sti	reng	gth -	Des	sign
for Rigidity -	Mat	terials for Machine Tool Structures - Machin	e Tool Construct	iona	al Fe	atur	es -
Beds and Hou	usin	gs - Columns and Tables - Saddles and Carria	age.				
UNIT – IV	DE	ESIGN OF GUIDEWAYS AND POWER SCREW	VS		9 Pe	erio	ds
Functions of	Spi	ndles and Requirements - Effect of Machine	e Tool Complianc	e or	n Ma	ichir	ning
Accuracy - D	esig	n of Spindles - Antifriction Bearings - Dyna	mics of Machine	Тос	ols: I	Mach	nine
Tool Elastic S	Syste	em - Static and Dynamic Stiffness		-	-		_
UNIT – V	CC	NTROL SYSTEMS IN MACHINE TOOLS			<u>9 Pe</u>	erio	ds
Machine tool	l co	ntrol systems - Control Systems for Speed	and Feed Chang	ing	- A	dap	tive
Control Syste	ems	A X M					
Contact Peri	iods						
Lecture: 45	Peri	ods Tutorial: 0 Periods Practical: 0	Periods Total:	45 I	Perio	ods	
REFERENCES	:			-		0.04	_
1 N.K. Mehta, Machine Tool Design and Numerical Control, McGraw Hill Education, 2017.							
2 G.C. Sen and A. Bnattacharya, Principles of Machine Tool , New Central Book Agency, 2009.							
3 D. K. Pai, S. K. Basu, Design of Machine Tools , Oxford & IBH Publishing Co Pvt.Ltd, 2018.							
4 IN. Acherk	an, 1	viuenine 1001 Design Vol. 3 & 4, MIK Publish	ers, Moscow, 1968				
5 https://nj	ptel.	ac.in/courses/112105233					
6 https://nj	ptel.	ac.in/courses/112106424					

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
C01	Select the different machine tool mechanisms for real time applications.	K5		
CO2	Design the Multi speed Gear Box and feed drives for industrial	K4		
	applications.			
CO3	Design the machine tool structures for manufacturing of components.	КЗ		
C04	Design the guide ways and power screws for various machine tools.	K3		
CO5	Select the suitable control system specific to the machine tool.	K5		

COURSE ARTICULATION MATRIX:					
COs/POs	P01	PO2	PO3	P04	P05
C01	2	3	3	2	1
C02	1	2	3	2	1
CO3	1	3	1	1	1
CO4	1	1	2	1	1
C05	1	1	3	1	1
23MFPE07	1	2	2	1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3)%	(K4) %	(K5)%	(K6)%	%
CAT1			30	40	30		100
CAT2			50		50		100
Individual			30	40	30		100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual			50		50		100
Assessment 2		1993	10.00				
/Case Study 2/		34/2 St	COLOR OF B				
Seminar 2 /			777				
Project 2							
ESE		1.7	40	20	40		100
			Y				

SENSORS FOR INTELLIGENT MANUFACTURING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. To familiarize with the basics of sensors in manufacturing.					
Objectives	2. To acquire knowledge in the concepts of condition monitoring.					
-	3. To understand sensors in CNC machine tools and acoustic emis	sion sensors				
	for hi-tech manufacturing systems					
	4. 4 To provide the knowledge on sensors used in manufacturing	and				
	inspection					
	5 5 To gain knowledge on advanced sensors in industrial automa	ation				
		O Devie de				
UNII – I	INTRODUCTION	9 Periods				
Introduction	– Role of sensors in manufacturing automation – Operation	n principles of				
different sens	ors – Electrical, optical, acoustic, pneumatic, magnetic, Electro op	tical and vision				
sensors						
UNIT – II	CONDITION MONITORING OF MANUFACTURING SYSTEMS	9 Periods				
Condition mo	nitoring of manufacturing systems – Principles – Sensors for mo	onitoring force,				
vibration and	noise, selection of sensors and monitoring techniques.	-				
UNIT – III	ACOUSTIC EMISSION SENSORS	9 Periods				
Acoustic emis	sion – Principles and applications – Concepts of pattern recogniti	on. Sensors for				
CNC Machine	tools – linear and angular position and velocity sensors.					
UNIT – IV	MACHINE VISION SENSORS	9 Periods				
Automatic ide	entification techniques for shop floor control – Bar code scanners, r	adio frequency				
systems – Opt	tical character and machine vision sensors.	1 5				
UNIT – V	ADAPTIVE CONTROL OF MACHINE TOOLS	9 Periods				
Smart / intell	igent sensors – Integrated sensors, Robot sensors, Micro sensors, Na	no sensors-				
Adaptive control of machine tools.						
Contact Peri	ods:					
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Tot	al: 45 Periods				
Letter 101		10101000				

1	Peter E. Orban, George K. Knopf, Sensors and Controls for Intelligent Manufacturing,
	Society of Photo Optical, 2001.
2	Sabrie Salomon, Sensors and Control Systems in Manufacturing, McGraw Hill Int. Edition,
	2010
3	Randy Frank, Understanding Smart Sensors, Artech House, USA, 2011.
4	Regtien, P. P. L., Sensors for mechatronics, Elesevier, USA,2012.
5	Bradley, D. A., Dawson D., Burd, N. C. and Loader A. J., Mechatronics: Electronics in products
	and processes, CRC Press, Florida, USA, 2010
6	Jacob Fraden, Handbook of Modern Sensors Physics, Designs and Applications, Springer -
	Verlag New York, 2004.
7	https://archive.nptel.ac.in/courses/112/103/112103293/

COUI	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Select the suitable sensors for manufacturing automation.	K4
CO2	Choose the advanced sensors for condition monitoring in shop	K4
	floor.	
CO3	Use special type of sensors for hi-tech manufacturing systems.	КЗ
CO4	Apply advanced sensor based systems for identification and	КЗ
	inspection functions in shop floor.	
C05	Apply smart sensors for industrial automation.	КЗ

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	P05
C01	1	1	3	2	1
CO2	1	1	3	2	1
CO3	1	1	3	1	2
CO4	1	2	3	1	1
CO5	1	1	3	2	1
23MFPE08	1	1	3	1	1
1 Clight 2 Madamata 2	Cubstantial	and a second sec			

1 – Slight, 2 – Moderate, 3 – Substantial

ACCECCMENT		ODV	100				
ASSESSMENT	PATTERN – THE	ORY	78	•			
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			40	60			100
CAT2			100				100
Individual			40	60			100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual			100				100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE			60	40			100

23MFPE09

PREREQUISITES	CATEGORY	L	Т	Ρ	С
NIL	PE	3	0	0	3

Course Objectives	1. To enlarge knowledge on recent development of science and micro and nano systems.	l technology of
,	2. To familiarize the fabrication and packaging of micro systems.	
	3. To understand the micro devices used in the recent developme	ents
	4 To gain knowledge on synthesis of nano materials	
	5 To familiarize the characterization of nano materials	
IINIT – I	MEMS AND MICROSVSTEMS	9 Pariods
Definition	listorical development fundamentala Dreportica miero fluidi	or design and
fabrication m	icro system, microelectronics, working principle, applications and	advantages of
micro system	MEMS Simulation and Design tools - Behavioral modelling simul	auvaillages of
Finite elemen	t simulation tools.	
UNIT – II	MATERIALS, FABRICATION PROCESSES AND MICRO SYSTEM	9 Periods
	PACKAGING	
Substrates an	nd wafers- Polymers for MEMS, Conductive polymers- Photolit	hography- Ion
implantation	- Diffusion process - Oxidation - Chemical vapor deposition	, Sputtering -
Deposition by	epitaxy – Etching – Bulk and surface machining – LIGA process -	- Micro System
packaging	T I	
IINIT III		
UNII – III	MICRO DEVICES	9 Periods
Sensors – Cla	ssification – Signal conversion ideal characterization of sensors m	9 Periods
Sensors – Cla mechanical se	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti	9 Periods nicro actuators, ivity, reliability
Sensors – Cla mechanical se and response	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators.	9 Periods nicro actuators, ivity, reliability
Sensors – Cla mechanical se and response UNIT – IV	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS	9 Periods nicro actuators, ivity, reliability 9 Periods
Sensors – Cla mechanical se and response UNIT – IV Classification Structural Th	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on variou	9 Periods nicro actuators, ivity, reliability 9 Periods ns properties –
Sensors – Cla mechanical se and response UNIT – IV Classification Structural, Th particles – So	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on variou ermal, chemical, mechanical, magnetic, optical and electronic pr	9 Periods nicro actuators, ivity, reliability 9 Periods ns properties – operties. Nano es- Fabrication
Sensors – Cla mechanical se and response UNIT – IV Classification Structural, Th particles - So methods – To	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on various termal, chemical, mechanical, magnetic, optical and electronic pro- Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tubor p down Processes – Bottom up process.	9 Periods nicro actuators, ivity, reliability 9 Periods 15 properties – operties. Nano es- Fabrication
Sensors – Cla mechanical se and response UNIT – IV Classification Structural, Th particles - So methods – To UNIT – V	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on variou nermal, chemical, mechanical, magnetic, optical and electronic pri- -Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube p down Processes – Bottom up process. CHARACTERIZATION OF NANO MATERIALS	9 Periods hicro actuators, ivity, reliability 9 Periods hs properties – operties. Nano es- Fabrication 9 Periods
Sensors – Cla mechanical se and response UNIT – IV Classification Structural, Th particles - So methods – To UNIT – V Nano-process	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on variou lermal, chemical, mechanical, magnetic, optical and electronic pri- -Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube p down Processes – Bottom up process. CHARACTERIZATION OF NANO MATERIALS ing systems – Nano measuring systems – Characterization – Ana	9 Periods nicro actuators, ivity, reliability 9 Periods 15 properties – operties. Nano es- Fabrication 9 Periods lytical imaging
Sensors – Cla mechanical se and response UNIT – IV Classification Structural, Th particles - So methods – To UNIT – V Nano-process techniques –	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on various ermal, chemical, mechanical, magnetic, optical and electronic pre-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube down Processes – Bottom up process. CHARACTERIZATION OF NANO MATERIALS ing systems – Nano measuring systems – Characterization – Ana Microscopy techniques- Diffraction techniques – Spectroscopy techniques-	9 Periods aicro actuators, ivity, reliability 9 Periods 1s properties – operties. Nano es- Fabrication 9 Periods lytical imaging echniques - 3D
Sensors – Cla mechanical se and response UNIT – IV Classification Structural, Th particles - So methods – To UNIT – V Nano-process techniques – surface analys	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on various mermal, chemical, mechanical, magnetic, optical and electronic pro- l-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube p down Processes – Bottom up process. CHARACTERIZATION OF NANO MATERIALS ing systems – Nano measuring systems – Characterization – Ana Microscopy techniques- Diffraction techniques – Spectroscopy techniques- sis – Mechanical, Magnetic and thermal properties– Nano positioning	9 Periods icro actuators, ivity, reliability 9 Periods is properties – operties. Nano es- Fabrication 9 Periods lytical imaging echniques - 3D g systems.
Sensors – Cla mechanical se and response UNIT – IV Classification Structural, Th particles - So methods – To UNIT – V Nano-process techniques – surface analys Contact Perio	ssification – Signal conversion ideal characterization of sensors mensors – Displacement sensors, pressure and flow sensors - Sensiti of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on various nermal, chemical, mechanical, magnetic, optical and electronic pre- l-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tubor p down Processes – Bottom up process. CHARACTERIZATION OF NANO MATERIALS ing systems – Nano measuring systems – Characterization – Ana Microscopy techniques- Diffraction techniques – Spectroscopy techniques- sis – Mechanical, Magnetic and thermal properties– Nano positioning ods	9 Periods hicro actuators, hivity, reliability 9 Periods his properties – hoperties. Nano es- Fabrication 9 Periods hytical imaging echniques - 3D g systems.

1	M.H. Fulekar, Nanotechnology: Importance and Applications, Dreamtech Press, 2019.
2	DAS A, An Introduction to Nanomaterials and Nanoscience, CBS, 2020.
3	Thomas Varghese & K.M. Balakrshna, Nanotechnology: An Introduction to Synthesis,
	Properties and Applications of Nanomaterials. Atlantic; Reprint, 2021.
4	Choudhary K K, Nanoscience and Nanotechnolog, Narosa Publishing House Pvt. Ltd, 2016.
5	Jaume Verd, Jaume Segura, Development of CMOS-MEMS/NEMS Device, MDPI AG, 2019.
6	https://nptel.ac.in/courses/117105082
7	https://archive.nptel.ac.in/courses/118/104/118104008/

COUI	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the micro/nano systems in manufacturing industries.	K3
CO2	Identify the materials and fabrication process for micro systems.	K3
CO3	Apply the micro and nano-scale devices in mechanical assemblies.	K4
C04	Develop the nano materials for industrial applications.	КЗ
CO5	Analyze the nano materials using advanced microscopy.	К3

COURSE ARTICULATION MATRIX:

COs/POs	P01	PO2	PO3	P04	P05
C01	1	2	1	1	1
CO2	2	1	2	1	2
CO3	2	1	1	3	2
CO4	2	2	2	1	3
CO5	2	2	2	2	1
23MFPE09	2	2	2	2	2

		0.000	a Roman				
ASSESSMENT PA	TTERN – THEOF	RY Second	72.75				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1			60	40			100
CAT2		1 8	60	40			100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1			60	40			100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2			60	40			100
ESE			60	40			100

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL		3	0	0	3

Course	1. To understand the concepts of lean manufacturing	
Objectives	2. To acquire knowledge of design and value stream management	nt
	3. To familiarize the fundamental lean tools used in industries.	
	4. To familiarize the techniques of lean implementation in manufa	acturing
	industries.	
	5. To gain knowledge in lean metrics and lean sustenance.	
UNIT – I	LEAN MANUFACTURING	9 Periods
Evolution of I	Lean - Traditional versus Lean Manufacturing - Business of Surviva	l and Growth -
Business Mod	lel Transformation - Ford Production System - Job Shop Concepts	s - Concept of
Lean -Toyota'	s foray in Lean.	
UNIT – II	DESIGN AND VALUE STREAM MANAGEMENT	9 Periods
Definition VS	M Types - Product Family Selection - Value Stream Manager - Curr	rent State Map,
Process Box,	Value Stream Icons - 3 MS - Muda, Mura, Muri - Types of Muda, Fu	ture State Map,
Value Stream	Plan, Process Stability - Loss Reduction - Major Losses Reduct	ion Demand
Stage, Marke	t Dynamics, Customer Demand, PQ Analysis, PR Analysis; TAK	T Time, Pitch,
Finished Good	ls Stock, Cycle Stock, Buffer Stock, Safety Stock.	
UNIT – III	FUNDAMENTAL LEAN TOOLS	9 Periods
Flow Stage, C	ontinuous Flow - Cell Layout - Line Balancing, Macro and Micro M	otion, Analysis,
Standardized	Work - Concept of Kaizen - Steps involved in Kaizen Deployme	nt - Industrial
Engineering -	Concepts and Fundamentals, Kanban Concepts, Types of Kanban	s and Practical
Application -	Concept of Pull - Changeover Time Reduction - External and In	ternal - Single
Minute Excha	nge of Die - Quick Die Change - Quality-Vendor, In Process and Custo	omer, Line.
UNIT – IV	LEAN IMPLEMENTATION	9 Periods
Concept of PF	PM - Pokayoke, Prevention and Detection Types, Maintenance - Pr	eventive, Time
Based and Co	ndition Based; Human Development for Lean (Training and Involv	ement through
Autonomous	Maintenance) Leveling Stage of Lean Implementation, Produc	ction Leveling,
Leveling Box,	Concept of Water Spider	
UNIT – V	LEAN METRICS AND LEAN SUSTENANCE	9 Periods
Identify Lean	Metrics - Steps involved in Goal Setting - Corporate Goals -	Kaizen Cloud,
identification	in VSM - Lean Assessment, Cultural Change, Reviews, Recognit	ion, Improving
Targets and B	enchmarks.	
Lontact Perio	DOS: Deviada Tutovial O Deviada Duantical O Deviada Tatal 45	Dorioda
Lecture: 45 P	remous i utoriai: o remous practicai: o perious 10tal: 45	renous
REFERENCES		

1	Ronald G. Askin, Jeffrey B. Goldberg Research on Design and Management of Lean
	Production Systems , Wiley; 1 st Edition 2001
2	Akhilesh N. Singh , Lean Manufacturing Concepts, Bibliophile South Asia, 2011.
3	Lonnie Wilson, How to Implement Lean Manufacturing, McGraw-Hill Education, 2009.
4	J. Paulo Davim, Modern Manufacturing Engineering, Springer, 2015.
5	https://nptel.ac.in/courses/110107130

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify the production system for implementing lean principles.	K2
CO2	Apply lean concepts in manufacturing sector to face globalization and	K3
	competitiveness	
CO3	Implement the lean tools against the targets for sustainable business	K4
	growth	
CO4	Develop a roadmap for successful implementation of lean principles	K3
CO5	Identify and organize the elements of just in time manufacturing	K2

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	PO3	P04	P05		
CO1	1	1	3	1	1		
CO2	2	2	2	1	2		
CO3	2	1	1	2	3		
CO4	2	2	2	1	3		
CO5	2	(121-sa	1	3	3		
23MFPE10	2	1	2	2	3		
1 – Slight, 2 – Moderate, 3 – Substantial							

1	– Slight, 2	 Moderate, 	3 -	Substantial
---	-------------	-------------------------------	-----	-------------

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1		30	40	30			100		
CAT2		30	40	30			100		
Individual		30	40	30			100		
Assessment 1									
/Case Study 1/									
Seminar 1 /									
Project1									
Individual		30	40	30			100		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE		40	40	20			100		

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. To know the basics of HSM and identify its advantages.								
Objectives	2. To understand the HSM cutting mechanism and identify the pr	ocess							
	variables.								
	3. To enumerate the applications of metal working fluids.								
	4. To understand the cutting strategies of HSM.								
	5. To appreciate the invariability of HSM transitioning.								
UNIT – I	INTRODUCTION TO HIGH SPEED MACHINING	9 Periods							
Overview of r	nachining processes, evolution and significance of HSM, historical p	erspective and							
milestones, to	ool geometry and its impact on cutting forces, temperature effects	s in high-speed							
cutting, tool n	naterial selection.								
UNIT – II	TOOLING AND MACHININE DYNAMICS IN HSM	9 Periods							
Selection of cutting tools for HSM, tool coatings and their role, optimal cutting parameters.									
Machine tool	requirements for HSM, vibration control and damping techniq	ues, impact of							
machine stiffr	ness and rigidity.								
UNIT – III	UNIT - III ADVANCES IN COOLING AND LUBRICATION FOR HSM 9 Periods								
Water-based	metalworking fluids, properties of the fluids, influence of the emu	lsion type and							
particle-size i	n metalworking fluid, usages of graphite iron and ductile cast iror	i in engineered							
metalworking	g fluids, new metalworking fluid technology.								
UNIT – IV	SURFACE FINISH AND QUALITY	9 Periods							
Strategies for	achieving high-quality surface finish, cutting strategies for comp	lex geometries,							
tool path prog	tool path programming, inspection and measurement techniques, Case studies.								
UNIT – V	CHALLENGES AND ADVANCES IN HSM	9 Periods							
Common issu	ies in HSM, troubleshooting and problem-solving, case studies a	and real-world							
examples, em	erging technologies in HSM, industry trends and future developmen	ts.							
Contact Perio	ods:								
Lecture:45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods							

1	Kapil Gupta and J Paulo Davim , High-Speed Machining , 1 st Edition, Academic Press Inc., 2020,
	ISBN: 978-0-12-815020-7, DOI: https://doi.org/10.1016/C2017-0-02542-9
2	Schmitz Tony L, Smith Kevin S , Machining Dynamics: Frequency Response to Improved
	Productivity, Springer International Publishing, 2009, ISBN-10: 0-387-09644-2
3	Modern Metal Cutting: A Practical Handbook, University of Michigan, Sandvik Coromant
	Publishers,2007, ISBN-13 - 978-9197229906
4	Proceedings of the International Conference on High-Speed Machining (ICHSM), Nanjing
	University, China, Trans Tech Publications Limited,2014, ISBN-10: 3038351423
5	https://nptel.ac.in/courses/112105233

COUF	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Mapped	
CO1	Understand the need for adoption of HSM process.	K3	
CO2	Describe the HSM cutting mechanism.	K2	
CO3	Identify and control the process variables of HSM.	КЗ	
CO4	Select the suitable lubricant for HSM.	КЗ	
CO5	Analyze the challenges involved in HSM	K4	

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	P05
C01	1	2	2	2	1
CO2	2	1	3	1	1
CO3	2	2	2	2	2
CO4	1	1	3	2	2
CO5	2	2	2	1	2
23MFPE11	2	2	2	2	2
1 - Slight 2 - Modera	to 3 - Substant	ial	C		

1 – Slight, 2 – Moderate, 3 Substantia

ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1		40	60				100			
CAT2		18 8 8 P	40	60			100			
Individual		40	60				100			
Assessment 1										
/Case Study										
1/ Seminar 1										
/ Project1										
Individual			40	60			100			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE		20	60	20			100			

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. To understand the complexity and key issues in supply chain n	nanagement.			
Objectives	2. To describe logistics networks, distribution planning, routi	ng design and			
	scheduling models.				
	3. To familiarize with dynamics of supply chain and the role of	information in			
	supply chain.				
	4. To understand the issues related to strategic alliances, globa	al supply chain			
	management, procurement and outsourcing strategies.				
UNIT – I	INTRODUCTION	9 Periods			
Definition of	Logistics and SCM: Evolution, Scope, Importance and Decision Ph	ases – process			
viewof a supp	ly chain - Supply chain flows- Examples of supply chains- Competit	tive and supply			
chainstrategie	es- Achieving strategic fit- Expanding strategic scope- Drivers o	f supply chain			
performance-	Framework for structuring drivers–Obstacles to achieving fit.				
UNIT – II	LOGISTICS MANAGEMENT	9 Periods			
Factors – Modes of Transportation - Design options for Transportation Networks-Routing					
andSchedulin	g – Inbound and outbound logistics- Reverse Logistics – 3PL- Integ	rated Logistics.			
Concepts- Int	egrated Logistics Model - Activities - Measuring logistics cost and	performance -			
Warehouse M	anagement - Case Analysis.				
UNIT – III	SUPPLY CHAIN NETWORK DESIGN	9 Periods			
Distribution	in Supply Chain – Factors in Distribution network design –D	esign options-			
NetworkDesi	gn in Supply Chain – Framework for network Decisions - Managing	cycle inventory			
and safety.					
UNIT – IV	SOURCING AND PRICING IN SUPPLY CHAIN	9 Periods			
Supplier sele	ction and Contracts - Design collaboration - Procurement pro	ocess. Revenue			
management.	In supply chain.				
UNIT – V	COORDINATION AND TECHNOLOGY IN SUPPLY CHAIN	9 Periods			
Supply chain	coordination - Bullwhip effect – Effect of lack of co-ordination and	l obstacles – IT			
and SCM - su	upply chain IT frame work. E-Business and SCM. Metrics for SC	performance –			
CaseAnalysis.					
Contact Peri	ods:				
Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Chopra, Kalra ,Supply Chain Management, Pearson Education India; Sixth edition, 2016
2	G. Srinivasan, Quantitative Models In Operations And Supply Chain Management, PHI
	Learning; 2nd edition, 2018
3	Mr. Vikash Kumar Vivek Kumar, Mr. Hari Bhagat, The basics of supply chain management ,
	Bluerose Publishers Pvt. Ltd.; FIRST edition, 2021
4	Richard B. Chase , Ravi Shankar ,F. Robert Jacobs, Operations and Supply Chain
	Management (SIE), 15th Edition, McGraw Hill Education, 2018
5	Joel D. Wisner, Keah-Choon Tan, G. Keong Leong, Principles of Supply Chain Management: A
	Balanced Approach, Cengage Learning India Pvt. Ltd.; 5th edition 2019.
6	https://nptel.ac.in/courses/110106045

COUF	RSE OUTCOMES:	Bloom's Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
C01	Identify and analyze supply chain problems in various business sectors.	K4			
CO2	Devise strategies, plans and operations to solve supply chain problems	K5			
	and/or to improve supply chain efficiency.				
CO3	Apply information technology in e-business for corporate demand.	K3			
CO4	Develop analytical and critical understanding & skills for planning,	K5			
	designing and operations of supply chain.				
CO5	Develop an understanding of basic concepts and role of Logistics and	K4			
	supply chain management in business.				

COURSE ARTICULATION MATRIX:						
COs/POs	P01	P02	P03	P04	P05	
C01	1	2	2	1	1	
CO2	1	1	3	1	1	
CO3	3	2	2	2	2	
CO4	1	1	3	3	3	
CO5	2	1	2	1	2	
23MFPE12	1	1	2	2	2	
1 – Slight, 2 – Modera	te, 3 – Substan	tial	1000			
		1000				
		1 .	77			

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1		A 8.	30	40	30		100	
CAT2			30	40	30		100	
Individual		1888	30	40	30		100	
Assessment 1		- 17	Carlon Contraction					
/Case Study 1/								
Seminar 1 /								
Project1								
Individual			30	40	30		100	
Assessment 2								
/Case Study 2/								
Seminar 2 /								
Project 2								
ESE			30	40	30		100	

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. To acquire knowledge about design principles and possible r	nethodology to
Objectives	accomplish feasibility in manufacturing environment.	
	2. To enhance specified design concepts and skill in material	selection, form
	design and castings.	
	3. To analyze factors for selection of metals and alloys and	relationship to
	manufacturing processes	
	4. To apply the concepts of design for manufacturing and assem	bly for product
	manufacturing.	
	5. To compare various manufacturing processes and assem	bly techniques
	required for product development.	
UNIT – I	INTRODUCTION	9 Periods
General desig	gn principles for manufacturability - Evaluation of customer's	requirements-
Systematic w	orking plan for the designer- Process capability - Geometric Din	nensioning and
Tolerancing-	Assembly limits -Datum features - Tolerance stacks-Interch	angeable part
manufacture a	and selective assembly.	
UNIT – II	FACTORS INFLUENCING FORM DESIGN	9 Periods
Materials cho	ice - Influence of basic design, mechanical loading, material, prod	uction method,
size and weig	ht on form design- form design of welded members and forgings-cas	se studies.
UNIT – III	COMPONENT DESIGN – CASTING CONSIDERATION	9 Periods
UNIT – III Form design	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes	9 Periods
UNIT – III Form design based on part	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes ting line considerations - Minimizing core requirements, machined	9 Periods sign of castings holes, redesign
UNIT – III Form design based on part of cast membe	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies.	9 Periods sign of castings holes, redesign
UNIT – III Form design based on part of cast membe UNIT – IV	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION	9 Periods sign of castings holes, redesign 9 Periods
UNIT – III Form design based on part of cast membe UNIT – IV Design feature	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweli	9 Periods sign of castings holes, redesign 9 Periods ing procedures,
UNIT – III Form design based on part of cast membe UNIT – IV Design featur counter sunk	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Dowell screws - Reduction of machined area- simplification by separation	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification
UNIT – III Form design based on part of cast member UNIT – IV Design feature counter sunk by amalgama	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Dowelf screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification r clampability -
UNIT - III Form design based on part of cast membe UNIT - IV Design feature counter sunk by amalgama Design for acc	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweli screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification r clampability - sign - Modifying
UNIT – III Form design based on part of cast membe UNIT – IV Design feature counter sunk by amalgama Design for acc the design - g	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Dowelf screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des roup technology -Computer Applications for DFMA- case studies.	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification r clampability - sign - Modifying
UNIT - III Form design based on part of cast membe UNIT - IV Design feature counter sunk by amalgama Design for acc the design - gr UNIT - V	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redesting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweli screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des roup technology -Computer Applications for DFMA- case studies. DESIGN FOR ENVIRONMENT	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification c clampability - sign - Modifying 9 Periods
UNIT - III Form design based on part of cast member UNIT - IV Design feature counter sunk by amalgama Design for acc the design - gr UNIT - V Introduction -	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redesting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweld screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des roup technology -Computer Applications for DFMA- case studies. DESIGN FOR ENVIRONMENT - Importance of DFE – Global issues – Regional and local issues– De	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification r clampability - sign - Modifying 9 Periods esign guidelines
UNIT - III Form design based on part of cast membe UNIT - IV Design feature counter sunk by amalgama Design for acc the design - gr UNIT - V Introduction - -Lifecycle as	COMPONENT DESIGN - CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes- ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweli screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des roup technology -Computer Applications for DFMA- case studies. DESIGN FOR ENVIRONMENT - Importance of DFE – Global issues – Regional and local issues – Des sessment – EPS system - Responsible product assessment -	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification c clampability - sign - Modifying 9 Periods esign guidelines Weighted sum
UNIT - III Form design based on part of cast member UNIT - IV Design featur counter sunk by amalgama Design for acc the design - gr UNIT - V Introduction - -Lifecycle as assessment m	COMPONENT DESIGN - CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redesting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweld screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des roup technology -Computer Applications for DFMA- case studies. DESIGN FOR ENVIRONMENT - Importance of DFE – Global issues – Regional and local issues – De sessment – EPS system - Responsible product assessment - nethod- Design to minimize material usage –Design for disassemb	 9 Periods sign of castings holes, redesign 9 Periods ing procedures, simplification clampability - sign - Modifying 9 Periods esign guidelines Weighted sum oly - Design for
UNIT - III Form design based on part of cast member UNIT - IV Design feature counter sunk by amalgama Design for acc the design - gr UNIT - V Introduction - -Lifecycle as assessment m recyclability -	COMPONENT DESIGN - CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redes- ting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweli screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des roup technology -Computer Applications for DFMA- case studies. DESIGN FOR ENVIRONMENT - Importance of DFE – Global issues – Regional and local issues – Des sessment – EPS system - Responsible product assessment - nethod- Design to minimize material usage –Design for disassemb - Design for remanufacture –Design for energy efficiency – Design	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification c clampability - sign - Modifying 9 Periods esign guidelines Weighted sum oly – Design for n to regulations
UNIT - III Form design based on part of cast member UNIT - IV Design featur counter sunk by amalgama Design for acc the design - gr UNIT - V Introduction - -Lifecycle as assessment m recyclability - and standards	COMPONENT DESIGN – CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redesting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweli screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des roup technology -Computer Applications for DFMA- case studies. DESIGN FOR ENVIRONMENT - Importance of DFE – Global issues – Regional and local issues – De sessment – EPS system - Responsible product assessment - nethod- Design to minimize material usage –Design for disassemb - Design for remanufacture –Design for energy efficiency – Design s.	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification r clampability - sign - Modifying 9 Periods esign guidelines Weighted sum oly – Design for n to regulations
UNIT - III Form design based on part of cast member UNIT - IV Design feature counter sunk by amalgama Design for acc the design - gr UNIT - V Introduction - -Lifecycle as assessment m recyclability - and standards	COMPONENT DESIGN - CASTING CONSIDERATION of grey iron, steel, malleable iron and aluminium castings. Redesting line considerations - Minimizing core requirements, machined ers to obviate cores-case studies. COMPONENT DESIGN - MACHINING CONSIDERATION es to facilitate machining - drills - milling cutters - keyways - Doweld screws - Reduction of machined area- simplification by separation tion - Design for machinability - Design for economy - Design for cessibility - Design for assembly. Identification of uneconomical des roup technology -Computer Applications for DFMA- case studies. DESIGN FOR ENVIRONMENT - Importance of DFE – Global issues – Regional and local issues – De sessment – EPS system - Responsible product assessment - nethod- Design to minimize material usage –Design for disassemb - Design for remanufacture –Design for energy efficiency – Design s.	9 Periods sign of castings holes, redesign 9 Periods ing procedures, - simplification c clampability - sign - Modifying 9 Periods esign guidelines Weighted sum oly – Design for n to regulations

- Harry peck, Designing for Manufacture, Pitman publishing, 2015. 1
- 2 Dickson, John. R, and Corroda Poly, Engineering Design and Design for Manufacture and Structural Approach, Field Stone Publisher, USA, 2013.
- Graedel T. Allen By. B, Design for the Environment, Angle Wood Cliff, Prentice Hall. Reason 3 Pub.2017.

4 Boothroyd, G, **Design for Assembly Automation and Product Design**, New York, Marcel Dekker, 2015.

Τ

5 Kevien Otto and Kristin Wood, **Product Design**, Pearson Publication, 2017.

6 https://nptel.ac.in/courses/107103012.

COUDSE OUTCOMES.

COUR	SE OUTCOMES:	Bloom's	
Upon	Upon completion of the course, the students will be able to:		
		Mapped	
C01	Formulate the feasibility of design features in manufacturing area and smart development in manufacturability.	K4	
CO2	Develop new concepts and methods for re-design of castings and	K4	
	simplified machining process.		
CO3	Develop artifact and translate the concepts of economics in design,	K4	
	optimization of design and human factors approach in manufacturing.		
CO4	Understand the principles of selection of materials for product development.	K2	
C05	Remember the basic principles of designing for economical production- creativity in design.	K1	
	1.100		

COURSE ARTICULATION MATRIX:							
COs/POs	P01	PO2	P03	P04	P05		
C01	1	1	2	2	2		
CO2	1	1	2	2	3		
CO3	1	2	2	3	3		
CO4	1	2	2	2	3		
CO5	1	2	2	3	3		
23MFPE13	1	2	2	3	3		
1 – Slight, 2 – Moderate, 3 –	1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1				100			100	
CAT2	30	30		40			100	
Individual				100			100	
Assessment 1								
/Case Study 1/								
Seminar 1 /								
Project1								
Individual	30	30		40			100	
Assessment 2								
/Case Study 2/								
Seminar 2 /								
Project 2								
ESE	20	20		60			100	

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	PE	3	0	0	3

Course	1. To study the basic concepts of metal forming techniques and t	o develop force			
Objectives	calculation in metal forming process.				
	2. To study the theory and practice of bulk forming processes.				
	3. To study the requirements of sheet metal forming.				
	4. To study the powder metallurgy and special forming pro	cesses and its			
	requirements of powder metallurgy and special forming proce	SSES			
	5 To study the surface treatment and metal forming annlications				
IINIT – I	THEORY OF DIASTICITY	O Pariode			
Theory of pla	Theorem of Theorem Viold entropic Tragge and Ven misse. Dista	91 er lous			
I neory of pla	astic deformation – field criteria – fresca and von-mises – Disto	ortion energy –			
suless-sulain	relation – Monin's circle representation of a state of stress – (cymunical and			
applications i	n Metal Forming analysis				
IINIT – II	THEORY AND PRACTICE OF BUILK FORMING PROCESSES	9 Periods			
Analyzia of r	lastic deformation in Forging Dolling Extruction and Julia dra	ving and tuba			
drawing Eff	hasuc deformation in Forging, Konnig, Exclusion, Tou/whe dia	and tube			
urawing - En	ts - applications - Recent advances in Forging Rolling Extrusion	and Drawing			
nrocesses – D	esign consideration in forming	i and Drawing			
UNIT – III	SHEET METAL FORMING	9 Periods			
Formability of	studies - Conventional processes - HERE techniques - Super	lastic forming			
techniques –	Hydro forming – Stretch forming – Water hammer forming –	Principles and			
process parar	neters – Advantage, Limitations and application.	r meipies una			
UNIT – IV	POWDER METALLURGY AND SPECIAL FORMING PROCESSES	9 Periods			
Overview of	P/M technique – Advantages – applications – Powder preform for	ging – nowder			
rolling – Tool	ing process parameters and applications - Orbital forging - Isoth	ermal forging -			
Hot and cold	isostatic pressing – High speed extrusion – Rubber pad forming – I	Fine blanking –			
LASER beam	forming.				
UNIT – V	SURFACE TREATMENT AND METAL FORMING	9 Periods			
	APPLICATIONS				
Experiment t	echniques of evaluation of friction in metal forming selection	– influence of			
temperature	and gliding velocity - Friction heat generation -Surface treatmen	nt for drawing,			
sheet metal fo	sheet metal forming, Extrusion, hot and cold forging- Processing of thin Al tapes – Cladding of Al				
alloys – Duple	alloys – Duplex and triplex steel rolling – Thermo mechanical regimes of Ti and Al alloys during				
deformation -	deformation – Formability of welded blank sheet – Laser structured steel sheet - Formability of				
laminated she	eet.				
Contact Peri	ods:				

1	B. L. Juneja., Fundamentals of Metal Forming Processes, New Age Publishers; Second
	edition: 2018
2	Swapnil Prakash Raut, Priyank Madhukar Vartak, Metal Forming Technology, Tech-Neo
	Publications.2022.
3	Hingole R S ., Advances In Metal Forming Expert System For Metal Forming, Springer 2014
4	H S Shan ., Manufacturing Processes : Casting Forming And Welding, Cambridge University
	Press. 2017
5	Wang, Z. R., Hu, Weilong, Yuan, S. J., Wang, Xiaosong., Engineering Plasticity: Theory and
	Applications in Metal Forming., Wiley., 2018.
6	https://nptel.ac.in/courses/112106153

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Outline tooling and equipments required for important metal forming	K2
	processes.	
CO2	Analyze effect of parameters influencing metal forming and compare hot	K3
	working and cold working with applications.	
CO3	Explain capabilities and applications of bulk metal forming processes	K4
	and sheet metal work.	
CO4	Examine the process capabilities of powder metallurgy processes.	K4
C05	Apply the knowledge of surface treatment on formed components	K3

1005 Apply the knowledge of surface treatment of formed components					KJ
COs/POs	P01	PO2	PO3	P04	PO5
C01	1		3	1	1
C02	1	1	3	2	2
C03	1 💬	1	2	1	2
CO4	1	2	2	1	2
C05	1	1	3	1	1
23MFPE14	1	2	3	2	2

ASSESSMENT H	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1		30	40	30			100			
CAT2			50	50			100			
Individual		30	40	30			100			
Assessment 1										
/Case Study										
1/ Seminar 1										
/ Project1										
Individual			50	50			100			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE		20	40	40			100			

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. To familiarize with the principles of nondestructive tech	niques and to			
Objectives	introduce non-destructive evaluation in engineering applications.				
	2. To familiarize with various ultrasonic hardness tests.				
	3. To gain knowledge about X-ray radiography.				
	4. To acquire knowledge on penetrant and magnetic particle tests	S.			
	5. To educate students on Holography and applications of NDT.				
UNIT – I	CONCEPTS OF NDT	9 Periods			
Relative meri	its and limitations of NDT Vs Conventional testing –Visual inspe	ection, thermal			
inspection me	ethods. Liquid penetrate Inspection				
UNIT – II	LIQUID PENETRANT AND MAGNETIC PARTICLE TESTS	9 Periods			
Characteristic	cs of liquid penetrates - different washable systems - Developers \cdot	- applications -			
Methods of p	roduction of magnetic fields - Principles of operation of magnetic	c particle test -			
Applications -	Advantages and limitations.				
UNIT – III	RADIOGRAPHY	9 Periods			
Sources of ra	y-X-ray production - properties of d and X rays - film characteris	tics - exposure			
charts - contr	asts - operational characteristics of X ray equipment - applications.				
UNIT – IV	ULTRASONIC AND ACOUSTIC EMISSION TECHNIQUES	9 Periods			
Production of	f ultrasonic waves - different types of waves - general characteris	tics of waves -			
pulse echo me	ethod – A, B, C scans - Principles of acoustic emission techniques - A	Advantages and			
limitations - I	nstrumentation - applications.				
UNIT – V	THERMOGRAPHY	9 Periods			
Thermography - Principles, types, applications, advantages and limitations. Optical and					
Acoustical holography- Principles, types, applications, advantages and limitations. Case studies:					
weld, cast and formed components.					
Contact Perio	ods:				
Lecture: 45 F	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

1	1 Barry Hull and Vernon John. Non Destructive Testina . MacMillan. 1988					
2	American Society for Metals. Metals Hand Book . Vol.II. 1976					
3	Hull., . ELBS Edition. 1991					
4	ASM Metals Hand Book. Vol. (9). Non-destructive Testing and Inspection, 1988					
5	C.Hellier, Hand Book Non-Destructive Evaluation, McGraw-Hill Professional,1st					
	Edition,2001.					
6	https://archive.nptel.ac.in/courses/113/106/113106070					

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	Mapped	
C01	Identify the difference in the different methods of nondestructive	K2
	techniques.	
CO2	Apply the appropriate technique for a given application	КЗ
CO3	Analyze the defects formed by nondestructive techniques	K4
CO4	Demonstrate the knowledge about different acoustic flaw detection	K4
	techniques and holography techniques.	
C05	Familiarize with basic principles of electromagnetic NDT methods, X-ray	КЗ
	and gamma ray radiography inspection process.	

COs/POs	P01	P02	P03	P04	P05
C01	1	1	1	3	1
CO2	1	1	1	3	2
CO3	1	1	1	2	2
CO4	1	2	2	2	2
CO5	1	1	1	3	1
23MFPE15	1	2	2	3	2

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3)%	(K4) %	(K5) %	(K6) %	%		
CAT1		30	40	30			100		
CAT2		190	50	50			100		
Individual		30	40	30			100		
Assessment 1									
/Case Study									
1/ Seminar 1									
/ Project1									
Individual			50	50			100		
Assessment 2									
/Case Study									
2/ Seminar 2									
/ Project 2									
ESE		20	40	40			100		

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. To familiarize students with the concept of sustainability man	ufacturing with			
Objectives	tools and techniques				
	2. To gain knowledge on Quality initiatives towards green manufacturing.				
	3. To acquaint with the framework of recycling policies				
	4. To promote awareness on the environmental attributes of mar	ufacturing			
	5. To inculcate knowledge on performing life cycle analysis				
UNIT – I	SUSTAINABLE MANUFACTURING AND EMS	9 Periods			
Custainable M	Invite sturing Concents and Mathadalagies to Halp Dremate Indu	atrial Easland			
	varias standards Concepts and Methodologies to help Promote indu	ISO 14001			
Fnvironment	al Management System henefits - Environmentally Conscious Manuf	130 14001 -			
	CDEEN MANUEACTUDINC	0 Doriodo			
UNIT - II	GREEN MANUFACI URING	9 renous			
Green Design	and Quality Initiatives - Environmental Cost Accounting and Busi	ness Strategy -			
Accounting f	or an Environmentally Conscious Setting - The Development o	of Eco labeling			
Schemes	0.000				
UNIT – III	RECYCLING	9 Periods			
Recycling as	Universal Resource Policy - Innovation towards Environmental S	ustainability in			
Industry - A S	ystematic Framework for Environmentally Conscious Design	-			
UNIT – IV	ENVIRONMENTAL ATTRIBUTES OF MANUFACTURING	9 Periods			
Environmenta	al Attributes of Manufacturing Processes - Environmental De	cision Support			
Systems -Dec	tision Models for Reverse Production System Design - Environn	nentally Sound			
Supply ChainManagement					
UNIT – V	LIFE CYCLE ASSESSMENT	9 Periods			
Life Cycle As	Life Cycle Assessment - Multipath way and Cumulative Risk Assessment - Reclamation and				
Recycling of Waste					
Contact Peri	ods:				
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 0 P	eriods			

1	Mrityunjay Singh, Tatsuki Ohji, Rajiv Asthana, Green and Sustainable Manufacturing of						
	Advanced Material, , Elsevier 1st Edition - August 18, 2015						
2	Besterfield, D.H., Besterfield, C.M., Besterfield, G.H. and Besterfield, M.S., Total Quality						
	Management , Pearson Education ,2015						
3	S.Vinodh , Sustainable Manufacturing Concepts, Tools, Methods and Case Studies,CRC						
	Press; 1st edition, 2021						
4	Dr. Kaliyan Mathiyazhagan, Dr. K. E. K. Vimal, Dr. Harish Kumar, Veronica Agarwal,						
	Dr. Anbanandam Ramesh, Lean and Green Manufacturing, Springer; 1st edition, 2022						
5	https://nptel.ac.in/courses/110104119						

COUF Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Utilise tools and techniques of sustainable manufacturing	КЗ
CO2	Comprehend the green manufacturing tools.	K2
CO3	Analyse eco-friendliness of products considering recycling principles	K4
CO4	Evaluate the environmental attributes of manufacturing	КЗ
C05	Perform life cycle assessment and assess environmental impacts of manufacturing processes	К5

COURSE ARTICULATION MATRIX:								
COs/POs	P01	P02	P03	P04	P05			
C01	1	2	2	1	3			
CO2	1	2	2	3	2			
CO3	2	3	1	1	3			
CO4	1	2	1	2	2			
CO5	2	3	2	3	3			
23MFPE16	1	2	2	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial								

2000										
ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1		30	40	30			100			
CAT2		1 8	30	40	30		100			
Individual		30	40	30			100			
Assessment 1		206								
/Case Study		1999 B	1000							
1/ Seminar 1			Carlon .							
/ Project1										
Individual			30	40	30		100			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE		20	40	20	20		100			

PREREQUISITES	CATEGORY	L	Τ	Р	C
NIL	PE	3	0	0	3

Course Obiectives	1. To appreciate the basic concepts of vibration in damped and undamped systems.					
	2 To understand and implement techniques of vibration control					
	 To understand and implement techniques of vibration control. To learn the vibration is undesirable in system structure 					
	4. To learn the fundamentals of control techniques of vibrat	ion levels and				
	The real and rundamentals of control techniques of vibrat					
	To learn to use the measuring instruments for analyzing the vik	vertion lovels in				
	a hody	nation levels in				
IINIT – I		0 Pariodo				
Derrieur of Fra	IN I RODUCTION	9 Ferious				
Review of Fur	adamentals of single Degree Freedom Systems- I wo Degree Freedom	i systems, Multi				
shapes Nume	prical methods in Vibration Analysis	icles and mode				
UNIT – II	VIBRATION CONTROL	9 Periods				
Introduction-	Reduction of Vibration at the source-Control of vibration-by str	uctural design-				
Material selec	tion- Localized Additions-Artificial Damping-Resilient isolation, Vibr	ration isolation,				
Vibration abs	orbers.					
UNIT – III	ACTIVE VIBRATION CONTROL	9 Periods				
Introductions	- Concepts and Applications, Review of smart materials-Types and	d characteristic				
review of sma	rt structures - Characteristic Active vibration control in smart struct	ures.				
UNIT – IV	CONDITION BASED MAINTENANCE PRINCIPLES AND	9 Periods				
	APPLICATIONS					
Introduction-	condition monitoring methods- Design of Information system, Select	ting methods of				
Maintonanco	Machine condition monitoring and diagnosis-vibration severity c.	riteria-Machine				
techniques-In	strumentation systems-choice of monitoring parameters	Jii momtoring				
UNIT – V	DYNAMIC BALANCING AND ALIGNMENT OF MACHINERY	9 Periods				
Introduction Dynamic balancing of Rotors Field Balancing in one plane two planes and in						
several planes Machinery alignment Rough Alignment methods. The Face Peripheral Dial						
Indicator Method, Reverse indicator Method, Shaft-to-coupling spool method.						
Contact Perio	ods:					
Lecture: 45 P	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 I	Periods				

1	Giridhar P, Machinery vibration analysis and predictive maintenance, Elsevier publications
	2012
2	Rao J S, Vibratory Condition Monitoring of Machines, Narosa Publishing House, 2000
3	Singiresu S.Rao, Mechanical vibrations, Addison - Wesley Publishing Co., 1995
4	Rao, B., Handbook of condition monitoring, Elsevier advanced technology, Oxford, 1996.
5	A Davis, Handbook of condition monitoring, Springer series, 1997.
6	https://nptel.ac.in/courses/112105232

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Derive equation of motion for systems under translational and rotational motions.	K4
CO2	Select vibration measuring instruments and techniques in the vibration control.	КЗ
CO3	Apply the techniques of vibration control in smart structures.	КЗ
C04	Select the suitable technique for condition monitoring and maintenance.	К3
CO5	Perform static and dynamic balancing of machine components.	K4

COURSE ARTICULATION MATRIX:							
COs/Pos	P01	PO2	P03	P04	P05		
C01	2	2	2	2	2		
C02	1	2	1	2	2		
C03	1	2	1	1	1		
C04	2	2	2	2	1		
C05	2	2	1	1	2		
23MFPE17	2	2	2	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

1

ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1		and the	60	40			100	
CAT2		10000	60	40			100	
Individual		1033	60	40			100	
Assessment 1								
/Case Study								
1/ Seminar 1								
/ Project1								
Individual			60	40			100	
Assessment 2								
/Case Study								
2/ Seminar 2								
/ Project 2								
ESE			60	40			100	
PREREQUISITES	CATEGORY	L	Т	Р	С			
---------------	----------	---	---	---	---			
NIL	РС	3	0	0	3			

Course	1. To Understand the principles of generic development process; product											
Objectives	planning: customer need analysis for new product design and development.											
-	2. To enhance the understanding of setting product specifications and generate.											
	select, screen, and test concepts for new product design and development.											
	3 To apply the principles of product architecture and the importance of											
	industrial design principles and DFM principles for new product											
	development											
	4 To expose the different Prototyning techniques Design of Experiment											
	4. To expose the unrelent Prototyping techniques, Design of Experiment											
	now product											
	The market because the effective minimized and in the second seco											
	5. To apply the concepts of economics principles; project management practices											
	in development of new product.											
UNIT – I	INTRODUCTION TO PRODUCT DESIGN AND IDENTIFICATION 9 Periods											
Nood for IDD	OF CUSTOMER NEED											
Development	- Challenges in Product Development - Product Development Processes and											
Organizations	s – Activities in Identifying Customer Needs											
UNIT – II	PRODUCT SPECIFICATIONS. CONCEPT GENERATION. 9 Periods											
	SELECTION AND TESTING											
Plan and esta	blish Target and Final product specifications – Activities of Concept Generation -											
Task - Conce	pt Selection methodology - Concept Screening and Scoring - Concept Testing											
Methodologie	S.											
UNIT – III	PRODUCT ARCHITECTURE , INDUSTRIAL DESIGN AND 9 Periods											
Product Arch	DESIGN FOR MANUFACTURE											
– Platform Pl	anning - Industrial design DFM- Estimation of Manufacturing cost- Reducing the											
component co	osts, costs of supporting function and assembly costs – Impact of DFM decision on											
other factors.												
UNIT – IV	PROTOTYPING, ROBUST DESIGN AND INTELLECTUAL 9 Periods											
	PROPERTY											
Prototype bas	sics - Principles of prototyping - Planning for prototypes - Robust design - Seven											
step process	of Robust Design through Design of Experiments- Need and Importance of											
Intellectual P	coperty – Seven step process of preparing a patent document.											
UNII – V	PROJUCT DEVELOPMENT ECONOMICS AND MANAGING 9 PERIODS PROJECTS											
Economic An	alysis - Elements of Economic Analysis - Understanding and representing tasks											
baseline proj	ect planning - accelerating the project - project execution – postmortem project											
evaluation.												
Lontact Perio	Das:											
Lecture: 45 H	rerious i utoriai: o Perious Practical: o Perious Total: 45 Perious											

REFERENCES:

1	Karl T.Ulrich, Steven D.Eppinger, Anita Goyal, Product Design and Development , McGraw –
	Hill Education (India) Pvt. Ltd, 4th Edition, 2012.
2	Kevin N Otto, Kristin L Wood, Product Design – Techniques in Reverse Engineering and
	New Product Development, Pearson Education, Inc, 2016 .
3	Stephen Rosenthal, Effective Product Design and Development, Business One Orwin, Homewood,
	1992.
4	Stuart Pugh, Total Design - Integrated Methods for successful Product Engineering,
	Addison Wesley Publishing, Neyourk, NY, 1991.
5	https://archive.nptel.ac.in/courses/112/107/112107217/

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the principles of generic development process.	K3
CO2	Set product specifications and generate, select, screen, test concepts for new product design and development.	K4
CO3	Apply the principles of product architecture, industrial design and design for manufacturing principles in new product development	КЗ
CO4	Adopt Prototyping techniques and Design of Experiment principles to develop a robust design and document a new product for patent.	K2
CO5	Apply of the concepts of economics principles; project management practices in accelerating the new product development activity.	K4

N

		XI			
COURSE ARTICULATION M	ATRIX:				
COs/Pos	P01	P02	P03	P04	P05
C01	16. 8	1.4	1	2	3
CO2	1	2	3	2	1
CO3	2	12	2	3	2
CO4	3	2	1	2	1
C05	1	3	2	2	2
23MFPE18	2	2	2	3	2
1 – Slight, 2 – Moderate, 3 – 9	Substantial				

ASSESSMENT I	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1			60	40			100		
CAT2		30	40	30			100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1			60	40			100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		30	40	30			100		
ESE		20	40	40			100		

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. To demonstrate the approaches and techniques to assess and improve							
Objectives	process and product quality and reliability.							
	. To introduce the principles and techniques of Statistical Quality Control and							
	their practical uses in product and/or process design and monitoring.							
	3. To illustrate the basic concepts and techniques of mod	ern reliability						
	engineering tools.	3						
	4. To develop skills to analyses quality culture in companies.							
	5. To provide basic knowledge of quality and reliability in engine	ering.						
UNIT – I	QUALITY CONCEPTS	9 Periods						
Quality object	tives - Quality control - Quality Assurance - Quality systems, econor	nics, Statistical						
tolerance - Qu	ality loss functions.							
UNIT – II	UNIT – II STATISTICAL PROCESS CONTROL 9 Periods							
Process varia	bility - Control charts for variables and attributes, Moving average	control charts,						
multi variant	chart- Cumulative chart - demerit control chart - process capability	studies.						
UNIT – III	DESIGN OF EXPERIMENTS	9 Periods						
Factorial exp	eriments - fractional replication - Taguchi methods - Use of ortho	gonal arrays –						
Response sur	face methodology- Cases.							
UNIT – IV	RELIABILITY AND QUALITY MANAGEMENT	9 Periods						
Reliability fur	nction – failure rate – mean time between failures (MTBF) – mean	time to failure						
(MTTF) – A	priori and a posteriori concept - mortality curve - useful life -	· availability –						
maintainabili	ty – system effectiveness Reliability prediction and testing - Qualit	y circles - Zero						
defects progra	am - ISO 9000 and TQM - Total quality organization.							
UNIT – V	UNIT – V RELIABILITY MANAGEMENT AND RISK ASSESSMENT 9 Periods							
Reliability tes	ting – Reliability growth monitoring – Non-parametric methods –	Reliability and						
life cycle cost	s – Reliability allocation – Replacement model-Definition and measu	rement of risk						
– risk analysis	s techniques – risk reduction resources – industrial safety and risk a	ssessment.						
Contact Perio		.						
Lecture: 45 F	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods						

1	Douglas, C.Montgomery, Introduction to Statistical quality control, Second Edition John
	Wiley &Sons,2019.
2	Mangey Ram, Reailability engineering methods and application, CRC press, 2019.
3	Modarres, Reliability and Risk analysis, Maral Dekker Inc.,CRC Press, 2018.
4	Dale H.besterfield, Quality improvement, PHI, 2013.
5	D.R. Kiran, Total quality management, BS Publications, 2017.
6	https://nptel.ac.in/courses/110105088

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Attain fundamental knowledge on the basic techniques of quality	K2
	improvement.	
CO2	Use control charts to analyze for improving the process quality.	K4
CO3	Describe different sampling plans.	K4
CO4	Acquire and implement quality principles in industries.	КЗ
C05	Understand the concepts of reliability and maintainability.	К2

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	P05
C01	1	1	1	2	2
CO2	1	1	2	2	2
CO3	1	1	2	2	3
CO4	1	1	2	2	3
CO5	1	2	2	3	3
23MFPE19	1	2	2	3	3
1 – Slight, 2 – Moderate, 3 – Su	ıbstantial				

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1		20	30	20	30		100		
CAT2		1 70	20	40	40		100		
Individual		20	30	20	30		100		
Assessment 1		A 8.							
/Case Study		Concerne and	12						
1/ Seminar 1		-3.2 G							
/ Project1		0.024	Percent.						
Individual			20	40	40		100		
Assessment 2									
/Case Study									
2/Seminar 2									
/ Project 2									
ESE		20	20	30	30		100		

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1. To acquire the metallurgical concepts during solidification	of metals and						
Objectives	alloys in recent casting and welding processes.							
	2. To provide students with an understanding of skills relating	to the modern						
	manufacturing industry within both global and local contexts.							
	3. To acquire the knowledge on principles, operations and	applications of						
	different welding processes and analyze the effects of process	parameters on						
	the quality of weld products.	-						
	4. To learn the concepts of rapid product development, a	pply acquired						
	knowledge to meet global challenges in changing design in tir	ne compressed						
	mode.							
UNIT – I	INTRODUCTION	9 Periods						
Manufacturin	g and manufacturing systems- Manufacturing Trends and	Challenges –						
Manufacturin	g Aspects, Selection and Classification- Description and	Taxonomy of						
Manufacturin	g Processes.							
UNIT – II	ADVANCED METAL CASTING PROCESSES	9 Periods						
Metal Casting	basics, Gating and risering Design, Evaporative Pattern Casting I	Process (EPC) -						
Hybrid EPC a	nd Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding	Process						
UNIT – III	ADVANCED MACHINING PROCESSES	9 Periods						
Abrasive Flow	v Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasc	onic Machining,						
Micro USM, E	lectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, H	Electrochemical						
Machining, E	Electrochemical Discharge Machining, Electron Beam Machini	ng, Ion Beam						
Machining, La	ser Beam Machining							
UNIT – IV	ADVANCED WELDING PROCESSES	9 Periods						
Submerged A	rc Welding , Resistance Welding, Solid State Welding processes , F	riction welding						
processes, Be	am Welding , Diffusion Welding Processes							
UNIT – V	OTHER ADVANCED PROCESSES	9 Periods						
High Energy	High Energy rate forming processes, Rapid Prototyping Technology, Rapid Manufacturing,							
Microwave Processing of materials.								
Microwave Pi	ocessing of materials.							
Contact Perio	rocessing of materials. Dods:							

1	Carl sommer, Nontraditional machining processes handbook Advance Publishing Inc,2000
2	C K Chua, K F Leong, C S Lim, Rapid Prototyping Principles and Applications, World
	Scientific, New Delhi, 2010.
3	P.N.Rao, Manufacturing Technology (Foundry, Forming and Welding), Second Edition,
	Tata McGraw Hill Pub.Co. Ltd, 2004.
4	John Campbell, 10 rules of casting , Elsevier Publications, Boston, 2004.
5	Serope Kalpak jian, Manufacturing Engineering and Technology, Third Edition, Addison
	Wesley Publishing Co.1995
6	https://archive.nptel.ac.in/courses/112/107/112107078/

COUR Upon	SE OUTCOMES:	Bloom's Taxonomy Mapped
C01	Relate the casting methods for industrial production of components.	K4
CO2	Apply special welding process for specific applications.	КЗ
CO3	Analyse and simulate various industrial problems in advanced machining processes	К5
C04	Understand the major advancements in Manufacturing processes.	K2
CO5	Select appropriate process for production of a part/component that	K5
	meet international standards of quality and time constraints	

COURSE ARTICULATION MATRIX:

COs/Pos	P01	P02	P03	P04	PO5
C01	1	1	3	2	2
CO2	1	1	3	2	2
CO3	1	1	3	2	3
CO4	1	1	3	2	3
CO5	1	2	3	3	3
23MFPE20	1	2	3	3	3
1 – Slight, 2 – Moderate, 3 – Su	ubstantial	Service Service			

2

ASSESSMEN	T PATTERN – TI	HEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		1 8	10				
CAT1			30	30	20		100
CAT2		30			70		100
Individual		1010528	30	30	20		100
Assessmen							
t 1 /Case							
Study 1/							
Seminar 1							
/ Project1							
Individual		30			70		100
Assessmen							
t 2 /Case							
Study 2/							
Seminar 2							
/ Project 2							
ESE		20	20	20	40		100

23SEOE01

BUILDING BYE-LAWS AND CODES OF PRACTICE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To impart knowledge on the building bye –laws and to emphasize the significance of								
Objectives	codes of practice in construction sector.	0						
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods						
Introduction t	o Building Bye Laws and regulation, their need and relevance, General	definitions such						
as building he	as building height, building line, FAR, Ground Coverage, set back line. Introduction to Master Plan							
and understan	nding various land uses like institutional, residential etc Terminolo	ogies of Building						
bye-laws.								
UNIT – II	ROLE OF STATUTORY BODIES	9 Periods						
Role of variou	is statutory bodies governing building works like development autho	rities, municipal						
corporations	etc. Local Planning Authority, Town and Country planning organisa	tion, Ministry of						
urban develop	oment.							
UNIT – III	APPLICATION OF BUILDING BYE-LAWS	9 Periods						
Interpretation	of information given in bye laws including ongoing changes as sh	nown in various						
annexure and	appendices. Application of Bye-laws like structural safety, fire sat	fety, earthquake						
safety, baseme	ent, electricity, water, and communication lines in various building type	es.						
UNIT – IV	INTRODUCTION TO CODES OF PRACTICE	9 Periods						
Introduction t	o various building codes in professional practice - Codes, regulations	to protect public						
health, safety	and welfare - Codes , regulations to ensure compliance with the local a	uthority.						
UNIT – V	APPLICATION OF CODES OF PRACTICE	9 Periods						
Applications of various codes as per various building types. Bureau of Indian Standards, Eurocode –								
Introduction to other international codes.								
Contact Perio	Contact Periods:							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total	: 45 Periods						

1	"National Building Code of India 2016 – SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization, Ministry
	of Housing and Urban Affairs, Government of India.
3	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the building bye-laws in planning, design and construction works.	КЗ
CO2	Familiarize with the role of various statutory bodies.	K2
CO3	Execute safety related work practices in the construction sector.	КЗ
C04	Ensure compliance with the rules and regulations in design and construction	КЗ
	practices.	
C05	Perform design and construction practices based on national and	K3
	international codal provisions.	

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	1	3	1	1	2	3		
CO2	1	3	1	1	2	3		
CO3	1	3	1	1	2	3		
CO4	2	3	1	1	2	3		
CO5	2	3	1	1	2	3		
23SEOE01	2	3	1	1	2	3		
1 – Slight, 2 – Moderate, 3	3 – Substantial							

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	40	40	20	-	-	-	100				
CAT2	40	40	20	-	-	-	100				
Individual	40	40	20	-	-	-	100				
Assessment 1 /			Construction of								
Case Study 1/		96222	1.2000								
Seminar 1 /		80/3	(Carlow)								
Project1			77								
Individual	40	40	20	-	-	-	100				
Assessment 2 /		1 2	1 1,000								
Case Study 2/		1 6	11								
Seminar 2 /				8							
Project 2		10.3									
ESE	40	40	20	-	-	-	100				

PLANNING OF SMART CITIES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To have an exposure on planning of smart cities with consideration of the received	nt					
Objectives challenges and to address the importance of sustainable development of urb	n					
objectives chanenges and to address the importance of sustainable development of droa	aroa					
UNIT – I SMART CITIES DEVELOPMENT POTENTIALS AND CHALLENGES 9 Periods						
Perspectives of Smart Cities: Introduction and Overview - Implementation Challenges -						
Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities	-					
Implementation Challenges for Establishing Smart Urban Information and Knowledge Management	nt					
System.						
UNIT – II SUSTAINABLE URBAN PLANNING 9 Periods	;					
Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urba	n					
Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Ro	le					
of Green Spaces - Monitoring Urban Expansion.						
UNIT – III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods						
Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy	şу					
Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainab	le					
Tourism - Green Buildings: Eco-friendly Technique for Modern Cities.						
UNIT – IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods	;					
Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply	-					
Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socie)-					
economic Determinants and Reproductive Healthcare System - Problems and Development of Slum	s.					
UNIT – V INTELLIGENT TRANSPORT SYSTEM 9 Periods						
Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Networ	·k					
Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route						
information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The						
Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic						
Development.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems" , PHI Learning, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	КЗ
CO3	Choose appropriate energy conservation system for smart cities.	КЗ
CO4	Identify the proper method of water management system.	КЗ
CO5	Apply Intelligent Transport System concepts in planning of smart city.	К3

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	1	-	2	3	1	1	
CO2	1	100	1	3	2	1	
CO3	1	1		2	2	1	
CO4	1		1	2	1	1	
C05	1		A 1	3	1	-	
23SEOE02	1	1	2	3	2	1	
1 – Slight, 2 – Moderate,	3 – Substan	itial		·			
			X				

ASSESSMENT PAT	TTERN – THEORY	Y	all and a second				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	45	30	-	-	-	100
CAT2	25	45	30	-	-	-	100
Individual	15	40	45	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	10	45	45	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	40	40	-	-	-	100

235EU	FU3
2 3320	

GREEN BUILDING

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To introduce the different concepts of energy efficient by	uildings, indoor				
Objectives	environmental quality management, green buildings and its design.					
UNIT – I	INTRODUCTION	9 Periods				
Life cycle impacts	Life cycle impacts of materials and products - sustainable design concepts - strategies of design for the					
Environment -The	e sun-earth relationship and the energy balance on the earth's surface	e, climate, wind –				
Solar radiation an	d solar temperature – Sun shading and solar radiation on surfaces – E	Energy impact on				
the shape and orie	entation of buildings – Thermal properties of building materials.					
UNIT – II	ENERGY EFFICIENT BUILDINGS	9 Periods				
Passive cooling a	nd day lighting – Active solar and photovoltaic- Building energy a	nalysis methods-				
Building energy	simulation- Building energy efficiency standards-Lighting system	design- Lighting				
economics and a	esthetics- Impacts of lighting efficiency - Energy audit and e	nergy targeting-				
Technological opt	ions for energy management.					
UNIT – III	INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods				
Psychrometry- Co	omfort conditions- Thermal comfort- Ventilation and air quality-	Air conditioning				
requirement- Visu	al perception- Illumination requirement- Auditory requirement- Ene	rgy management				
options- Air cond	litioning systems- Energy conservation in pumps- Fans and blowe	rs- Refrigerating				
machines- Heat re	jection equipment- Energy efficient motors- Insulation.					
UNIT – IV	GREEN BUILDING CONCEPTS	9 Periods				
Green building c	oncept- Green building rating tools- Leeds and IGBC codes. – M	aterial selection				
Embodied energy	r- Operating energy- Façade systems- Ventilation systems-Transp	ortation- Water				
treatment systems	s- Water efficiency- Building economics					
UNIT – V	GREEN BUILDING DESIGN - CASE STUDY	9 Periods				
Case studies - Building form, orientation and site considerations; conservation measures; energy						
modeling; heating system and fuel choices; renewable energy systems; material choices - construction						
budget						
Contact Periods:						
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods				

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURSE	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Apply the concepts of sustainable design in building construction.	КЗ
CO2	Execute green building techniques including energy efficiency management in	КЗ
	the building design.	
CO3	Establish indoor environmental quality in green building.	КЗ
CO4	Perform the green building rating using various tools.	КЗ
CO5	Create drawings and models of green buildings.	КЗ

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3	2	3	3	3
CO2	3	3	2	3	3	3
CO3	2	2	2	2	3	3
CO4	2	3	1	3	3	3
C05	3	3	1	3	3	3
23SEOE03	3	3	2	3	3	3
1 – Slight, 2 – Moderate,	, 3 – Substanti	al	7752	<u> </u>		·
		SUASSER	189			

ASSESSME	NT PATTERN – T	HEORY	77	0			
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	- 8	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /		0.01	Street.				
Case Study 1/							
Seminar 1 /							
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

ENVIRONMENT HEALTH AND SAFETY MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

CourseTo impart knowledge on occupational health hazards, safety measures at workObjectivesplace, accident prevention, safety management and safety measures in industries.						
	OCCUDATIONAL HEALTH HAZADDS	0 Dorio da				
	OCCUPATIONAL HEALTH HAZARDS	9 Periods				
Occupation, H	lealth and Hazards - Safety Health and Management: Occupational	Health Hazards				
- Ergonomics	- Importance of Industrial Safety - Radiation and Industrial Haza	rds: Types and				
effects - Vibra	ation - Industrial Hygiene - Different air pollutants in industries an	d their effects -				
Electrical, fire	and Other Hazards.					
UNIT – II	SAFETY AT WORKPLACE	9 Periods				
Safety at Wo	ckplace - Safe use of Machines and Tools: Safety in use of differen	nt types of unit				
operations -	Ergonomics of Machine guarding - working in different workplac	es - Operation,				
Inspection an	d maintenance - Housekeeping, Industrial lighting, Vibration and No	oise.				
UNIT – III	ACCIDENT PREVENTION	9 Periods				
Accident Prev	vention Techniques - Principles of accident prevention - Hazard ide	entification and				
analysis, Eve	analysis, Event tree analysis, Hazop studies, Job safety analysis - Theories and Principles of					
Accident caus	ation - First Aid: Body structure and functions - Fracture and Dislo	cation, Injuries				
to various bo	dy parts.					
UNIT – IV	SAFETY MANAGEMENT	9 Periods				
Safety Manag	ement System and Law - Legislative measures in Industrial Safety	- Occupational				
safety, Health	and Environment Management, Bureau of Indian Standards on He	alth and Safety,				
IS 14489 sta	undards - OSHA, Process safety management (PSM) and its pr	inciples - EPA				
standards						
UNIT – V	GENERAL SAFETY MEASURES	9 Periods				
Plant Layout for Safety - design and location, distance between hazardous units, lighting, colour						
coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines -						
Work Permit System - Significance of Documentation - Case studies involving implementation of						
health and safety measures in Industries.						
Contact Peri	ods:					
Lecture: 45 H	Periods Tutorial: 0 Periods Practical: 0 Periods Tot	al: 45 Periods				

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications,2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao
	PharmaMed Press, 1st edition, 2021.

COURS	Bloom's	
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
C01	Identify the occupational health hazards.	К3
CO2	Execute various safety measures at workplace.	К3
CO3	Analyze and execute accident prevention techniques.	К3
CO4	Implement safety management as per various standards.	К3
CO5	Develop awareness on safety measures in Industries.	КЗ

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06
C01	1	2	2	2	3	2
C02	2	2	2	1	2	2
C03	2	3	2	1	2	2
C04	1	1	1	2	2	2
C05	1	1	1	1	1	2
23EEOE04	1	2	2	1	2	2
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
		1 :10					
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual		1999					
Assessment 1/		- 040	Ser Const				
Case Study 1/	20	40	30	10	-	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2/							
Case Study 2/	20	40	30	10	-	-	100
Seminar 2/							
Project 2							
ESE	25	35	20	10	5	5	100

23EEOE05

CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Objectivesidentifying the impacts, adaptation, mitigation of climate change and for gaining knowledge on clean technology, carbon trading and alternate energy sources.UNIT - IEARTH'S CLIMATE SYSTEM9 PeriodsIntroduction-Climate in the spotlight - The Earth's Climate Machine - Climate Classification- Global Wind Systems - Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation and Monsoon Rains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effect - Solar Radiation - The Earth's Natural Green House Effect - Green House Gases and Global Warming - Carbon Cycle.9 PeriodsUNIT - IIOBSERVED CHANGES AND ITS CAUSES9 PeriodsObservation of Climate Change - Changes in patterns of temperature, precipitation and sea level rise - Observed effects of Climate Changes - Patterns of Large-Scale Variability -Drivers of Climate Change - Climate Sensitivity and Feedbacks - The Montreal Protocol -UNFCCC - IPCC - Evidences of Changes in Climate and Environment - on a Global Scale and in India - climate change modeling.UNIT - IIIIMPACTS OF CLIMATE CHANGE9 PeriodsImpacts of Climate Change on various sectors - Agriculture, Forestry and Ecosystem - Water Resources - Human Health - Industry. Settlement and Society - Methods and Scenarios - Projected					
knowledge on clean technology, carbon trading and alternate energy sources.UNIT - IEARTH'S CLIMATE SYSTEM9 PeriodsIntroduction-Climate in the spotlight - The Earth's Climate Machine - Climate Classification- GlobalWind Systems - Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation and MonsoonRains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation - El Nino and itsEffect - Solar Radiation - The Earth's Natural Green House Effect - Green House Gases and GlobalWarming - Carbon Cycle.UNIT - IIOBSERVED CHANGES AND ITS CAUSESObservation of Climate Change - Changes in patterns of temperature, precipitation and sea level rise- Observed effects of Climate Changes - Patterns of Large-Scale Variability -Drivers of ClimateChange - Climate and Environment - on a Global Scale and in India - climate change modeling.UNIT - IIIIMPACTS OF CLIMATE CHANGE9 PeriodsImpacts of Climate Change on various sectors - Agriculture, Forestry and Ecosystem - WaterResources - Human Health - Industry, Settlement and Society - Methods and Scenarios -Projected					
UNIT - IEARTH'S CLIMATE SYSTEM9 PeriodsIntroduction-Climate in the spotlight - The Earth's Climate Machine - Climate Classification- Global Wind Systems - Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation and Monsoon Rains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effect - Solar Radiation - The Earth's Natural Green House Effect - Green House Gases and Global Warming - Carbon Cycle.9 PeriodsUNIT - IIOBSERVED CHANGES AND ITS CAUSES9 PeriodsObservation of Climate Change - Changes in patterns of temperature, precipitation and sea level rise - Observed effects of Climate Changes - Patterns of Large-Scale Variability -Drivers of Climate Change in Climate and Environment - on a Global Scale and in India - climate change modeling.9 PeriodsUNIT - IIIIMPACTS OF CLIMATE CHANGE9 PeriodsImpacts of Climate Change on various sectors - Agriculture, Forestry and Ecosystem - Water Resources - Human Health - Industry. Settlement and Society - Methods and Scenarios - Projected					
Introduction-Climate in the spotlight - The Earth's Climate Machine – Climate Classification- GlobalWind Systems – Trade Winds and the Hadley Cell – The Westerlies – Cloud Formation and MonsoonRains – Storms and Hurricanes - The Hydrological Cycle – Global Ocean Circulation – El Nino and itsEffect - Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and GlobalWarming – Carbon Cycle.UNIT – IIOBSERVED CHANGES AND ITS CAUSESObservation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise- Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of ClimateChange – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences ofChanges in Climate and Environment – on a Global Scale and in India – climate change modeling.UNIT – IIIIMPACTS OF CLIMATE CHANGEImpacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – WaterResources – Human Health – Industry. Settlement and Society – Methods and Scenarios –Projected					
Wind Systems – Trade Winds and the Hadley Cell – The Westerlies – Cloud Formation and Monsoon Rains – Storms and Hurricanes - The Hydrological Cycle – Global Ocean Circulation – El Nino and its Effect - Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – Carbon Cycle.UNIT – IIOBSERVED CHANGES AND ITS CAUSES9 PeriodsObservation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling.UNIT – IIIIMPACTS OF CLIMATE CHANGE9 PeriodsImpacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios –Projected					
Rains – Storms and Hurricanes - The Hydrological Cycle – Global Ocean Circulation – El Nino and itsEffect - Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and GlobalWarming – Carbon Cycle.UNIT – IIOBSERVED CHANGES AND ITS CAUSESObservation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise– Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of ClimateChange – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences ofChanges in Climate and Environment – on a Global Scale and in India – climate change modeling.UNIT – IIIIMPACTS OF CLIMATE CHANGEImpacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – WaterResources – Human Health – Industry, Settlement and Society – Methods and Scenarios –Projected					
Effect - Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – Carbon Cycle.UNIT - IIOBSERVED CHANGES AND ITS CAUSES9 PeriodsObservation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling.UNIT - IIIIMPACTS OF CLIMATE CHANGE9 PeriodsImpacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios –Projected					
Warming - Carbon Cycle.9 PeriodsUNIT - IIOBSERVED CHANGES AND ITS CAUSES9 PeriodsObservation of Climate Change - Changes in patterns of temperature, precipitation and sea level rise- Observed effects of Climate Changes - Patterns of Large-Scale Variability -Drivers of ClimateChange - Climate Sensitivity and Feedbacks - The Montreal Protocol -UNFCCC - IPCC - Evidences ofChanges in Climate and Environment - on a Global Scale and in India - climate change modeling.UNIT - IIIIMPACTS OF CLIMATE CHANGE9 PeriodsImpacts of Climate Change on various sectors - Agriculture, Forestry and Ecosystem - WaterResources - Human Health - Industry, Settlement and Society - Methods and Scenarios -Projected					
UNIT - IIOBSERVED CHANGES AND ITS CAUSES9 PeriodsObservation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling.9 PeriodsUNIT – IIIIMPACTS OF CLIMATE CHANGE9 PeriodsImpacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios –Projected					
Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise– Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of ClimateChange – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences ofChanges in Climate and Environment – on a Global Scale and in India – climate change modeling.UNIT – IIIIMPACTS OF CLIMATE CHANGEImpacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – WaterResources – Human Health – Industry, Settlement and Society – Methods and Scenarios –Projected					
 Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling. UNIT – III IMPACTS OF CLIMATE CHANGE 9 Periods Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios –Projected 					
Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling. UNIT – III IMPACTS OF CLIMATE CHANGE 9 Periods Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected					
Changes in Climate and Environment – on a Global Scale and in India – climate change modeling. UNIT – III IMPACTS OF CLIMATE CHANGE 9 Periods Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected					
UNIT - III IMPACTS OF CLIMATE CHANGE 9 Periods Impacts of Climate Change on various sectors - Agriculture, Forestry and Ecosystem - Water Resources - Human Health - Industry, Settlement and Society - Methods and Scenarios - Projected					
Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected					
Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected					
Impacts for Different Regions - Uncertainties in the Projected Impacts of Climate Change - Risk of					
Irreversible Changes.					
UNIT - IV CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES 9 Periods					
Adaptation Strategy/Options in various sectors - Water - Agriculture Infrastructure and					
Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation					
Technologies and Practices – Energy Supply – Transport – Buildings – Industry –Agriculture –					
Forestry - Carbon sequestration - Carbon capture and storage (CCS) - Waste (MSW & Bio waste,					
Biomedical, Industrial waste – International and Regional cooperation.					
UNIT - V CLEAN TECHNOLOGY AND ENERGY 9 Periods					
Clean Development Mechanism – Carbon Trading - examples of future Clean Technology –Biodiesel –					
Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels– Solar Energy –					
Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis", 2007

4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report - Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate
	Change, Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

COURS	E OUTCOMES:	Bloom's			
		Taxonomy			
Upon completion of the course, the students will be able to:					
C01	Classify the Earths climatic system and factors causing climate change and	K2			
	global warming.				
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise	K2			
	and Observed effects of Climate Changes				
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	КЗ			
	changes.				
C04	Articulate the strategies for adaptation and mitigation of climatic changes.	K3			
C05	Discover clean technologies and alternate energy source for sustainable growth.	КЗ			

COURSE ARTICULATION MATRIX										
COs/POs	P01	PO2	P03	P04	P05	P06				
C01	2	2	3	2	3	1				
CO2	3	2	2	2	3	2				
CO3	2	2	2	2	3	2				
CO4	3	2	2	2	2	2				
C05	3	3	2	3	3	3				
23EEOE05	3	3	3	3	3	3				
1 – Slight, 2 – Moderat	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	25	30	35	10	-	-	100			
CAT2	25	30	35	10	-	-	100			
Individual										
Assessment										
1/ Case	20	30	40	10	_	_	100			
Study 1/	20	50	40	10	-	-	100			
Seminar 1 /										
Project 1										
Individual										
Assessment	20	30	40	10	-	-	100			
2/ Case										

Study 2/							
Seminar 2/							
Project 2							
ESE	25	30	35	10	-	-	100

WASTE TO ENERGY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To classify waste as fuel, introduce conversion devices, gain knowledg	e about Biomass					
Objectives	Pyrolysis, demonstrate methods, factors for biomass gasification	n, and acquire					
	knowledge about biogas and its development in India.						
UNIT – I	INTRODUCTION	9 Periods					
Introduction t	o Energy from Waste: Classification of waste as fuel - Agro based,	Forest residue,					
Industrial wast	e - MSW – Conversion devices – Incinerators, Gasifiers, Digestors.						
UNIT – II	BIOMASS PYROLYSIS	9 Periods					
Biomass Pyroly	ysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis – Manufacture of cha	arcoal – Methods					
– Yields and Ap	oplications – Manufacture of Pyrolytic oils and gases, Yields and Applicatio	ons.					
UNIT – III	BIOMASS GASIFICATION	9 Periods					
Gasifiers – Fix	ed bed system – Downdraft and updraft gasifiers – Fluidized bed ga	sifiers – Design,					
Construction a	and Operation - Gasifier burner arrangement for thermal heating -	Gasifier Engine					
arrangement a	nd electrical power – Equilibrium and Kinetic Considerations in gasifier o	peration.					
	NO 8 32 20 20						
UNIT – IV	BIOMASS COMBUSTION	9 Periods					
		, , , , , , , , , , , , , , , , , , , ,					
Biomass Comb	oustion – Biomass Stoves – Improved Chullahs, types, some exotic de	signs, Fixed bed					
Biomass Comb combustors, ty	pustion – Biomass Stoves – Improved Chullahs, types, some exotic de pes – Inclined grate combustors – Fluidized bed combustors, design, c	signs, Fixed bed					
Biomass Comb combustors, ty operation of al	pustion – Biomass Stoves – Improved Chullahs, types, some exotic de pes – Inclined grate combustors – Fluidized bed combustors, design, c the above biomass combustors.	signs, Fixed bed					
Biomass Comb combustors, ty operation of al UNIT – V	pustion – Biomass Stoves – Improved Chullahs, types, some exotic despes – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM	signs, Fixed bed construction and 9 Periods					
Biomass Comb combustors, ty operation of al UNIT – V Biogas: Proper	pustion – Biomass Stoves – Improved Chullahs, types, some exotic de pes – Inclined grate combustors – Fluidized bed combustors, design, o the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology	signs, Fixed bed construction and 9 Periods v and status – Bio					
Biomass Comb combustors, ty operation of al UNIT - V Biogas: Proper energy system	pustion – Biomass Stoves – Improved Chullahs, types, some exotic der pes – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology – Design and constructional features – Biomass resources and their	signs, Fixed bed construction and 9 Periods 7 and status – Bio r classification -					
Biomass Comb combustors, ty operation of al UNIT – V Biogas: Proper energy system Biomass conv	pustion – Biomass Stoves – Improved Chullahs, types, some exotic der pes – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology – Design and constructional features – Biomass resources and their ersion processes – Thermo chemical conversion – Direct combus	signs, Fixed bed construction and 9 Periods v and status – Bio r classification – ction – biomass					
Biomass Comb combustors, ty operation of al UNIT - V Biogas: Proper energy system Biomass conv gasification -	pustion – Biomass Stoves – Improved Chullahs, types, some exotic der pes – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology – Design and constructional features – Biomass resources and their ersion processes – Thermo chemical conversion – Direct combus pyrolysis and liquefaction – biochemical conversion – anaerobic diges	signs, Fixed bed construction and 9 Periods 7 and status – Bio r classification – tion – biomass stion – Types of					
Biomass Comb combustors, ty operation of al UNIT – V Biogas: Proper energy system Biomass conv gasification – biogas plants –	pustion – Biomass Stoves – Improved Chullahs, types, some exotic der rpes – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology – Design and constructional features – Biomass resources and their ersion processes – Thermo chemical conversion – Direct combus pyrolysis and liquefaction – biochemical conversion – anaerobic diges – Applications – Alcohol production from biomass – Bio diesel productio	signs, Fixed bed construction and 9 Periods v and status – Bio r classification – ction – biomass stion – Types of n – Urban waste					
Biomass Comb combustors, ty operation of all UNIT - V Biogas: Proper energy system Biomass conv gasification - biogas plants - to energy conv	pustion – Biomass Stoves – Improved Chullahs, types, some exotic deres – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology – Design and constructional features – Biomass resources and their ersion processes – Thermo chemical conversion – Direct combus pyrolysis and liquefaction – biochemical conversion – anaerobic diges – Applications – Alcohol production from biomass – Bio diesel productio ersion – Biomass energy programme in India.	signs, Fixed bed construction and 9 Periods and status – Bio r classification – tion – biomass stion – Types of n – Urban waste					
Biomass Comb combustors, ty operation of all UNIT – V Biogas: Proper energy system Biomass conv gasification – biogas plants – to energy conv	 bustion – Biomass Stoves – Improved Chullahs, types, some exotic deserves – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology a – Design and constructional features – Biomass resources and their ersion processes – Thermo chemical conversion – Direct combus byrolysis and liquefaction – biochemical conversion – anaerobic diges Applications – Alcohol production from biomass – Bio diesel productio ersion – Biomass energy programme in India. 	signs, Fixed bed construction and 9 Periods and status – Bio r classification – tion – biomass stion – Types of n – Urban waste					
Biomass Comb combustors, ty operation of al UNIT – V Biogas: Proper energy system Biomass conv gasification – biogas plants – to energy conv	pustion – Biomass Stoves – Improved Chullahs, types, some exotic deres – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology – Design and constructional features – Biomass resources and their ersion processes – Thermo chemical conversion – Direct combus pyrolysis and liquefaction – biochemical conversion – anaerobic diges – Applications – Alcohol production from biomass – Bio diesel productio ersion – Biomass energy programme in India.	signs, Fixed bed construction and 9 Periods and status – Bio r classification – tion – biomass stion – Types of n – Urban waste					
Biomass Comb combustors, ty operation of all UNIT – V Biogas: Proper energy system Biomass conv gasification – biogas plants – to energy conv Contact Perio Lecture: 45 Pe	 bustion – Biomass Stoves – Improved Chullahs, types, some exotic deserves – Inclined grate combustors – Fluidized bed combustors, design, of the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology a – Design and constructional features – Biomass resources and their ersion processes – Thermo chemical conversion – Direct combus byrolysis and liquefaction – biochemical conversion – anaerobic diges c Applications – Alcohol production from biomass – Bio diesel productio ersion – Biomass energy programme in India. ds: beriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 	signs, Fixed bed construction and 9 Periods 7 and status – Bio 7 classification – r classification – stion – biomass stion – Types of n – Urban waste Periods					

REFERENCES:

1 **"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies",** P Jayaram Reddy, Taylor and Francis Publications, 2016.

2	'Waste – to – Energy: Technologies and project Implementations", Marc J Rogoff, Francois								
	Screve,ELSEVIER Publications, Third Edition, 2019.								
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated								
	Edition, 2015.								
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications,								
	2010.								
COU	COURSE OUTCOMES:								
		Taxonomy							
Upor	n completion of the course, the students will be able to:	Mapped							
CO2	Investigate solid waste management techniques.	K2							
CO	2 Get knowledge about biomass pyrolysis.	К3							
COS	B Demonstrate methods and factors considered for biomass gasification.	КЗ							
CO4	Identify the features of different facilities available for biomass combustion.	K4							
COS	Analyze the potential of different Bioenergy systems with respect to Indian	K2							
	condition.								

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	PO5	P06			
C01	2	3	3	2	3	1			
CO2	3	2	2	2	3	1			
CO3	3	3	2	3	2	1			
CO4	3	2	2	3	3	1			
CO5	2	3	3	3	2	1			
23EEOE06	3	3	3	3	3	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	10	20	20	25	15	10	100			
CAT2	10	25	20	10	25	10	100			
Individual										
Assessment										
1/ Case		15	25	FO			100			
Study 1/	-	15	55	50	-	-	100			
Seminar 1 /										
Project 1										
Individual										
Assessment										
2/ Case	-	10	40	50	-	-	100			
Study 2/										
Seminar 2/										

Project 2							
ESE	10	25	25	20	10	10	100

23GEOE07	ENERGY IN BUILT ENVIRONMENT
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	OE	3	0	0	3

Course	To understand constructional energy requirements of buildings, en	ergy audit
Objective	methods and conservation of energy.	
UNIT-I	INTRODUCTION	9 Periods
Indoor activitie	s and environmental control - Internal and external factors on	energy use –
Characteristics of	of energy use and its management -Macro aspect of energy use in dw	ellings and its
implications –T	hermal comfort-Ventilation and air quality-Air-conditioning requi	rement-Visual
perception-Illun	nination requirement-Auditory requirement.	
UNIT-II	LIGHTING REQUIREMENTS IN BUILDING	9 Periods
The sun-earth r	elationship - Climate, wind, solar radiation and temperature - Sur	n shading and
solar radiation o	on surfaces-Energy impact on the shape and orientation of buildings	–Lighting and
day lighting :Cha	aracteristics and estimation, methods of day-lighting–Architectural o	considerations
for day-lighting.	A X SA	
UNIT-III	ENERGY REQUIREMENTS IN BUILDING	9 Periods
Steady and un	steady heat transfer through wall and glazed window-Standard	s for thermal
performance of	building envelope- Evaluation of the overall thermal transfer- The	rmal gain and
net heat gain-En	d-Use energy requirements-Status of energy use in buildings-Estima	tion of energy
use in a building		
UNIT-IV	ENERGY AUDIT	9 Periods
Energy audit a	and energy targeting-Technological options for energy manageme	nt-Natural and
forced ventilation	n–Indoor environment and air quality-Air flow and air pressure on	buildings-Flow
due to Stack effe	ct.	
UNIT-V	COOLING IN BUILT ENVIRONMENT	9 Periods
Passive building	ng architecture-Radiative cooling-Solar cooling techniques-So	olar desiccant
dehumidification	n for ventilation-Natural and active cooling with adaptive comfo	rt–Evaporative
cooling –Zero energy building concept.		
Contact Period	S:	
Lecture: 45 Per	iods Tutorial: 0 Period Practical: 0 Period Total: 45 Pe	eriods

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.

2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE,"Hand book of Fundamentals",ASHRAE,Atlanta,GA.,2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COURSE OUTCOMES:		Bloom's
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand energy and its usage	K2
CO2	Know lighting to be given to a building	K1
CO3	Analyse the energy requirements in a building	КЗ
CO4	Apply the energy audit concepts.	К3
C05	Study architectural specifications of a building	K1

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
C01	2	-	3	1	2	1
CO2	2	-	3	1	2	1
CO3	2	-	3	1	2	1
CO4	2	-	3	1	2	1
CO5	2	-	3	1	2	1
23GEOE07	2	a marting	3	1	2	1
1–Slight, 2–Moderate, 3–Substantial						

ASSESSMENT PATTERN – THEORY

			T	7			
ASSESSMENT P Test / Bloom's Category*	ATTERN – THEC Remembering (K1) %	ORY Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	40	40	20	-	-	-	100

23GE0E08
LJULULUU

EARTH AND ITS ENVIRONMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	To know about the planet earth, the geosystems and the resource	es like ground		
Objective	water and air and to learn about the Environmental Assessment and sustainability.			
UNIT-I	EVOLUTION OF EARTH	9 Periods		
Evolution of ear	th as habitable planet-Evolution of continents-oceans and landforms-e	volution of life		
through geologi	cal times - Exploring the earth's interior - thermal and chemical struct	ture - origin of		
gravitational an	d magnetic fields.			
UNIT-II	GEOSYSTEMS	9 Periods		
Plate tectonics -	- working and shaping the earth - Internal geosystems - earthquakes	s – volcanoes -		
climatic excurs	sions through time - Basic Geological processes - igneous, sec	limentation –		
metamorphic pr	OCESSES.			
UNIT-III	GROUND WATER GEOLOGY	9 Periods		
Geology of grou	und water occurrence -recharge process-Ground water movement-	Ground water		
discharge and c	catchment hydrology - Ground water as a resource - Natural ground	water quality		
and contaminat	ion-Modelling and managing ground water systems.			
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	9 Periods		
Engineering an	d sustainable development - population and urbanization - toxic chem	icals and finite		
resources - wat	er scarcity and conflict - Environmental risk - risk assessment and cha	racterization –		
hazard assessm	ent-exposure assessment.			
UNIT-V	AIR AND SOLIDWASTE	9 Periods		
Air resources e	ngineering-introduction to atmospheric composition-behaviour-atmo	ospheric photo		
chemistry-Solid waste management-characterization-management concepts.				
Contact Period	S:			
Lecture: 45 Per	riods Tutorial: 0 Period Practical: 0 Period Total: 45	Periods		

1	John Grotzinger and Thomas H.Jordan, " Understanding Earth", Sixth Edition, W.H.Freeman, 2010.
2	Younger,P.L., "Ground water in the Environment: An introduction", Blackwell Publishing,2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,
	Sustainability and Design",Wiley,NJ, 2010.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	To know about evolution of earth and the structure of the earth.	К2
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K2
	the Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	КЗ
	water and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	КЗ
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	1	-	-	2	2	-			
CO2	3	-	3	3	-	3			
CO3	2	A (21)	Co Real	-	-	-			
CO4	-	2	24.5	-	1	-			
CO5	2	2		1	-	-			
23GEOE08	2	2	3	3	2	3			
1–Slight, 2–Moderate, 3–Substantial									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	40	40	20	-	-	-	100		
CAT 2	40	40	20	-	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	_	-	_	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100		

ESE	40	40	20	-	-	-	100
-----	----	----	----	---	---	---	-----

23GEOE09	NATURAL HAZARDS AND MITIGATION
	(Common to all Branches)

PREREQUISITES:	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To get idea on the causes, effects and mitigation measures of different types of hazards								
Objective	with case studies.								
UNIT-I	EARTH QUAKES 9 Periods								
Definitions and basic concepts-different kinds of hazards-causes-Geologic Hazards-Earthquakes-									
causes of earth	nquakes–effects-plate tectonics-seismic waves-measures of	size of earthquakes-							
earthquake resis	stant design concepts.								
UNIT-II	SLOPE STABILITY	9 Periods							
Slope stability	and landslides-causes of landslides-principles of stability	analysis-remedial and							
corrective meas	ures for slope stabilization.								
UNIT-III	FLOODS	9 Periods							
Climatic Hazar	ds-Floods-causes of flooding-regional flood frequency	analysis–flood control							
measures-flood	routing-flood forecasting-warning systems.								
UNIT-IV	DROUGHTS	9 Periods							
Droughts -cause	es - types of droughts –effects of drought -hazard assessment	- decision making-Use							
of GIS in natural	hazard assessment-mitigation-management.								
UNIT-V	TSUNAMI	9 Periods							
Tsunami-causes-effects-under sea earthquakes-landslides-volcanic eruptions-impact of sea									
meteorite-remedial measures-precautions-case studies.									
Contact Periods:									
Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods									

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage						
	Learning, 2008.						
2	2 Edward Bryant, "Natural Hazards", Cambridge University Press,2005.						
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability	", John Wiley &					
COUR	SEGALT TROPMES:	Bloom's					
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering	g"T fox on Wintey &					
Upon	Smpletio2008 the course, the students will be able to:	Mapped					
C01	Learn the basic concepts of earthquakes and the design concepts of	K2					
	earthquake Resistant buildings.						
C02	Acquire knowledge on the causes and remedial measures of slope	К3					
	stabilization.						
CO3	As certain the causes and control measures of flood.	КЗ					
C04	Know the types, causes and mitigation of droughts.	K2					
C05	Study the causes, effects and precautionary measures of Tsunami.	K2					

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	3	1	-	3	2	3			
CO2	3	1	2	3	3	3			
CO3	3	2	3	-	-	3			
CO4	3	-	-	3	2	3			
CO5	3	-	2	2	-	3			
23GEOE09	3	1	2	3	2	3			
1–Slight, 2–Moderate, 3–Substantial									

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT 1	40	40	20	-	-	-	100	
CAT 2	40	40	20		-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100	
ESE	40	40	20	-	-	-	100	

27	RED	OF	10
40	ЪD	UĽ	10

BUSINESS ANALYTICS

(Common to all Branches)

PREREQUISI	ГЕS	CATEGORY	L	Τ	Р	С			
	NIL	OE	3	0	0	3			
Course	1. To apprehend the fundamentals of business ana	lytics and its li	fe c	ycle.					
Objectives	2. To gain knowledge about fundamental business	analytics.							
	3. To study modeling for uncertainty and statistical	l inference.							
	4. To apprehend analytics the usage of Hadoop and	l Map Reduce f	ram	ewo	rks.				
	5. To acquire insight on other analytical framework	KS.							
UNIT – I	BUSINESS ANALYTICS AND PROCESS			9	Peri	ods			
Business anal	ytics: Overview of Business analytics, Scope of Busin	ess analytics, I	Busi	ness					
Analytics Pro	cess, Relationship of Business Analytics Proces	s and organi	zatio	on, c	comp	etitive			
advantages o	f Business Analytics. Statistical Tools: Statistical	Notation, De	scri	ptive	e Sta	tistical			
methods, Rev	iew of probability distribution and data modelling,	sampling and	estir	natio	on m	ethods			
overview.									
UNIT – II	REGRESSION ANALYSIS			9]	Peri	ods			
Trendiness an	d Regression Analysis: Modelling Relationships and	Trends in Dat	a, si	mple	•				
Linear Regres	sion. Important Resources, Business Analytics Perso	onnel, Data and	l mo	dels	for				
Business anal	ytics, problem solving, Visualizing and Exploring Dat	ta, Business Ar	alyt	ics					
Technology.									
UNIT – III	STRUCTURE OF BUSINESS ANALYTICS			9	Peri	ods			
Organization	Structures of Business analytics, Team managemen	nt, Manageme	nt Is	sues	, Des	signing			
Information	Policy, Outsourcing, Ensuring Data Quality, Mea	suring contri	buti	on d	of Bu	isiness			
analytics, Ma	naging Changes. Descriptive Analytics, predictive	analytics, pre	edica	ative	Мос	lelling,			
Predictive ana	lytics analysis, Data Mining, Data Mining Methodolo	gies, Prescript	ive	analy	/tics	and its			
step in the bu	siness analytics Process, Prescriptive Modelling, non	linear Optimiz	atio	n.					
UNIT – IV	FORECASTING TECHNIQUES			9	Peri	ods			
Forecasting T	echniques: Qualitative and Judgmental Forecastin	g, Statistical l	Fore	casti	ng N	lodels,			
Forecasting M	odels for Stationary Time Series, Forecasting Model	s for Time Seri	es						
with a Linear	Trend, Forecasting Time Series with Seasonality, Re	gression Fored	asti	ng w	ith				
Casual Variab	les, Selecting Appropriate Forecasting Models. Mont	e Carlo Simula	tion	and					
Risk Analysis:	Monte Carle Simulation Using Analytic Solver Platfo	orm, New-Prod	uct						
Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.									
UNIT – V	DECISION ANALYSIS AND RECENT TRENDS	IN BUSINE	SS	9]	Peri	ods			
	ANALYTICS								
Decision Anal	ysis: Formulating Decision Problems, Decision Strate	egies with the	with	out					
Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision									
Making.Recent Trends: Embedded and collaborative business intelligence, Visual data recovery,									
Data Storytell	ing and Data journalism								
Contact Per	riods:		_						
Lecture: 45 l	Lecture: 45 PeriodsTutorial: 0 PeriodPractical: 0 PeriodTotal: 45 Periods								

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical
	Approach",Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge
	University Press, 2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.
	Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making",
	Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	Mapped	
C01	Identify the real world business problems and model with analytical	K4
	solutions.	
CO2	Solve analytical problem with relevant mathematics background	K4
	knowledge.	
CO3	Convert any real world decision making problem to hypothesis and apply	K4
	suitable statistical testing.	
C04	Write and Demonstrate simple applications involving analytics using	K4
	Hadoop and Map Reduce	
C05	Use open source frameworks for modeling and storing data.	K4

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	PO5			
C01	1	2	1	2	1			
CO2	1	1	1	2	1			
CO3	2	2	1	1	-			
CO4	2	2	1	-	-			
CO5	1	2	-	-	-			
23EDOE10	1	2	1	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

2350051	1
ZJEDUEI	

INTRODUCTION TO INDUSTRIAL SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	1. Summarize basics of industrial safety.							
Objectives	2. Describe fundamentals of maintenance engineering.							
	3. Explain wear and corrosion.							
	4. Illustrate fault tracing.							
	5. Identify preventive and periodic maintenance.							
UNIT – I	INTRODUCTION	9 Periods						
Accident, causes,	Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and							
preventive steps/p	procedure, describe salient points of factories act 1948 for health ar	nd safety, wash						
rooms, drinking wa	ater layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safe	ety color codes.						
Fire prevention an	d firefighting, equipment and methods.							
UNIT – II	FUNDAMENTALS OF MAINTENANCE ENGINEERING	9 Periods						
Definition and aim	of maintenance engineering, Primary and secondary functions and	esponsibility of						
maintenance depar	rtment, Types of maintenance, Types and applications of tools used fo	r maintenance,						
Maintenance cost &	& its relation with replacement economy, Service life of equipment.							
UNIT – III	WEAR AND CORROSION AND THEIR PREVENTION	9 Periods						
Wear- types, cause	s, effects, wear reduction methods, lubricants-types and applications,							
Lubrication metho	ds, general sketch, working and applications, i. Screw down grease c	up, ii. Pressure						
grease gun, iii. Spla	sh lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side f	eed lubrication,						
vii. Ring lubricati	on, Definition, principle and factors affecting the corrosion. Types	s of corrosion,						
corrosion preventi	on methods.							
UNIT – IV	FAULT TRACING	9 Periods						
Fault tracing-conce	ept and importance, decision tree concept, need and applications, sec	uence of fault-						
finding activities, s	show as decision tree, draw decision tree for problems in machine t	ools, hydraulic,						
pneumatic, automo	otive, thermal and electrical equipment's like, I. Any one machine tool,	ii. Pump iii. Air						
compressor, iv. Int	ternal combustion engine, v. Boiler, vi. Electrical motors, Types of fau	ults in machine						
tools and their gen	eral causes.							
UNIT – V	PERIODIC AND PREVENTIVE MAINTENANCE	9 Periods						
Periodic inspectio	n-concept and need, degreasing, cleaning and repairing schemes,	overhauling of						
mechanical compo	onents, overhauling of electrical motor, common troubles and reme	dies of electric						
motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance.								
Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air								
compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of								
mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and								
importance								
Contact Periods								
Lecture: 45 Perio	ods Tutorial: 0 Period Practical: 0 Period Total: 45	5 Periods						

REFERENCES

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London,2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers,
	2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition
	,2018
-	

5 "Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	Mapped	
C01	Ability to summarize basics of industrial safety	K4
CO2	Ability to describe fundamentals of maintenance engineering	K4
CO3	Ability to explain wear and corrosion	K4
CO4	Ability to illustrate fault tracing	K4
C05	Ability to identify preventive and periodic maintenance	K4

	965	at a Read						
COURSE ARTICULATION MATRIX								
CUS/PUS	PUI	P02	P03	P04	P05			
C01	2	1	1	-	-			
C02	2	2	1	-	1			
CO3	1	2	1	1	1			
CO4	2	1	1	1	1			
C05	2	1	2	1	1			
23ED0E11	2	1000	1	1	1			
– Slight, 2 – Moderate, 3 –	Substantial			•	l.			

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E12

OPERATIONS RESEARCH

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	1. Solve linear programming problem and solve using graphical method.	
Objectives	2. Solve LPP using simplex method.	
	3. Solve transportation, assignment problems.	
	4. Solve project management problems.	
	5. Solve scheduling problems.	
UNIT – I	INTRODUCTION	9 Periods
Optimization	Techniques, Model Formulation, models, General L.R Formulation, Sim	plex Techniques,
Sensitivity An	alysis, Inventory Control Models	
UNIT – II	LINEAR PROGRAMMING PROBLEM	9 Periods
Formulation of	f a LPP - Graphical solution revised simplex method - duality theory - dual	simplex method -
sensitivity ana	llysis - parametric programming	
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM	9 Periods
Nonlinear pro	gramming problem - Kuhn-Tucker conditions min cost flow problem - magnetic states and the second states and th	ax flow problem -
CPM/PERT	0	
UNIT – IV	SEQUENCING AND INVENTORY MODEL	9 Periods
Scheduling an	d sequencing - single server and multiple server models - deterministic in	ventory models -
Probabilistic i	nventory control models - Geometric Programming.	
UNIT – V	GAME THEORY	9 Periods
Competitive M	Iodels, Single and Multi-channel Problems, Sequencing Models, Dynamic Pr	ogramming, Flow
in Networks, I	Elementary Graph Theory, Game Theory Simulation	
Contact Per	iods:	
Lecture: 45 l	Periods Tutorial: 0 Period Practical: 0 Period Total: 4	5 Periods

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy
		Mapped
Upon o	completion of the course, the students will be able to:	
C01	Formulate linear programming problem and solve using graphical	K4
	method.	
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
C04	Solve project management problems.	K4
C05	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05			
C01	2	1	1	-	-			
CO2	2	2	1	-	-			
CO3	1	1	2	1	1			
CO4	1	1	-	-	-			
CO5	2	1	-	-	-			
23EDOE12	2	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Sul	ostantial							

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	25	25	25	25			100				
CAT2	20	25	25	30			100				
Assignment 1	25	30	25	20			100				
Assignment 2	30	20	30	20			100				
ESE	20	30	20	30			100				

23M	FO	F1	3
2214	гυ	СІ	.Э

OCCUPATIONAL HEALTH AND SAFETY

(Common to all Branches)

PREREQUISI	ΓES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course	1. To gain knowledge about occupational healt	h hazard and sa	fety	me	asui	es at		
Objectives	work place.							
	2. To learn about accident prevention and safety	management.						
	3. To learn about general safety measures in indu	istries.						
UNIT – I OCCUPATIONAL HEALTH AND HAZARDS 9 Period								
Safety- Histor	y and development, National Safety Policy- Occupat	ional Health Haza	ards	- Er	gon	omics		
- Importance	of Industrial Safety Radiation and Industrial Hazar	ds- Machine Gua	rds :	and	its †	zypes,		
Automation.								
UNIT – II	SAFETY AT WORKPLACE			9 P	erio	ds		
Safety at Wo	rkplace - Safe use of Machines and Tools: Safety	in use of differ	ent	type	es o	f unit		
operations -								
Ergonomics of	f Machine guarding - working in different workp	laces - Operation	n, In	spe	ctio	n and		
maintenance,	Plant Design and Housekeeping, Industrial lighting,	Vibration and No	oise (Case	e stu	dies.		
UNIT - III ACCIDENT PREVENTION					9 Periods			
Accident Pre	vention Techniques - Principles of accident pr	evention - Defir	nitio	ns,	The	ories,		
Principles –	Hazard identification and analysis, Event tree an	nalysis, Hazop st	udie	es, J	ob s	safety		
analysis - The	ories and Principles of Accident causation - First A	id : Body structu	re ar	nd fu	unct	ions -		
Fracture and	Dislocation, Injuries to various body parts.							
UNIT – IV	SAFETY MANAGEMENT			9 P	erio	ods		
Safety Manag	ement System and Law - Legislative measures	in Industrial Saf	ety:	Var	ious	acts		
involved in D	etail- Occupational safety, Health and Environmen	nt Management:	Bure	eau	of I	ndian		
Standards on	Health and Safety, 14489, 15001 - OSHA, Process	safety managem	ent ([PSN	1) a	nd its		
principles - E	PA standards- Safety Management: Organisational	& Safety Commit	tee -	its	stru	cture		
and functions								
UNIT – V	GENERAL SAFETY MEASURES			9 P	erio	ods		
Plant Layout	for Safety -design and location, distance between	hazardous unit	s, lig	ghtir	ng, c	olour		
coding, pilot p	lant studies, Housekeeping - Accidents Related wit	h Maintenance of	Mac	chin	es -	Work		
Permit System	n: Significance of Documentation Directing Safety, I	Leadership -Case	stuc	lies	invo	olving		
implementati	on of health and safety measures in Industries.							
Contact Per	iods:							
Lecture: 45	Periods Tutorial: 0 Period Practical: 0 Period	riod To	otal:	45	Per	iods		
REFERENCES	:							
1 Benjamin	1 Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.							

2 Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.

3 Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017

4 Deshmukh. L.M., Industrial Safety Management, 3rd Edition, Tata McGraw Hill, New Delhi, 2008.

5 https://nptel.ac.in/courses/110105094

6 https://archive.nptel.ac.in/courses/110/105/110105094/

COUR	COURSE OUTCOMES:				
		Taxonomy			
Upon o	completion of the course, the students will be able to:	Mapped			
C01	Gain the knowledge about occupational health hazard and safety measures	К3			
	at work place.				
CO2	Learn about accident prevention and safety management.	K2			
CO3	Understand occupational health hazards and general safety measures in	K3			
	industries.				
C04	Know various laws, standards and legislations.	K2			
C05	Implement safety and proper management of industries.	K4			

COURSE ARTICULATION MATRIX:

Cos/Pos	P01	P02	PO3	P04	PO5				
C01	2	1	1	1	1				
C02	2	2	1	1	1				
CO3	1	2	1	1	1				
CO4	2	1	1	1	1				
C05	2	1	2	1	1				
23MF0E13	2	177	1	1	1				
1 – Slight, 2 – Moderate, 3 – Substantial									

13981

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1		50	50				100		
CAT2		50	30	20			100		
Individual		50	50				100		
Assessment 1									
/Case Study									
1/ Seminar 1									
/ Project1									
Individual		50	30	20			100		
Assessment 2									
/Case Study									
2/ Seminar 2									
/ Project 2									
ESE		40	40	20			100		

COST MANAGEMENT OF ENGINEERING PROJECTS

(Common to all Branches)

PREREQUISIT	ES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course	1. To understand the costing concepts and their	role in decision	naki	ng.				
Objectives	2. To acquire the project management concepts and their various aspects in							
	selection.							
	3. To gain the knowledge in costing concepts with project execution.							
	4. To develop knowledge of costing technique	es in service se	ector	and	d va	irious		
	budgetary control techniques.							
	5. To familiarize with quantitative techniques in	n cost managemen	nt.					
UNIT – I	INTRODUCTION TO COSTING CONCEPTS			9 I	Peri	ods		
Introduction a	nd Overview of the Strategic Cost Management F	Process, Cost con	cept	s in	dec	ision-		
making; Relev	ant cost, Differential cost, Incremental cost and	Opportunity cos	t. 0	bject	tives	s of a		
Costing System	n; Inventory valuation; Creation of a Database for	r operational cor	ntrol	; Pro	ovisi	on of		
data for Decisio	on - Making.							
UNIT – II	PROJECT PLANNING ACTIVITIES			91	Peri	ods		
Project: meani	ng, Different types, why to manage, cost overruns	s centers, various	s sta	ges	of p	roject		
execution: con	ception to commissioning. Project execution as	conglomeration	of	tech	nica	l and		
nontechnical a	ctivities. Detailed Engineering activities. Pre proje	ect execution ma	in cl	eara	ance	s and		
documents Pr	oject team: Role of each member. Importance	Project site: Da	ta r	equi	ired	with		
significance. P	roject contracts. Types and contents. Project ex	ecution Project	cost	C01	ntro	l. Bar		
charts and Net	work diagram. Project commissioning: mechanical	and process.						
UNIT – III	COST ANALYSIS			91	Peri	ods		
Cost Behaviou	r and Profit Planning Marginal Costing; Distincti	on between Mar	gina	l Co	stin	g and		
Absorption Co	sting; Break-even Analysis, Cost-Volume-Profit A	Analysis. Various	deo	cisio	n-m	aking		
problems. Stan	dard Costing and Variance Analysis.							
UNIT – IV	PRICING STRATEGIES AND BUDGETORY CONT	ROL		9 I	Peri	ods		
Pricing strateg	ies: Pareto Analysis. Target costing, Life Cycle Cost	ting, Costing of se	ervic	e se	ctor	, Just-		
in -time appr	oach, Material Requirement Planning, Enterpris	se Resource Pla	nnin	g. E	Budg	etary		
Control; Flexib	le Budgets; Performance budgets; Zero-based bu	ıdgets. Measuren	nent	of l	Divis	sional		
profitability pr	icing decisions including transfer pricing.							
UNIT – V	TQM AND OPERATIONS REASEARCH TOOLS			91	Peri	ods		
Total Quality	Management and Theory of constraints, Activity	7-Based Cost Ma	nage	emei	nt, I	3ench		
Marking; Bala	nced Score Card and Value-Chain Analysis.	Quantitative tec	hniq	ues	for	cost		
management,	Linear Programming, PERT/CPM, Transportation	problems, Assig	gnme	ent j	prob	olems,		
Simulation, Lea	arning Curve Theory.							
Contact Peri	ods:							
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods							
REFERENCES:

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall
	of India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

COURSE OUTCOMES: Bloom's Taxonomy Upon completion of the course, the students will be able to: Mapped CO1 Apply the costing concepts and their role in decision making. КЗ CO2 Apply the project management concepts and analyze their various aspects K4 in selection. CO3 Interpret costing concepts with project execution. K4 Gain knowledge of costing techniques in service sector and various CO4 K2 budgetary control techniques. CO5 Become familiar with quantitative techniques in cost management. КЗ

COURSE ARTICULATION MATRIX:										
COs/Pos	P01	PO2	P03	P04	PO5					
C01	1	1	2	1	1					
CO2	2		1	1	-					
CO3	2	2	2	-	-					
CO4	1	1	1	1	1					
CO5	1	2	1	1	-					
23MF0E14	1	1	1	1	1					
1 – Slight, 2 – Moderate, 3 – Sul	ostantial		·							

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1			40	60			100			
CAT2		30	30	40			100			
Individual			40	60			100			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual		30	30	40			100			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										

23	22ME0E1	CO	MPOSITE M	ATERIALS		
	Z3MFUE15	(Co	mmon to all	Branches)		
	ESE	20	40	40		100

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	1. To summarize the characteristics of composite materials	and effect of							
Objectives	reinforcement in composite materials.								
	2. To identify the various reinforcements used in composite materia	ıls.							
	3. To compare the manufacturing process of metal matrix composite	es.							
	4. To understand the manufacturing processes of polymer matrix co	omposites.							
	5. To analyze the strength of composite materials.								
UNIT – I	INTRODUCTION	9 Periods							
Definition – Cl	assification and characteristics of Composite materials. Advantages and	d application of							
composites. F	unctional requirements of reinforcement and matrix. Effect of rei	nforcement on							
overall compo	site performance.								
UNIT – II	UNIT - II REINFORCEMENT 9 Periods								
Preparation-la	yup, curing, properties and applications of glass fibers, carbon fiber	s, Kevlar fibers							
and Boron fib	pers. Properties and applications of whiskers, particle reinforcemer	nts. Mechanical							
Behavior of	composites: Rule of mixtures, Inverse rule of mixtures.	Isostrain and							
Isosterescondi	itions.								
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods							
Casting – Soli	id State diffusion technique, Cladding – Hot isostatic pressing- Ma	anufacturing of							
Ceramic Matri	ix Composites: Liquid Metal Infiltration – Liquid phase sintering–Ma	anufacturing of							
Carbon – Carb	on composites: Knitting, Braiding, Weaving- Properties and application	15.							
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods							
Preparation o	f Moulding compounds and prepregs - hand layup method - Autoc	clave method –							
Filament wind	ling method – Compression moulding – Reaction injection moulding.	Properties and							
applications.									
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	9 Periods							
Laminar Failu	ure Criteria-strength ratio, maximum stress criteria, maximum	strain criteria,							
interacting fa	ilure criteria, hygrothermal failure. Laminate first play failure-in	sight strength;							
Laminate stre	ngth-ply discount truncated maximum strain criterion; strength desig	gn using caplet							
plots; stress co	plots; stress concentrations.								
Contact Per	iods:	_							
Lecture: 45 F	Periods Tutorial: 0 Period Practical: 0 Period Tota	al: 45 Periods							

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz,

2013.	
-------	--

5 https://nptel.ac.in/courses/112104168

COUR	SE OUTCOMES:	Bloom's				
		Taxonomy				
Upon completion of the course, the students will be able to:						
C01	CO1 Know the characteristics of composite materials and effect of reinforcement in					
	composite materials.					
CO2	Know the various reinforcements used in composite materials.	K2				
CO3	Understand and apply the manufacturing processes of metal matrix	КЗ				
	composites					
C04	Understand and apply the manufacturing processes of polymer matrix	К3				
	composites.					
CO5	Analyze the strength of composite materials.	K4				

COURSE ARTICULATION MATRIX:

COs/Pos	P01	PO2	P03	P04	P05
C01	1 0000	2	1	1	1
C02	2	2	1	1	2
C03	2	1-7	2	1	1
CO4	1	2	2	2	1
C05	1	2	1	1	1
23MF0E15	1	2	2	1	1
1 – Slight, 2 – Moderate, 3 – Su	bstantial				

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1		60	40				100			
CAT2			60	40			100			
Individual		60	40				100			
Assessmen										
t 1 /Case										
Study 1/										
Seminar 1										
/ Project1										
Individual			60	40			100			
Assessmen										
t 2 /Case										
Study 2/										
Seminar 2										

23TEOE16		GLO	BAL WARM	ING SCIENCI	E	
		(C	ommon to a	ll Branches)		
/ Project 2						
ESE		40	40	20		100

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	ourse To make the students learn about the material consequences of climate change, sea									
Objectives	level change due to increase in the emission of greenhouse gases and to examine the									
	science behind mitigation and adaptation proposals.									
UNIT – I	INTRODUCTION 9 Peri									
Terminology	Terminology relating to atmospheric particles - Aerosols - Types, characteristics, measurements -									
Particle mass	spectrometry - Anthropogenic-sources, effects on humans.									
UNIT – II	CLIMATE MODELS	9 Periods								
General clima	te modeling- Atmospheric general circulation model - Oceanic ge	eneral circulation								
model, sea ice	model, land model concept, paleo-climate - Weather prediction by n	umerical process.								
Impacts of clin	nate change - Climate Sensitivity - Forcing and feedback.									
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods								
Carbon cycle-	process, importance, advantages - Carbon on earth - Global car	bon reservoirs -								
Interactions b	etween human activities and carbon cycle - Geologic time scales -	Fossil fuels and								
energy - Pertu	rbed carbon cycle.									
UNIT – IV	GREENHOUSE GASES	9 Periods								
Blackbody rac	liation - Layer model - Earth's atmospheric composition and Green he	ouse gases effects								
on weather an	d climate - Radioactive equilibrium - Earth's energy balance.									
UNIT – V	GEO ENGINEERING	9 Periods								
Solar mitigati	on - Strategies – Carbon dioxide removal - Solar radiation mana	gement - Recent								
observed trends in global warming for sea level rise, drought, glacier extent.										
Contact Periods:										
Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods										

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and
	Its Consequences", Princeton University Press, 1st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5th
	Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions
	for Global Warming", Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change" ,Routledge, 1 st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR					
COOR	ISE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	completion of the course, the students will be able to:	Mapped			
CO1	Understand the global warming in relation to climate changes throughout	K3			
01	the earth.	KZ			
CO2	Assess the best predictions of current climate models.	K4			
CO2	Understand the importance of carbon cycle and its implication on fossil	KJ			
603	fuels.	K2			
CO4	Know about current issues, including impact from society, environment,	K٨			
	economy as well as ecology related to greenhouse gases.	K4			
C05	Know the safety measures and precautions regarding global warming.	K5			

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	PO5	P06			
C01	2	1	2	1	1	2			
CO2	1	1	2	1	1	1			
CO3	1	2	1 1	1	1	2			
CO4	1	1	1	1	1	2			
CO5	2	1	2	1	1	2			
23TEOE16	1	1	81	1	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	20	35	35	10	-	-	100			
CAT2	15	25	25	20	15	-	100			
Individual										
Assessment										
1 / Case	25	20	20	25			100			
Study 1 /	25	20	20	35	-	-	100			
Seminar 1 /										
Project 1										
Individual										
Assessment										
2 / Case	20	20	35	15	10	-	100			
Study 2 /										
Seminar 2 /										

	23TEOE	17	INTRODUCTION TO NANO ELECTRONICS (Common to all Branches)						
Pro	oject 2								
	ESE		25	20	25	20	10	-	100

PREREQUISI	TES	CATEGORY	L	Т	Р	С			
	NIL	OE	3	0	0	3			
Course	To make the students provide strong, essential, important methods and foundations								
Objectives	of quantum mechanics and apply quantum mecha	nics on engineerin	ng fi	elds	•				
UNIT – I	INTRODUCTION			91	Per	iods			
Particles and	Waves - Operators in quantum mechanics - The Pos	stulates of quantu	m n	nech	ani	cs - The			
Schrodinger e	quation values and wave packet Solutions - Ehrenfe	st's Theorem.							
UNIT – II	ELECTRONIC STRUCTURE AND MOTION			91	Per	iods			
Atoms- The H	ydrogen Atom - Many-Electron Atoms – Pseudopote	entials, Nuclear St	ruct	ure,	Мо	lecules,			
Crystals - Tra	nslational motion - Penetration through barriers	- Particle in a b	ox -	Tw	o to	erminal			
quantum dot o	levices - Two terminal quantum wire devices.								
UNIT – III	SCATTERING THEORY			91	Per	iods			
The formulati	on of scattering events - Scattering cross section -	Stationary scatte	ering	g sta	te -	Partial			
wave stationa	ry scattering events - multi-channel scattering -	Solution for Sch	rodi	ngei	eq	uation-			
Radial and wa	ve equation - Greens' function.								
UNIT – IV	CLASSICAL STATISTICS			9	Per	iods			
Probabilities a	nd microscopic behaviours - Kinetic theory and tra	nsport processes	in g	ases	- M	agnetic			
properties of 1	naterials - The partition function.								
UNIT – V	QUANTUM STATISTICS			91	Per	iods			
Statistical mee	chanics - Basic Concepts - Statistical models applied	to metals and ser	nico	ondu	icto	rs - The			
thermal prop	erties of solids- The electrical properties of mate	erials - Black bod	ly r	adia	tion	- Low			
temperatures and degenerate systems.									
Contact Periods:									
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 P	eriods Tota	l: 45	5 Pe	rio	ls			

1	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to
	Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge
	University Press, 1 st Edition, 2007.
2	Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis",
	Routledge, 1 st Edition, 2020.
3	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States
	Edition, 2007.
4	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.

5 Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian Edition, 2009.

- 6 Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum Statistical Mechanics", Wiley, 2004.
- 7 A. F. J. Levi, "Applied Quantum Mechanics", 2nd Edition, Cambridge, 2012.

COUR	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the postulates of quantum mechanics.	К2
CO2	Know about nano electronic systems and building blocks.	К2
CO3	Solve the Schrodinger equation in 1D, 2D and 3Ddifferent applications.	K4
C04	Learn the concepts involved in kinetic theory of gases.	K2
C05	Know about statistical models applies to metals and semiconductor.	К3

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	1	1	1	1	1	1				
CO2	2	2	and a sea	1	1	1				
CO3	2	2	2	1	1	1				
CO4	1	1		1	1	1				
CO5	1	1	1 1	1	1	1				
23TEOE17	1	1	1	1	1	1				
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	30	30	20	20	-	-	100			
CAT2	30	30	20	20	-	-	100			
Individual										
Assessment 1										
/ Case Study	35	25	20	20	-	-	100			
1 / Seminar 1										
/ Project 1										
Individual										
Assessment 2										
/ Case Study	30	25	20	25	-	-	100			
2 / Seminar 2										
/ Project 2										
ESE	20	30	30	20	-	-	100			

GREEN SUPPLY CHAIN MANAGEMENT (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To make the students learn and focus on the fundamental strategies, tools and							
Objectives	techniques required to analyze and design environmentally sustain	techniques required to analyze and design environmentally sustainable supply chain						
	ystems.							
UNIT – I	INTRODUCTION	9 Periods						
Intro to SCM -	Intro to SCM – complexity in SCM, Facility location - Logistics – Aim, activities, importance, progress,							
current trends	s - Integrating logistics with an organization.							
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT	9 Periods						
Basic concept	s of supply chain management - Supply chain operations - Plannin	ng and sourcing -						
Making and d	elivering - Supply chain coordination and use of technology - Develo	ping supply chain						
systems.	77							
UNIT – III	PLANNING THE SUPPLY CHAIN	9 Periods						
Types of decis	sions – strategic, tactical, operational - Logistics strategies, implement	ting the strategy -						
Planning reso	urces – types, capacity, schedule, controlling material flow, measuring	ng and improving						
performance.								
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN	9 Periods						
Procurement	- cycle, types of purchase - Framework of e-procurement - Invento	ry management –						
EOQ, uncertai	n demand and safety stock, stock control - Material handling – Purp	ose of warehouse						
and ownershi	p, layout, packaging - Transport – mode, ownership, vehicle routin	g and scheduling						
models- Trave	lling salesman problems - Exact and heuristic methods.							
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATEGIES	9 Periods						
Five key confi	guration components - Four criteria of good supply chain strategies	- Next generation						
strategies- Ne	strategies- New roles for end-to-end supply chain management - Evolution of supply chain							
organization – International issues in SCM – Regional differences in logistics.								
Contact Perio	ods:							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods						

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply
	Chain Management", Routledge, 1st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle
	Approach",McGraw-Hill Education, 1st Edition, 2011.

3 Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1stEdition, 2017.

4 Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach", Replica, 2021.

5 Mehmood Khan, Matloub Hussain and Mian M. Ajmal,"Green Supply Chain Management for Sustainable Business Practice", IGI Global, 1st Edition, 2016.

6 S Emmett, **"Green Supply Chains: An Action Manifesto"**, John Wiley & Sons Inc, 2010.

7 Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1st Edition, 2017.

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	pletion of the course, the students will be able to:	Mapped
C01	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	К5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	КЗ
C04	Analyze inventory management models and dynamics of supply chain.	K4
C05	Identify issues in international supply chain management and outsources strategies.	КЗ

			and the second sec					
COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	1	1	1	1	1	3		
CO2	2	2	1 1	1	1	1		
CO3	2	1	2	1	1	1		
CO4	2	2	1	1	2	2		
CO5	1	1	2	1	1	3		
23TEOE18	2	1	1	1	1	2		
1 – Slight, 2 – Mode	rate, 3 – Subs	tantial		•		•		

ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	25	25	30	10	10	-	100	
CAT2	30	40	20	10	-	-	100	
Individual								
Assessment 1 /								
Case Study 1 /	30	20	25	15	10	-	100	
Seminar 1 /								
Project 1								
Individual								
Assessment 2 /								
Case Study 2 /	35	30	25	10	-	-	100	
Seminar 2 /								
Project 2								
ESE	30	30	20	10	10	-	100	

22	пс	OL	1	റ
23	гJ	UE		7

DISTRIBUTION AUTOMATION SYSTEM

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To study about the distributed automation and economic evaluation schemes of power							
Objectives network							
UNIT – I	INTRODUCTION	9 Periods					
Introduction to	Distribution Automation (DA) - Control system interfaces- Control and data re	quirements-					
Centralized (vs) decentralized control- DA system-DA hardware-DAS software.						
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods					
DA capabilitie	es - Automation system computer facilities- Management processes-	Information					
management- S	System reliability management- System efficiency management- Voltage manage	ement- Load					
management.							
UNIT – III	COMMUNICATION SYSTEMS	9 Periods					
Communication	n requirements - reliability- Cost effectiveness- Data requirements- Two way	y capability-					
Communication	n during outages and faults - Ease of operation and maintenance- Conform	ming to the					
architecture of	flow. Distribution line carrier- Ripple control-Zero crossing technique- Telepho	ne, cableTV,					
radio, AM broa	dcast, FM SCA, VHF radio, microwave satellite, fiber optics-Hybrid communicat	tion systems					
used in field te	sts.						
UNIT – IV	ECONOMIC EVALUATION METHODS	9 Periods					
Development a	and evaluation of alternate plans- select study area - Select study period-	Project load					
growth-Develo	p alternatives- Calculate operating and maintenance costs-Evaluate alternatives	3.					
UNIT – V	ECONOMIC COMPARISON	9 Periods					
Economic comparison of alternate plans-Classification of expenses - capital expenditures-Comparison of							
revenue requirements of alternative plans-Book life and continuing plant analysis- Year by year revenue							
requirement analysis, Short term analysis- End of study adjustment-Break even analysis, sensitivity							
analysis - Computational aids.							
Contact Perio	Contact Periods:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications,
	Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design",
	Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE
	Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society.
	Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed	КЗ
	automation.	
CO4	Study the economic evaluation method	K4
C05	Understand the comparison of alternate plans	K5

COURSE ARTICULATION MATRIX

COs/Pos	P01	P02	P03	P04			
C01	2	-	1	3			
CO2	3	-	3	2			
CO3	3	-	3	2			
CO4	3	-	3	1			
CO5	2	1 Sama	1	2			
23PS0E19	3		3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*		100		R.				
CAT1	20%	30%	20%	10%	20%	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	10%	30%	20%	20%	-	100%	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								
Individual	20%	30%	10%	20%	20%	-	100%	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30%	20%	20%	20%	10%	-	100%	

23PSOE20

ELECTRICITY TRADING AND ELECTRICITY ACTS (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To acquire expertise on Electric supply and demand of Indian Grid, gain e	exposure on			
Objectives	energy trading in the Indian market and infer the electricity acts and	regulatory			
	authorities.	0			
UNIT – I	ENERGY DEMAND	9 Periods			
Basic concepts	in Economics - Descriptive Analysis of Energy Demand - Decomposition A	nalysis and			
Parametric Ap	proach - Demand Side Management - Load Management - Demand Side Ma	nagement -			
Energy Efficien	cy - Rebound Effect				
UNIT – II	ENERGY SUPPLY	9 Periods			
Supply Behavio	or of a Producer - Energy Investment - Economics of Non-renewable Resources	- Economics			
of Renewable I	Energy Supply Setting the context - Economics of Renewable Energy Supply - E	conomics of			
Electricity Supp	ply				
UNIT – III	ENERGY MARKET	9 Periods			
Perfect Compe	tition as a Market Form - Why is the Energy Market not Perfectly Competitiv	re? - Market			
Failure and Mo	nopoly - Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC Era II - Oil Market: O	PEC			
UNIT – IV	LAW ON ELECTRICITY	9 Periods			
Introduction o	f the Electricity Law; Constitutional Design - Evolution of Laws on Electri	icity Salient			
Features of Ele	ctricity Act, 2003 - Evolution of Laws on Electricity - Salient Features of the Electricity - Salient Featur	ectricity Act			
2003					
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT	9 Periods			
Regulatory Commissions - Appellate Tribunal - Other Institutions under the Act - Electricity (Amendment)					
Bill 2020/2021. A Critical Comment - Renewable Energy - Role of Civil Society; Comments on Draft					
Renewable Energy Act, 2015					
Contact Period	ds:				
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy" , Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands,
	2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.

6 Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and Practices", Cambridge Univesity Press, 2014.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	K3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical	K4
	sustainability	

COURSE ARTICULATION MATRIX						
COs/Pos	P01	PO2	P03	P04		
C01	3		3	3		
CO2	3	a contraction	1	1		
CO3	3	XF	2	2		
CO4	3		1	2		
CO5	3		3	3		
23PSOE20	3	124	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial						

SPARICE

ASSESSMENT PATTERN – THEORY								
Test / Remembering Understanding Applying Analyzing Evaluation					Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20%	30%	20%	30%	-	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	30%	30%	20%	-	-	100%	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								

Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	30%	-	20%	20%	-	100%

23PSOE21

MODERN AUTOMOTIVE SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Course To expose the students with theory and applications of Automotive Electrical and				
Objectives	Electronic Systems.				
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS	9 Periods			
Introduction to	o modern automotive systems and need for electronics in automobiles- Role of	electronics			
and microcont	trollers- Sensors and actuators- Possibilities and challenges in automotiv	e industry-			
Enabling techn	ologies and industry trends.				
UNIT – II	SENSORS AND ACTUATORS	9 Periods			
Introduction- I	basic sensor arrangement- Types of sensors- Oxygen sensor, engine cranksh	naft angular			
position sensor	r – Engine cooling water temperature sensor- Engine oil pressure sensor- Fue	el metering-			
vehicle speed	sensor and detonation sensor- Pressure Sensor- Linear and angle sensors- F	low sensor-			
Temperature a	nd humidity sensors- Gas sensor- Speed and Acceleration sensors- Knock sen	sor- Torque			
sensor- Yaw ra	te sensor- Tyre Pressure sensor- Actuators - Stepper motors – Relays.				
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE	9 Periods			
Electronic Tra	nsmission Control - Digital engine control system: Open loop and close le	oop control			
systems- Engin	e cooling and warm up control- Acceleration- Detonation and idle speed contr	ol - Exhaust			
emission contr	ol engineering- Onboard diagnostics- Future automotive powertrain systems.				
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SYSTEMS	9 Periods			
Cruise Control	l- Anti-lock Braking Control- Traction and Stability control- Airbag cont	rol system-			
Suspension cor	ntrol- Steering control- HVAC Control.				
UNIT – V	ELECTRONIC CONTROL UNITS (ECU)	9 Periods			
Introduction to	b Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotiv	es - Design			
complexities of	ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontro	oller (XC166			
Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces,					
analog and digital interfaces.					
Contact Perio	ds:				
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

1	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John
	Wiley and Sons, 2001.
2	M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE
	Press, series on Power Engineering, 2000.
3	Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power
	SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
4	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering	K4
	applications	
CO4	Develop modern automotive control system for electrical and electronics	К6
	systems	
CO5	Understand the function of sensors and actuators	K2
COURS	F ARTICULATION MATRIX	

COURSE ARTICULATION MATRIX

COs/Pos	P01	PO2	P03	P04
C01	3	14	1	3
CO2	3	10000	3	2
CO3	3	-	3	2
CO4	2	-	3	1
CO5	2	-	1	2
23PS0E21	3	-	2	2
1 – Slight, 2 – Moderate, 3 – Subs	stantial	•	•	•

ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%

Individual	20%	30%	-	20%	-	30%	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	30%	20%	20%	-	-	100%

VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

		1		
Course	To comprehend the Virtual instrumentation programming concepts towards m	easurements		
Objectives	and control and to instill knowledge on DAQ, signal conditioning and its associa	ted software		
	tools			
UNIT – I	INTRODUCTION	7 Periods		
Introduction -	advantages - Block diagram and architecture of a virtual instrument -	Conventional		
Instruments ve	ersus Traditional Instruments - Data-flow techniques, graphical programming	in data flow,		
comparison wi	th conventional programming.			
UNIT – II	GRAPHICAL PROGRAMMING AND LabVIEW	9 Periods		
Concepts of gra	aphical programming - LabVIEW software - Concept of VIs and sub VI - Display t	ypes - Digital		
- Analog - Cha	rt and Graphs. Loops - structures - Arrays – Clusters- Local and global variab	les – String -		
Timers and dia	log controls.			
UNIT – III	MANAGING FILES & DESIGN PATTERNS	11 Periods		
High-level and	low-level file I/O functions available in LabVIEW - Implementing File I/O func	tions to read		
and write data	to files - Binary Files - TDMS - sequential programming - State machine pro	ogramming –		
Communication	n between parallel loops –Race conditions – Notifiers & Queues – Producer Cons	sumer design		
patterns				
UNIT – IV	PC BASED DATA ACQUISITION	9 Periods		
Introduction to	o data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration,	Resolution, -		
analog inputs	and outputs - Single-ended and differential inputs - Digital I/O, counters and \pm	timers, DMA,		
Data acquisitio	on interface requirements - Issues involved in selection of Data acquisition ca	ards - Use of		
timer-counter a	and analog outputs on the universal DAQ card.			
UNIT – V	DATA ACQUISITION AND SIGNAL CONDITIONING	9 Periods		
Components o	f a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ	hardware –		
Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation –				
Signal conditioning systems – Synchronizing measurements in single & multiple devices – Power quality				
analysis using Electrical Power Measurement tool kit.				
Contact Perio	ds:			
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW" , Prentice Hall, 2013.

Kevin James, "**PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control**", Newness, 2000

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Describe the graphical programming techniques using LabVIEW software.	K2
C02	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6
C05	Familiarize and experiment with DAQ and Signal Conditioning	КЗ

COURSE ARTICULATION MATRIX:					
COs/POs	P01	P02	P03	P04	POS
C01	3		3	2	1
CO2	3	Second Second	3	2	1
CO3	3	1000	2	2	2
CO4	3	1	3	3	1
C05	3	1	3	3	2
23PEOE22	3	1	3	2	1
1 – Slight, 2 – Moderate, 3 -	- Substantial	18 13	94		
	6	Politica and			

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	40	15	15	-	-	100
CAT2	15	10	25	30	20	-	100
Individual	10	10	20	30	20	10	100
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	25	40	20	15	-	-	100
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							

5

ESE	30	25	15	20	5	5	100

23PEOE23	ENERGY MANAGEMENT SYSTEMS
	(Common to all Pranches)

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	To Comprehend energy management schemes, perform energy audit a	ind execute			
Objectives	economic analysis and load management in electrical systems.				
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT	9 Periods			
Energy Conser	vation Act 2001 and policies – Eight National Missions - Basics of Energy ar	nd its forms			
(Thermal and	Electrical) - Energy Management and Audit - Energy Managers and Auditors	- Types and			
Methodology A	udit Report - Material and energy balance diagramsEnergy Monitoring and T	largeting.			
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENERATION	9 Periods			
Boiler Systems	- Types - Performance Evaluation of boilers - Energy Conservation Opportun	nity - Steam			
Distribution - H	Efficient Steam Utilisation - Furnaces:types and classification - Performance eva	aluation of a			
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technical options - classification	- Technical			
parameters and	l factors influencing cogeneration choice - Prime Movers - Trigeneration.				
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS	9 Periods			
Electricity Billin	ng – Electricity load management - Maximum Demand Control - Power Factor ir	nprovement			
and its benefit	s - pf controllers - capacitors - Energy efficient transformers and Induction	on motors -			
rewinding and	other factors influencing energy efficiency - Standards and labeling pro-	ogramme of			
distribution tra	nsformers and IM - Analysis of distribution losses - demand side management	- harmonics			
- filters - VFD a	nd its selection.				
UNIT – IV	STUDY OF ELECTRICAL UTILITIES	9 Periods			
Compressor typ	pes - Performance - Air system components - Efficient operation of compressed	air systems-			
Compressor ca	apacity assessment - HVAC: psychrometrics and air-conditioning processes	- Types of			
refrigeration s	ystem - Compressor types and applications - Performance assessment of r	efrigeration			
plants - Lightin	plants - Lighting Systems: Energy efficient lighting controls - design of interior lighting - Case study.				
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMENT	9 Periods			
Performing Financial analysis: Fixed and variable costs - Payback period - ROI - methods - factors					
affecting analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy					
Conservation in buildings and ECBC.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Murphy W.R. and G.Mckay Butter worth , " Energy Management ", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.

3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
	Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
C01	Analyze the feature of energy audit methodology and documentation of report.	КЗ	
CO2	Perform action plan and financial analysis	K4	
CO3	Familiarize with thermal utilities.	K4	
C04	Familiarize with electrical utilities.	K4	
C05	Perform assessment of different systems.	K5	

COURSE ARTICULATION MATRIX					
COs/POs	P01	P02	P03	P04	PO5
C01	3	2	2	1	1
C02	3	2 -	2	1	1
CO3	3	2	2	1	1
CO4	3	2	2	1	1
C05	3	2	2	1	1
23PEOE23	3	2	2	1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1 / Case study1/ Seminar 1/Project1	-	30	30	20	20	_	100

Individual Assessment2	-	30	30	20	20	-	100
/ Case study2/ Seminar 2 /Project2							
ESE	10	30	30	20	10	-	100

22060624	ADVANCED ENERGY STORAGE TECHNOLOGY	CEMECTED III
Z3PEUE24	(Common to all Branches)	SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To explore the fundamentals, technologies and applications of energy storage				
Objectives					
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND	9 Periods			
	CHANGES				
Storage Needs	- Variations in Energy Demand- Variations in Energy Supply- Interruptions	s in Energy			
Supply- Transi	mission Congestion - Demand for Portable Energy-Demand and scale requ	uirements -			
Environmental	and sustainability issues-conventional energy storage methods: battery-types.				
UNIT – II	TECHNICAL METHODS OF STORAGE	9 Periods			
Introduction: H	Energy and Energy Transformations, Potential energy (pumped hydro, com	pressed air,			
springs)- Kinet	ic energy (mechanical flywheels)- Thermal energy without phase change pass	sive (adobe)			
and active (w	ater)-Thermal energy with phase change (ice, molten salts, steam)- Chem	ical energy			
(hydrogen, met	hane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electros	tatic energy			
(capacitors), E	lectromagnetic energy (superconducting magnets)- Different Types of Ene	rgy Storage			
Systems.					
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS	9 Periods			
Energy capture	e rate and efficiency- Discharge rate and efficiency- Dispatch ability and le	oad flowing			
characteristics,	scale flexibility, durability - Cycle lifetime, mass and safety - Risks of fire	e, explosion,			
toxicity- Ease o	f materials, recycling and recovery- Environmental consideration and recycling	, Merits and			
demerits of diff	Ferent types of Storage.				
UNIT – IV	APPLICATION CONSIDERATION	9 Periods			
Comparing Storage Technologies- Technology options- Performance factors and metrics- Efficiency of					
Energy Systems- Energy Recovery - Battery Storage System: Introduction with focus on Lead Acid and					
Lithium- Chemistry of Battery Operation, Power storage calculations, Reversible reactions, Charging					
patterns, Battery Management systems, System Performance, Areas of Application of Energy Storage:					
Waste heat recovery, Solar energy storage, Green house heating, Power plant applications, Drying and					
heating for pro-	cess industries, energy storage in automotive applications in hybrid and electric	vehicles.			
UNIT – V	HYDROGEN FUEL CELLS AND FLOW BATTERIES	9 Periods			

Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage: Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES :

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley,
	2010.
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy
	Storage and Conversion", John Wiley and Sons, 2012.

3 Francois Beguin and ElzbietaFrackowiak, "**Super capacitors**", Wiley, 2013.

4 Doughty Liaw, Narayan and Srinivasan, "**Batteries for Renewable Energy Storage**", The Electrochemical Society, New Jersy, 2010.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05
C01	3	1	3	3	3
C02	3	1	3	3	3
CO3	3	1	3	3	3
CO4	3	1	3	3	3
C05	3	1	3	3	3
23PEOE24	3	1	3	3	3
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100

Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

224E0E2E	DESIGN OF DIGITAL SYSTEMS
25AEUE25	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Objectives
--------	------------

٠	To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential
	circuits, PLD's and the basic concepts of testing in VLSI circuits

9 Periods

9 Periods

9 Periods

9 Periods

9 Periods

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart –ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Asynchronous Sequential Circuits - Races in ASC – Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards – Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) –Design of combinational and sequential circuits using PLDs– Complex PLDs (CPLDs).

UNIT- IV INTRODUCTION TO VHDL

Design flow -Software tools – VHDL: Data Objects-Data types – Operators –Entities and Architectures

Components and Configurations – Signal Assignment – Concurrent and Sequential statements ––Behavioral,
Dataflow and Structural modeling– Transport and Inertial delays –Delta delays-Attributes - Generics–
Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods:			
Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni," Circuit Design withVHDL ",PHILearning,2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", Academic Press, 1997.
5	CharlesHRoth," Digital Systems Design Using VHDL", Cencage2ndEdition2012.
6	NripendraN.Biswas,"Logic Design Theory"PrenticeHallofIndia,2001.

COUR	SEOUTCOMES:	Bloom's Taxonomy
Upon completion of the course ,students will be able to/have:		маррец
C01	To design synchronous sequential circuits based on specifications.	КЗ
CO2	To design asynchronous sequential circuits based on specifications	КЗ
CO3	Ability to illustrate digital design implementation using PLDs.	K2
C04	To develop algorithm and VHDL code for design of digital circuits.	КЗ
CO5	Understand the different testing methods for combinational and sequential	K2
	circuits.	

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
C05	3	-	2	-	-	1
23AE0E25	3	-	2	-	-	1
– Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA	ATTERN – THEOR	Y 🔬 🕺	N.				
Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	20%	45%	35%				100%

BASICS OF NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective	
• The students will be able to acquire knowledge about nano device fabricatio	n technology, nano
structures, nano technology for memory devices and applications of nano	electronics in data
transmission.	
UNIT – I TECHNOLOGY AND ANALYSIS	9 Periods
Fundamentals : Dielectric, Ferroelectric and Optical properties - Film Deposition Metho	ds – Lithography
Material removing techniques - Etching and Chemical Mechanical Polishing -	Scanning Probe
Techniques.	
UNIT – II CARBON NANO STRUCTURES	9 Periods
Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechan	ical and Vibration
Properties - Applications of Carbon Nano tubes.	
UNIT – III LOGIC DEVICES	9 Periods
Silicon MOSFET's: Novel materials and alternative concepts - Single electron d	levices for logic
applications - Super conductor digital electronics - Carbon Nano tubes for data processin	ıg.
UNIT – IV MEMORY DEVICES AND MASS STORAGE DEVICES	9 Periods
Flash memories - Capacitor based Random Access Memories - Magnetic Random A	ccess Memories -
Information storage based on phase change materials - Resistive Random Access Memo	ories - Holographic
Data storage.	
UNIT – V DATA TRANSMISSION AND INTERFACING DISPLAYS	9 Periods
Photonic Networks - RF and Microwave Communication System - Liquid Crystal	Displays - Organic
Light emitting diodes.	
Contact Periods:	
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	iods

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,

California", 2003.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon completion of the course, students will be able to/have:		Mapped
C01	Explain principles of nano device fabrication technology.	К2
CO2	Describe the concept of Nano tube and Nano structure.	К2
CO3	Explain the function and application of various nano devices	К3
C04	Reproduce the concepts of advanced memory technologies.	К2
C05	Emphasize the need for data transmission and display systems.	К2

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06	PS01	PSO2	PSO3
C01	3	-	2	-	-	1	3	-	1
C02	3	-	2	-	-	1	3	-	1
CO3	3	-	2	Stor Ba	-	1	3	-	1
CO4	3	-	2	222	SSS-	1	3	-	1
C05	3	-	2	200	-	1	3	-	1
23AE0E26	3	-	2	- 1	- II.	1	3	-	1
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	PATTERN – THEO	RY	as an	2			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

23	AE	OE	27	

ADVANCED PROCESSOR

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective

The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT – I MICROPROCESSOR ARCHITECTURE

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache - Virtual memory and paging - Segmentation - Pipelining - The instruction pipeline - pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISC versus CISC – RISC properties - RISC evaluation.

UNIT - II HIGH PERFORMANCE CISC ARCHITECTURE - PENTIUM

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – Theinstruction and caches - Floating point unit- Programming the Pentium processor.

UNIT - III HIGH PERFORMANCE CISC ARCHITECTURE - PENTIUM INTERFACE 9 Periods

Protected mode operation - Segmentation - paging - Protection - multitasking - Exception and interrupts - Input /Output - Virtual 8086 model - Interrupt processing.

UNIT - IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

ARM architecture - ARM assembly language program - ARM organization and implementation - ARM instruction set - Thumb instruction set.

UNIT - V SPECIAL PURPOSE PROCESSORS

9 Periods Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor –Digital

9 Periods

9 Periods

9 Periods

signal processor - Embedded processor - Media Processor - Video signal Processor - Custom Hardware - Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System -On -Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, students will be able to	Taxonomy
		Mapped
C01	Describe the fundamentals of various processor architecture.	К2
CO2	Interpret and understand the high performance features in CISC	К2
	architecture.	
CO3	Describe the concepts of Exception and interrupt processing.	K2
CO4	Develop programming skill for ARM processor.	КЗ
C05	Explain various special purpose processor	К2

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	PO5	P06		
CO1	3	-	2	-	-	1		
CO2	3	-	2	-	-	1		
CO3	3	-	2	-	-	1		
CO4	3	-	2	-	-	1		
CO5	3	-1923	2	-	-	1		
23AE0E27	3	- 72	2	-	-	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40%	40%	20%				100%	
CAT2	40%	40%	20%				100%	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%	
ESE	30%	40%	30%				100%	

HDL PROGRAMMIN GLANGUAGES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	OE	3	0	0	3

Course • To code and simulate any digital function in Verilog HDL and understand the								
Objective difference between synthesizable and non-synthesizable code	difference between synthesizable and non-synthesizable codes.							
UNIT – I VERILOG INTRODUCTION AND MODELING	9 Periods							
Introduction to Varilag HDL Language Constructs and Conventions, Cate Level Modeling, Modeling								
at Deteflow Level Dehevierel Medeling Cruiteh Level Medeling Cruster Tealer	Eurotiana and							
at Datanow Level, Benavioral Modeling, Switch Level Modeling, System Tasks,	Functions and							
Compiler Directives.								
UNIT – II SEQUENTIAL MODELING AND TESTING	9 Periods							
Sequential Models - Feedback Model, Capacitive Model, Implicit Model, Basic Memor	ry Components,							
Functional Register, Static Machine Coding, Sequential Synthesis. Test Bench -	Combinational							
Circuits Testing, Sequential Circuit Testing, Test Bench Techniques, Design Verifica	ation, Assertion							
Verification.								
UNIT – III SYSTEM VERILOG	9 Periods							
Introduction, System Verilog declaration spaces, System Verilog Literal Values an	d Built-in Data							
Types, System Verilog User-Defined and Enumerated Types, system Verilog Arrays,	Structures and							
Unions, system verilog Procedural Blocks, Tasks and Functions.								
UNIT – IV SYSTEM VERILOG MODELING	9 Periods							
System Verilog Procedural Statements, Modeling Finite State Machines with System	stem Verilog,							
System Verilog Design Hierarchy.								
UNIT – V INTERFACES AND DESIGN MODEL	9 Periods							
System Verilog Interfaces, A Complete Design Modeled with System Verilog, Behavioral and								
Transaction Level Modeling.								
Contact Periods:								
Lecture: 45 Periods Tutorial:0 Periods Practical:0 Periods Total: 45 Periods								

1	T.R.Padmanabhan, B Bala Tripura Sundari, "Design through Verilog HDL",Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of
	Projects on FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.

6 Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
CO1	Explain the verilog coding and simulate any digital function using	K2			
	Verilog HDL				
CO2	Develop sequential modeling based Verilog HDL code and develop	КЗ			
	the test bench for the modeling				
CO3	Explain the system verilog modeling	K2			
C04	Differentiate the synthesizable and non-synthesizable code	К3			
CO5	Apply good coding techniques on system verilog interfaces and	КЗ			
	complete design model				

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	3		2		2			
CO2	3	3	1997	2		2			
CO3	3	3		2		2			
CO4	3	3	1 7	2		2			
CO5	3	3		2		2			
23VLOE28	3	3		2		2			
1 – Slight, 2 – Moderate, 3 – Substantial									

1

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	40%	40%	20%	-	-	-	100%		
CAT2	40%	40%	20%	-	-	-	100%		
Individual	-	50%	50%	-	-	-	100%		
Assessment									
1 /Case									
Study 1/									
Seminar 1 /									
Project1									
Individual	-	50%	50%	-	-	-	100%		
Assessment									
2 /Case									
Study 2/									
Seminar 2 /									
Project 2									
ESE	40%	40%	20%	-	-	-	100%		

22VI 0E20	CMOS VLSI D	ESIGN				
PREREOUISITE	Common to all i	Branches) CATEGORY	L	Т	Р	C
NIL		OE	3	0	0	3

Course	• To gain knowledge on CMOS Circuits with its characterization	and to design							
Objective	CMOS logic and sub-system with low power	CMOS logic and sub-system with low power							
UNIT – I	INTRODUCTION TO MOS CIRCUITS	9 Periods							
MOS Transistor	MOS Transistor Theory -Introduction MOS Device Design Equations -MOS Transistor as a Switches -								
Pass Transisto	r - CMOS Transmission Gate -Complementary CMOS Inverter - Stat	ic Load MOS							
Inverters - Inve	erters with NMOS loads - Differential Inverter - Tri State Inverter - BiCM	OS Inverter.							
UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Periods							
Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizin	ig Routing							
Conductors, Ch	arge Sharing, Design Margin and Reliability.								
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Periods							
CMOS Logic G	ate Design, Physical Design of CMOS Gate, Designing with Transmiss	sion Gates,							
CMOS Logic Str	uctures, Clocking Strategies, I/O Structures.								
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods							
DataPath Opera	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,							
Binary Counte	rs, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Cor	ntrol Logic							
Implementatio	n. X								
UNIT – V	LOW POWER CMOS VLSI DESIGN	9 Periods							
Introduction to	o Low Power Design, Power Dissipation in FET Devices, Power Diss	sipation in							
CMOS, Low-Po	CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits,								
Architectural Level Approach – Pipelining and Parallel Processing Approaches, Low Power Basics									
CMOS Gate and Adder Design.									
Contact Periods:									
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ods							

1	Sung Mo Kang,Yusuf Lablebici,"CMOS Digital Integrated Circuits:Analysis & Design", Tata Mc-
	Graw Hill, 2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley,1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo,Kaushik Roy,"Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M.Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Explain the MOS circuits and Transmission gates	K2
CO2	Illustrate the CMOS Circuits with its characterization	K2
CO3	Design CMOS logic circuits	К3
C04	Design CMOS sub-system	К3
C05	Discuss low power CMOS VLSI Design	K2

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	PO5	P06		
C01	2	1	-	2	-	3		
CO2	2	1	-	2	-	3		
CO3	2	1	-	2	-	3		
CO4	3	1	-	2	-	3		
CO5	3	1	-	2	-	3		
23VLOE29	3	1	and a long	2	-	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

1 Slight, 2		Substantia	Nel grider de	8			l
			T	7			
ASSESSMENT	TPATTERN – TH	EORY	YGAL I				
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*				Xis			
CAT1	40%	40%	20%	S -	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

23VLOE30

HIGH LEVEL SYNTHESIS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	• To provide students with foundations in High level synthes	sis verification					
Objective	and CAD Teele						
Objective	allu CAD Tools						
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS	9 Periods					
Overview HLS	Overview HLS flow, Scheduling Techniques, Resource sharing and Binding Techniques, Data-path						
and Controller	and Controller Generation Techniques.						
UNIT – II	HIGH LEVEL SYNTHESIS	9 Periods					
Introduction t	o HDL, HDL to DFG, operation scheduling: constrained and unconstrair	1ed scheduling,					
ASAP, ALAP, I	ist scheduling, Force directed Scheduling, operator binding, Static Ti.	ming Analysis:					
Delay models,	, setup time, hold time, cycle time, critical paths, Topological mvs.	Logical timing					
analysis, False	paths, Arrival time (AT), Required arrival Time (RAT), Slacks.						
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION	9 Periods					
Simulation ba	ased verification - Formal Verification of digital systems- BDD base	ed approaches,					
functional equ	ivalence, finite state automata, ω -automata, FSM verification.						
UNIT – IV	CAD TOOLS FOR SYNTHESIS	9 Periods					
CAD tools for	synthesis, optimization, simulation and verification of design at variou	s levels as well					
as for specia	l realizations and structures such as microprogrammes, PLAs, ga	ite arrays etc.					
Technology m	apping for FPGAs. Low power issues in high level synthesis and logic sy	nthesis.					
UNIT – V	ADVANCED TOPICS	9 Periods					
Relative Schee	duling, IO scheduling modes - cycle fixed scheduling modes, super-fix	xed scheduling					
modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level							
Synthesis for FPGA.							
Contact Periods:							
Lacture: 45 Pariade Tutorial: 0 Pariade Practical: 0 Pariade Total: 45 Pariade							
	erious rutoriai. V rerious riacticai. V rerious rotal: 45 rer	1003					

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999,
	Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System

Design and Analysis", Springer,2006.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the fundamentals of High level synthesis	K2
CO2	Synthesis the HDL for operation scheduling	K2
CO3	Simulate and verify any digital systems	K2
C04	Apply CAD tools for synthesis	K2
C05	Have knowledge on various scheduling modes	K2

COURSE ARTICULATION MATRIX :

COs/POs	P01	P02	P03	P04	P05	P06		
C01	2	2	-	2	2	-		
CO2	2	2	-	2	2	-		
CO3	2	2	-	2	2	-		
CO4	2	2	10000	2	2	-		
C05	2	2	C. C	2	2	-		
23VL0E30	2	2	7-7	2	2	-		

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*		10.37	14 1 2 4 1	61						
CAT1	50%	50%	Chillinger,	-	-	-	100%			
CAT2	50%	50%		-	-	-	100%			
Individual	-	50%	50%	-	-	-	100%			
Assessment 1										
/Case Study										
1/ Seminar 1										
/ Project1										
Individual	-	50%	50%	-	-	-	100%			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE	50%	50%		-	-	-	100%			

ARTIFICIAL INTELLIGENCE (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Identify and apply AI techniques in the design of systems that act intelligently, making						
Objectives	automatic decisions and learn from experience.						
UNIT – I	SEARCH STRATEGIES	9 Periods					
Uninformed S	Strategies – BFS, DFS, Djisktra, Informed Strategies – A* search	, Heuristic functions, Hill					
Climbing, Adv	rersarial Search – Min-max algorithm, Alpha-beta Pruning						
UNIT – II	PLANNING AND REASONING	9 Periods					
State Space se	earch, Planning Graphs, Partial order planning, Uncertain Reasoning	– Probabilistic Reasoning,					
Bayesian Netv	works, Dempster Shafer Theory, Fuzzy logic						
UNIT – III	PROBABILISTIC REASONING	9 Periods					
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dyr	namic Bayesian Networks.					
Knowledge Re	epresentations – Ontological Engineering, Semantic Networks and d	escription logics.					
UNIT – IV	DECISION MAKING	9 Periods					
Utility Theory	r, Utility Functions, Decision Networks – Sequential Decision Proble	ems – Partially Observable					
MDPs – Game	Theory.						
UNIT – V	REINFORCEMENT LEARNING	9 Periods					
Reinforcement Learning - Passive and active reinforcement learning - Generations in Reinforcement							
Learning - Policy Search – Deep Reinforcement Learning.							
Contact Periods:							
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods					

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,
	2009.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	Mapped	
C01	Use search techniques to solve AI problems	К2

CO2	Reason facts by constructing plans and understand uncertainty efficiently.	К3
CO3	Examine data using statistical codes and solve complex AI problems	K6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	K6

	COURSE ARTICULATION MATRIX]			
-	CC)s/	POs	PO 1	P02	PO	3	PO 4	ŀ	PO5			P06	-
		CO)1	3		2				3			3	
ASS	ESSME	Ń	PATTER	N – THI	EORY	2				3			3	
		CO)3	3		3				3			3	
T	'est /	CC	Aemem	bering	Underst	andingβ	App	lying	A	nalyzin g	Evalu	ating	Greating	Total
Bl	oom's	CC	5 (K1)	% 3	(K2)	% 3	(K 3	8) %		(K4) % 3	(K5)%	₿K6) %	%
Cat	egozy	ĊSO	DE31	3		3				3			3	_
	$\frac{1-\text{Sli}}{1-\text{Sli}}$	gh	:, 2 – Mod	erate, 3	- Substant	tial	4	0		20	2	0		100
Ľ	AII				20)	4	20		20	2	0		100
(CAT2				10	200	2	:0	0	40	1	0	20	100
Ind	ividua	1				- 29		1	ĝ.					
Asse	essmer	nt				1		77	2					
1/	/ Case					1	100	(Λ)						
, sti	udy 1/					3	106	3. 1			5	0	50	100
Sem	ninar 1	/				1	8	11						
Pre	oject 1	,				2.	(TA) Reci-	X	8					
	,					165	1944	220	Ø.					
Ind	ividua	1					0.000	CO						
Asse	essmer	nt												
2/	Case										5	0	50	100
stı	udy 2/										0	0	50	100
Sem	inar 2	/												
Pro	oject 2													
	ESE		3()	30)	4	·0						100

23CSOE32

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course After the completion of the course, the students will be able to understand the concept								
Objectives	of layering in networks, functions of protocols of each layer of	f TCP/IP protocol suite,						
	concepts related to network addressing and routing and build	l simple LANs, perform						
	basic configurations for routers and switches, and implement IP	v4 and IPv6 addressing						
	schemes using Cisco Packet Tracer.							
UNIT – I	INTRODUCTION AND APPLICATION LAYER	9 Periods						
Building networ	k – Network Edge and Core – Layered Architecture – OSI Model	– Internet Architecture						
(TCP/IP) Netwo	(TCP/IP) Networking Devices: Hubs, Bridges, Switches, Routers, and Gateways - Performance Metrics -							
Ethernet Netwo	rking – Introduction to Sockets – Application Layer protocols	s – HTTP – FTP Email						
Protocols – DNS.								
UNIT – II	TRANSPORT LAYER AND ROUTING	9 Periods						
Transport Layer	functions -User Datagram Protocol - Transmission Control Pro	otocol – Flow Control –						
Retransmission	Strategies - Congestion Control - Routing Principles - Distance	e Vector Routing – Link						
State Routing – I	RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case	Study: Configuring RIP,						
OSPF BGP using	Packet tracer							
UNIT – III	NETWORK LAYER	9 Periods						
Network Layer: S	Network Layer: Switching concepts – Internet Protocol – IPV4 Packet Format – IP Addressing – Subnetting							
– Classless Inter	Domain Routing (CIDR) - Variable Length Subnet Mask (VLSM) -	DHCP – ARP – Network						
Address Transla	tion (NAT) - ICMP - Concept of SDN.Case Study: Configuring V	LAN, DHCP, NAT using						
Packet tracer								
UNIT – IV	INTERNETWORK MANAGEMENT	9 Periods						
Introduction to t	he Cisco IOS - Router User Interface – CLI - Router and Switch Ad	ministrative Functions -						
Router Interface	es - Viewing, Saving, and Erasing Configurations - Switching	Services - Configuring						
Switches - Mana	ging Configuration Registers - Backing Up and Restoring IOS - Ba	cking Up and Restoring						
the Configuration	n - Using Discovery Protocol (CDP) - Checking Network Connectivi	ty						
UNIT – V	TRAFFIC MANAGEMENT AND WAN PROTOCOLS	9 Periods						
Managing Traffic	with Access Lists: Introduction to Access Lists - Standard Access	Lists - Extended Access						
Lists - Named A	Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to							
Wide Area Netw	Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol -							
Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated								
Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR								
Contact Periods	S:							
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods Total: 45 P	eriods						

REFERENCES:

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh
	Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	npletion of the course, the students will be able to:	Mapped
C01	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	K3
C04	Build simple LANs, perform basic configurations for routers and switches	K6
C05	Illustrate various WAN protocols	K2
		· · · · · · · · · · · · · · · · · · ·
COUR	SE ARTICULATION MATRIX	

	1 8 - 1										
COs/POs	P01	P02	P03	P04	PO5	P06					
<u> </u>	2		2	2	2	1					
01	3		- 3	Cons.	2	1					
CO2	3		3		2	2					
CO3	3		3		3	2					
CO4	3		3		3	3					
CO5	3		3		3	3					
23CSOE32	3		3		3	2					
1 – Slight, 2 – Moderate, 3 – Substantial											

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	30	30	20	20			100			
CAT2		30	20	30	10	10	100			
Individual	10	30	20	20	20		100			
Assessment										
1 /Case										
Study 1 /										
Seminar 1 /										
Project 1										
Individual		20	20	20	20	20	100			
Assessment										
2 / Case										
Study 2/										
Seminar 2/										
Project 2										
ESE	20	40	40				100			

7	2	CC	n	$\mathbf{\Gamma}$	2	2
4	э	L3	υ	E,	э	Э

BLOCKCHAIN TECHNOLOGIES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	The objective of the course is to explore basics of block chain tecl	nnology and its
Objectives	application in various domain	
UNIT – I I	NTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	9 Periods
History of Blo	ckchain - Types of blockchain- CAP theorem and blockchain	– benefits and
Limitations of	Blockchain - Decentalization using blockchain - Blockchain im	plementations-
Block chain in p	oractical use - Legal and Governance Use Cases	
UNIT – II 🛛 I	BITCOIN AND CRYPTOCURRENCY	9 Periods
Introduction to	Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	Developments,
Bitcoin Wallets	, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM	I), Merkle Tree,
Double-Spend	Problem, Blockchain and Digital Currency, Transactional Block	cks, Impact of
Blockchain Tec	hnology on Cryptocurrency	
UNIT – III 🛛 I	ETHEREUM	9 Periods
Introduction to	o Ethereum, Consensus Mechanisms, Metamask Setup, Ethereu	ım Accounts, ,
Transactions, R	eceiving Ethers, Smart Contracts	
UNIT – IV I	HYPERLEDGER AND SOLIDITY PROGRAMMING	9 Periods
Introduction to	Hyperledger, Distributed Ledger Technology & its Challenges,	Hyperledger &
Distributed Le	edger Technology, Hyperledger Fabric, Hyperledger Compo	ser. Solidity –
Programming v	vith solidity	
UNIT – V	BLOCKCHAIN APPLICATIONS	9 Periods
Ten Steps to bu	ild your Blockchain application - Application: Internet of Things,	Medical Record
Management Sy	stem, Domain Name Service and Future of Blockchain, Alt Coins	
Contact Period	ls:	
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods

REFERENCES:

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and					
	Smart Contracts Explained", Second Edition, Packt Publishing, 2018.					
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law,					
	and Technology Solutions",McGraw Hill Education ,2018.					
3	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency					
	Technologies: A Comprehensive Introduction" Princeton University Press, 2016.					
4	Manav Gupta " Blockchain for Dummies", IBM Limited Edition 2017.					
5	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps",					
	O'Reilly Publishing, 2018					
6	NPTEL Course : Blockchain and its applications					

https://archive.nptel.ac.in/courses/106/105/106105235/

COURSE O Upon comp	Bloom's Taxonomy Mapped	
C01	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	K3
CO3	Comprehend the working of Hyperledger in an real time application	K2
C04	Apply the learning of solidity to build de-centralized apps on Ethereum	КЗ
C05	Develop applications on Blockchain	КЗ

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	PO5	P06			
C01	2		3	2		3			
CO2	2	3	3	3	2	3			
CO3	3		3	2		3			
CO4	3	3	3	3	2	3			
CO5	3	3	3	3	2	3			
23CSOE33	3	3	3	3	2	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

	1 -	Slight, 2 – Model	rate, 3 – Sut	ostantial						
ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	40	40				100			
CAT2	20	30	50				100			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project 1		30	70				100			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		40	60				100			
ESE	10	60	30				100			

23MFACZ1

ENGLISH FOR RESEARCH PAPER WRITING

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course The objective of the course is to make the learners understand the format and							
Objectives	intricacies involved in writing a research paper.						
UNIT – I	PLANNING AND PREPARATION	6 Periods					
Need for publishing	articles, Choosing the journal, Identifying a model journal paper, Cre	eation of files for					
each section, Expectations of Referees, Online Resources.							
UNIT – II	UNIT - IISENTENCES AND PARAGRAPHS6 Periods						
Basic word in Eng	lish, Word order in English and Vernacular, placing nouns, Verbs,	Adjectives, and					
Adverb suitably in a	a sentence, Using Short Sentences, Discourse Markers and Punctuation	ons- Structure of					
a Paragraph, Break	ing up lengthy Paragraphs.						
IINIT – III	ACCURACY RREVITY AND CLARITY (ARC) OF WRITING	6 Pariode					
	ACCORACT, BREVITTAND CLARITT (ADC) OF WRITING	orenous					
Accuracy, Brevity a	nd Clarity in Writing, Reducing the linking words, Avoiding redundar	ncy, Appropriate					
use of Relative a	and Reflexive Pronouns, Monologophobia, verifying the journa	l style, Logical					
Connections betwee	en others author's findings and yours.						
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods					
Making your findin	gs stand out, Using bullet points headings, Tables and Graphs- Availi	ng non-experts					
opinions, Hedging,	Toning Down Verbs, Adjectives, Not over hedging, Limitations of you	r research.					
UNIT – V	SECTIONS OF A PAPER	6 Periods					
Titles, Abstracts, Introduction, Review of Literature, Methods, Results, Discussion, Conclusions,							
References.							
Contact Periods:							
Lecture: 30 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 30 Perio	ods					

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences" , SIAM. Highman's book, 1998.
4	Adrian Wallwork," English for Writing Research Papers" , Springer New York Dordrecht Heidelberg London, 2011.

COURS	E OUTCOMES :	Bloom's
		Taxonomy
Upon co	mpletion of this course the learners will be able to	Mapped
C01	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph	K4
	writing.	
CO3	Practice unambiguous writing.	КЗ
C04	Avoid wordiness in writing.	K2
C05	Exercise the elements involved in writing journal paper.	К3

COURSE ARTICULATION MATRIX :

COs/POs	P01	P02	P03	P04	P05	P06		
C01	3	3	1	1	1	1		
C02	3	3	1	1	1	1		
CO3	3	3	1	1	1	1		
CO4	3	3	1	1	1	1		
C05	3	3	1	1	1	1		
23MFACZ1	3	3	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT P	ASSESSMENT PATTERN – THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		101559	Sec.				
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual							
Assessment							
1/ Case Study	-	50	50	-	-	-	100
1/ Seminar							
1/ Project 1							
Individual							
Assessment							
2/ Case Study	-	50	50	-	-	-	100
2/ Seminar							
2/ Project 2							
ESE	30	30	40	-	-	-	100

23	MFA	C7 2
40	1.11 1 1	

DISASTER MANAGEMENT

(Common to all branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. To become familiar in key concepts and consequences about hazard	ls, disaster		
Objectives	and area of occurrence.			
	2. To know the various steps in disaster planning.			
	3. To create awareness on disaster preparedness and management.			
UNIT – I	INTRODUCTION	6 Periods		
Disaster: Definition	n, Factors and Significance; Difference between Hazard and Disaster; Natural a	and Manmade		
Disasters: Differen	ce, Nature, Types and Magnitude. Areas proneto ,EarthquakesFloods ,Drought	s, Landslides ,		
Avalanches ,Cyclor	ne and Coastal Hazards with Special Reference to Tsunami.			
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods		
Economic Damag	e, Loss of Human and Animal Life, Destruction of Ecosystem. Natur	cal Disasters:		
Earthquakes, Volc	anisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and	d Avalanches,		
Man-made disaste	er: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills,	Outbreaks of		
Disease and Epider	mics, War and Conflicts.			
UNIT – III	DISASTER PLANNING	6 Periods		
Disaster Planning-	Disaster Response Personnel roles and duties, Community MitigationGoals	, Pre-Disaster		
Mitigation Plan, Pe	rsonnel Training, Comprehensive Emergency Management, Early Warning Sy	stems.		
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods		
Preparedness: Mo	nitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk:	Application of		
Remote Sensing,	Data from Meteorological and other Agencies, Media Reports: Gover	mmental and		
Community Preparedness.				
UNIT – V	RISK ASSESSMENT	6 Periods		
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation.				
Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation				
in Risk Assessment, Strategies for Survival.				
Lecture:30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods				

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies",
	New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India,
	New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep
	Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International
	Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann,
	2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUF	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05
C01	2	1	1	2	2
CO2	1	2	1	1	1
CO3	1	1	1	2	2
CO4	1	1	1	2	2
CO5	2	1	1	2	2
23MFACZ2	1	1	1	2	2
1 - Slight 2 - Moderate 3 - S	Substantial	10°			

- Substa<u>ntiai</u> - Slight, 2 – Moderate, 3 ·

ASSESSMENT PATTERN – THEORY

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	X	23			100
CAT2		1	100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

001/17 4 070	VALUE EDUCATION
23MFACZ3	(Common to all branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. Value of education and self- development				
Objectives	2. Requirements of good values in students				
	3. Importance of character				
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods			
Social values and in	dividual attitudes. Work ethics, Indian vision of humanism. Moral a	nd non-moral			
valuation. Standards	and principles. Value judgements.				
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods			
Soul and Scientific	attitude. Positive Thinking. Integrity and discipline. Punctuality,	Love and			
Kindness.Avoid fault	t Thinking. Free from anger, Dignity of labour. Universal brotherhood	d and religious			
tolerance.	a served Control Reserve and				
UNIT – III	VALUES IN HUMAN LIFE	6 Periods			
Importance of culti	vation of values, Sense of duty. Devotion, Self-reliance. Confiden	ce, Concentration.			
Truthfulness, Clean	liness. Honesty, Humanity. Power of faith, National Unity. Pat	riotism. Love for			
nature,Discipline.					
UNIT – IV	VALUES IN SOCIETY	6 Periods			
True friendship. Ha	ppiness Vs suffering, love for truth. Aware of self-destructive hal	oits. Association			
andCooperation. Doi	ing best for saving nature.				
UNIT – V	POSITIVE VALUES	6 Periods			
Character and Com	Character and Competence -Holy books vs Blind faith. Self-management and Good health. Science of				
reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your					
Mind, Self-control. Honesty, Studying effectively.					
Contact Periods:					
Lecture: 30 Periods	s Tutorial: 0 Periods Practical: 0 Periods Total: 30 Perio	ods			

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University
	Press,New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COUR	COURSE OUTCOMES :			
Upon	Upon completion of the course, the students will be able to:			
	Mapped			
C01	Know the values and work ethics.	КЗ		
CO2	Enhance personality and 163ehavior development.	К3		
CO3	Apply the values in human life.	КЗ		
C04	Gain Knowledge of values in society.	КЗ		
C05	Learn the importance of positive values in human life.	КЗ		

COURSE ARTICULATION MATRIX								
Cos/Pos	P01	PO2	P03	P04	P05	P06		
C01	-	-	3	-	-	1		
C02	-	-	3	-	-	1		
CO3	-	-	3	-	-	1		
C04	-	-	3	-	-	1		
CO5	-	-	3	-	-	1		
23MFACZ3	-	a de la	3	-	-	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

			arran and	2			
			XI	2			
ASSESSMENT PA	ATTERN – THEOR	RY	11				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

CONSTITUTION OF INDIA

(Common to all branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course	To address the importance of constitutional rights and duties						
Objectives	• To familiarize about Indian governance and local administration.						
	• To know about the functions of election commission.						
UNIT – I	INDIAN CONSTITUTION	6 Periods					
History of Mak Philosophy of t	History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working) - Philosophy of the Indian Constitution: Preamble Salient Features.						
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES	6 Periods					
Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.							
UNIT – III	ORGANS OF GOVERNANCE	6 Periods					
Organs of Gov Functions, Exe of Judges, Qual	ernance: Parliament, Composition, Qualifications and Disqualifications, cutive, President, Governor, Council of Ministers, Judiciary, Appointment a ifications, Powers and Functions.	Powers and and Transfer					
UNIT – IV	LOCAL ADMINISTRATION	6 Periods					
Local Adminis Introduction, M Introduction, F role. Block leve Appointed offic	Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials. Importance of grass root democracy.						
UNIT – V	ELECTION COMMISSION	6 Periods					
Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.							
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods							

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	К2
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	-	-	1	1	1	1		
CO2	-	-	1	1	1	2		
CO3	-	-	1	1	2	1		
C04	-	-	1	1	1	1		
C05	-	-	1	1	1	1		
23MFACZ4	-	-	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	50%	30%	-	-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	_	-	-	100%		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%		
ESE	20%	50%	30%	-	-	-	100%		

PEDAGOGY STUDIES

(Common to all branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course Objectives1. To Understand of various theories of learning, prevailing pedagogical practices and design of curriculum in engineering studies. 2. Application of knowledge in modification of curriculum, its assessment and introduction of innovation in teaching methodology.					
UNIT – I	INTRODUCTION	6 Periods			
Introduction and terminol Research que	and Methodology: Aims and rationale, Policy background, Conceptua ogy Theories of learning, Curriculum, Teacher education. Conceptual stions. Overview of methodology and Searching.	l framework framework,			
UNIT – II	PEDAGOGICAL PRACTICES	6 Periods			
Thematic over classrooms in effectiveness	erview: Pedagogical practices are being used by teachers in formal a in developing countries. Curriculum, Teacher education. Evider of pedagogical practices Methodology for the in depth stage: quality as	and informal nce on the ssessment of			
UNIT – III	PEDAGOGICAL APPROACHES	6 Periods			
How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teacher's attitudes and beliefs and Pedagogic strategies.					
UNIT – IV	PROFESSIONAL DEVELOPMENT	6 Periods			
Professional support Supp Barriers to lea	development: alignment with classroom practices and follow-up super- port from the head teacher and the community. Curriculum and arning: limited resources and large class sizes.	apport. Peer assessment			
UNIT – V	CURRICULUM AND ASSESSMENT	6 Periods			
Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.					
Contact Perio	ods: Periods Tutorial: O Periods Practical: O Periods Total: 30 Pe	riods			

1	Ackers J, Hardman F , Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education . Oxford and Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
4	<i>Agrawal M</i> , <i>Curricular reform in schools: The importance of evaluation</i> , <i>Journal of Curriculum Studies</i> , 36 (3): 361-379, 2004

COUR Upon	COURSE OUTCOMES: Upon completion of the course, the students will be able to:				
C01	Explain the concept of curriculum, formal and informal education systems and teacher education.	К3			
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	К3			
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3			
CO4	Perform research in design a problem in pedagogy and curriculum development.	КЗ			

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	-	-	1	1	2	1		
CO2	-	-	1	1	1	2		
CO3	-	-	1	1	2	1		
CO4	-	a construction	· 31	1	2	1		
23MFACZ5	-	1997	1	1	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial								
		1 30	223					

ASSESSME	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	50%	30%		-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%		
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%		
ESE	20%	50%	30%	-	-	-	100%		

STRESS MANAGEMENT BY YOGA (Common to all Branches)

PREREQUISIT	ES	CATEGORY	L	Т	Р	С	
	NIL	AC	2	0	0	0	
Course Objectives	Course1. To create awareness on the benefits of yoga and meditation.Objectives2. To understand the significance of Asana and Pranayama.						
UNIT – I	UNIT - IPHYSICAL STRUCTURE AND ITS FUNCTIONS6 Periods						
Yoga - Physica exercises, hanc massage, acupt	l structure, Importance of physical exercise, Rules l exercise, leg exercise, breathing exercise, eye exer ressure, body relaxation.	and regulation o cise, kapalapath	of sim y, ma	iplif ahar	ied ph asana	ysical , body	
UNIT – II	YOGA TERMINOLOGIES				6 Pe	riods	
Yamas - Ahims Niyamas- Sauc	a, satya, astheya, bramhacharya, aparigraha ha, santosha, tapas, svadhyaya, Ishvara pranidhana						
UNIT – III	ASANA				6 Pe	riods	
Asana - Rules &	& Regulations – Types & Benefits						
UNIT – IV	PRANAYAMA				6 Pe	riods	
Regularization	of breathing techniques and its effects-Types of pr	anayama					
UNIT – V	MIND				6 Pe	riods	
Bio magnetism& mind - imprinting & magnifying – eight essential factors of living beings, Mental frequency and ten stages of mind, benefits of meditation, such as perspicacity, magnanimity, receptivity, adaptability, creativity.							
Contact Perio Lecture: 30 Pe	Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods						

1	Janardan Swami Yogabhyasi Mandal , "Yogic Asanas for Group Training-Part-I" , Nagpur.							
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature" , Advaita Ashrama							
	(Publication Department), Kolkata.							
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New							
	Dawn Press, New Delhi, 2016.							
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi,							
	2007.							

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon o	Mapped		
C01	Practice physical exercises and maintain good health.	K3	
CO2	Attain knowledge on the various concepts of Yoga.	K2	
CO3	Perform various asanas with an understanding on their benefits.	K3	
CO4	Practice breathing techniques in a precise manner.	K3	
CO5	Attain emotional stability and higher level of consciousness.	K2	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	-	-	-	-	2		
CO2	-	-	-	-	3		
CO3	-	-	-	-	2		
CO4	-	-	-	-	1		
CO5	-	-	-	-	1		
23MFACZ6	-	-	-	-	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	40%	30%	30%	-	-	-	100%		
CAT2	30%	40%	30%	-	-	-	100%		
Individual	40%	40%	20%	-	-	-	100%		
Assessment1/		Maria S	al and the second						
Case study1/		503							
Seminar									
1/Project1			1 1						
Individual	30%	30%	40%	-	-	-	100%		
Assessment2/		1 8							
Case study2/		1 2	1						
Seminar 2				2					
/Project2		10.500							
ESE	30%	30%	40%	-	-	-	100%		

23MFACZ7

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

(Common to all Branches)

PREREQUISITES :	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course Objectives	Course1. To familiar with Techniques to achieve the highest goal in life.Objectives2. To become a person with stable mind, pleasing personality and determination.					
UNIT – I		6 Periods				
Neetisatakam-I (pride & herois	Neetisatakam-Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verses29,31,32 (pride & heroism)-Verses- 26.28.6.					
UNIT – II		6 Periods				
Verses- 52,53,5 Shrimad Bhagw	59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day wor vadGeeta - Chapter 2-Verses 41, 47,48,	k and duties				
UNIT – III		6 Periods				
Shrimad Bhagy Chapter 18-Ver	wadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,1 ses 45, 46, 48.	3,17, 23, 35,-				
UNIT – IV		6 Periods				
Statements of k -Verses 13, 14,	oasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 6 15, 16,17, 18-Personality of Role model.	8 -Chapter 12				
UNIT – V	1631	6 Periods				
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-Chapter18 – Verses 37,38,63.						
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods						

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam " Bhartrihari's Three Satakam " (Niti-sringar- vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ", Bhaktivedanta Book Trust Publications, 2001

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the Holistic development in life	K4
CO2	Effective Planning of day to day work and duties	K4
CO3	Identify mankind to peace and prosperity	K4
CO4	Develop versatile personality.	K4
C05	Awakening wisdom in life	K4

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	-	-	1	-	-	-				
CO2	-	-	1	-	-	-				
CO3	-	-	1	-	-	-				
C04	-	-	1	-	-	-				
C05	-	-	1	-	-	-				
23MFACZ7	-	-	1	-	-	-				
1 – Slight, 2 -	1 – Slight, 2 – Moderate, 3 – Substantial									

	a mart a Roman									
ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20%	50%	30%	-	-	-	100%			
CAT2	20%	50%	30%	逸 -	-	-	100%			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%			
ESE	20%	50%	30%	-	-	-	100%			

SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all Branches)

PREREQUISITES:	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course	1. To get a working knowledge in illustrious Sanskrit, the scientific language in						
Objectives	the world.						
	2. Learning of Sanskrit to improve brain functioning.						
	3. Enhancing the memory power.						
	4. Learning of Sanskrit to develop the logic in mathematics, science	e & other					
	subjects.						
UNIT – I	BASICS OF SANSKRIT	6 Periods					
Alphabets in S	Sanskrit, Past/Present/Future Tense.						
UNIT – II	SENTENCES AND ROOTS	6 Periods					
Simple Senter	nces - Order, Introduction of roots						
UNIT – III	SANSKRIT LITERATURE	6 Periods					
Technical info	ormation about Sanskrit Literature						
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods					
Technical con	cepts of Engineering-Electrical, Mechanical						
UNIT – V	UNIT - V TECHNICAL CONCEPTS -2 6 Periods						
Technical concepts of Engineering-Architecture, Mathematics							
Contact Periods:							
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods							

1	Dr.Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit
	Sansthanam, New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi,2006.

COURS	COURSE OUTCOMES:						
Upon co	Jpon completion of the course, the students will be able to:						
		Mapped					
C01	Recognize ancient literature and their basics	КЗ					
CO2	Formulate the sentences with order and understand the roots of	К2					
	Sanskrit						
CO3	Acquire familiarity of the major traditions of literatures written in	КЗ					
	Sanskrit						
CO4	Distinguish the Technical concepts of Electrical & Mechanical	К2					
	Engineering						
C05	Categorize the Technical concepts of Architecture & Mathematics	К2					

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	PO3	P04	P05	P06	
C01	-	-	-	1	2	1	
C02	-	-	-	1	2	-	
CO3	-	-	-	1	1	1	
CO4	-		14 St.	2	1	1	
C05	-	19723	191	1	2	1	
23MFACZ8	-	200		1	2	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

1

		1.70									
ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20%	50%	30%	-	-	-	100%				
CAT2	20%	50%	30%	-	-	-	100%				
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%				
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%				
ESE	20%	50%	30%	-	-	-	100%				