

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore – 641 013

Curriculum and Syllabi For M.E. POWER SYSTEMS ENGINEERING (Full Time)

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE – 641 013

> PHONE 0422 – 2433355 Email: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013.

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices
- To enhance employability and entrepreneurship
- To improve the research competence to address societal needs
- To inculcate a culture that supports and reinforces ethical and professional behaviours for a harmonious and prosperous society

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING GOVERNMENT COLLEGE OF TECHNOLOGY

VISION AND MISSION OF THE DEPARTMENT

VISION:

To be a premier department providing value based and enlightening education committed to excellence in Electrical Engineering and Technology professions.

MISSION:

- To facilitate quality learning blended with practical engineering skills.
- To prepare students to develop all round competitiveness.
- To motivate Faculty and students to do impactful research on societal needs.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

GOVERNMENT COLLEGE OF TECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Programme Educational Objectives (PEOs) of M.E. - POWER SYSTEMS ENGINEERING

in tune with the Vision and Mission of the department will:

PEO1:

Enable the graduates to apply the principles of power system operation, control and automation to

solve electrical power utility problems

PEO2:

Undertake innovative research in the emerging areas of electric power systems

PEO3:

Exhibit leadership skills, effective communication and ability to work in collaborative, multidisciplinary tasks in their profession

PEO4:

Become socially, ethically responsible and demonstrate life-long independent reflective learning

skills in their career

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

GOVERNMENT COLLEGE OF TECHNOLOGY

PROGRAMME OUTCOMES (POs)

Students in the Power systems Engineering Programme at the time of their graduation should be in possession of the following:

PO1:

Ability to independently carry out research /investigation and development work to solve practical problems of power system networks.

PO2:

Ability to write and present a substantial technical report/document

PO3:

Students should be able to demonstrate a degree of mastery over the area of power system engineering. The mastery should be at a level higher than the requirements in the appropriate bachelor program

PO4:

Ability to practice professional ethics and intellectual integrity to contribute to the community for sustainable development of society through life-long learning.

CURRICULUM FOR CANDIDATES ADMITTED DURING 2023-2024 AND ONWARDS TWO YEAR M.E PROGRAMME POWER SYSTEMS ENGINEERING CHOICE BASED CREDIT SYSTEM-CURRICULUM FIRST SEMESTER

SI.	Course		a t	Continuous	End	Total	H	ours	s/We	eek
No	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С
THE	CORY									
1	23PSFCZ1	Research Methodology and IPR (Common to all Branches)	FC	40	60	100	3	0	0	3
2	23PSFCZ2	Optimization Techniques for Electrical Engineering	FC	40	60	100	3	0	0	3
3	23PSPC01	Electric Distribution Systems	PC	40	60	100	3	0	0	3
4	23PSPC03	Advanced Power System Operation and Control	PC	40	60	100	3	0	0	3
5	23PSPC04	Graph Theory Application to Power System	PC	40	60	100	3	0	0	3
6	23PSACZX	Audit Course I*	AC	40	60	100	2	0	0	0
		THEORY WITH PR	ACTICAL	COMPONI	ENT					
7	23PSPC02	Computer Aided Power System Analysis	PC	50	50	100	2	0	2	3
PRA	CTICALS			2 //						
8	23PSPC05	Power System Simulation Laboratory	PC	60	40	100	0	0	3	1.5
9	23PSPC06	Renewable Energy Laboratory (Common to PSE & PED)	PC	60	40	100	0	0	3	1.5
		TOTAL		410	490	900	19	0	8	21

SECOND SEMESTER

SI.	Course	Course Tide	Catagory	Continuous	End	Total	Н	ours	/Wee	ek
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
TH	EORY		23.52	6 ALUC	8					
1	23PSPC08	Restructured Power System and Deregulation	PC	40	60	100	3	0	0	3
2	23PSPC09	Digital Power System Protection	PC	40	60	100	3	0	0	3
3	23PSPEXX	Professional Elective I	PE	40	60	100	3	0	0	3
4	23PSPEXX	Professional Elective II	PE	40	60	100	3	0	0	3
5	23PSPEXX	Professional Elective III	PE	40	60	100	3	0	0	3
6	23PSACZX	Audit Course II*	AC	40	60	100	2	0	0	0
		THEORY WITH	PRACTICA	AL COMPON	ENT					
7	23PSPC07	Power System Dynamics and Control	PC	50	50	100	2	0	2	3
PRA	CTICALS									
8	23PSPC10	Advanced Power System Simulation Laboratory	PC	60	40	100	0	0	4	2
9	23PSEE01	Mini Project	EEC	60	40	100	0	0	4	2
	TOTAL 410 490 900 19 0 10 22									

THIRD SEMESTER

SI.	Course			Continuous	End	Total	E	Iour	:s/We	ek
No	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	C
TH	EORY		-			-	-			-
1	23PSPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3
2	23\$\$OEXX	Open Elective	OE	40	60	100	3	0	0	3
PRA	ACTICALS									
3	23PSEE02	Internship/Industrial Training	EEC	100	-	100	0	0	**	2
4	23PSEE03	Project-I	EEC	60	40	100	0	0	24	12
		TOTAL	- many	240	160	400	6	0	24	20

**4 weeks Internship / Industrial Training

FOURTH SEMESTER

SI.	Course			Continuous	End	Total	I	Hours/Wee		
No	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С
1	23PSEE04	Project-II	EEC	60	40	100	0	0	48	24
		TOTAL	9	60	40	100	0	0	48	24

TOTAL CREDITS: 81

NOTE : * - NO CREDIT COURSES

SI.	Come Colo	e Course Title Category	Geter	Continuous	End	Total	Hours/Week				
No	Course Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С	
		PROFESSIONA	L ELECT	IVE I							
1	23PSPE01	Linear and Non-Linear Control system (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
2	23PSPE02	Power System Transients and Surge Protection	PE	40	60	100	3	0	0	3	
3	23PSPE03	Hybrid Power System Economics	PE	40	60	100	3	0	0	3	
4	23PSPE04	Power System Planning and Reliability	PE	40	60	100	3	0	0	3	
5	23PSPE05	Power System Security	PE	40	60	100	3	0	0	3	
6	23PSPE06	Smart Grid Technology and Applications (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
		PROFESSIONA	L ELECTI	VE II			-				
7	23PSPE07	Power Electronics in wind and solar power conversion (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
8	23PSPE08	HVDC and FACTS (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
9	23PSPE09	FEM Modeling of High Voltage Apparatus and Systems	PE	40	60	100	3	0	0	3	
10	23PSPE10	High Voltage and Insulation Systems	PE	40	60	100	3	0	0	3	
11	23PSPE11	Big Data Analytics for Power Systems	PE	40	60	100	3	0	0	3	
		PROFESSIONA	L ELECTI	VE III		1		I			
12	23PSPE12	Advanced Electric Drives and Controls (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
13	23PSPE13	Computer Relaying and Wide Area Measurement System	PE	40	60	100	3	0	0	3	
14	23PSPE14	Intelligent Techniques in Power Systems	PE	40	60	100	3	0	0	3	
15	23PSPE15	Modern Communication Techniques for Power Systems	PE	40	60	100	3	0	0	3	
	-	PROFESSIONA	L ELECTI	VE IV							
16	23PSPE16	Electromagnetic Interference and Compatibility in System Design (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
17	23PSPE17	Distributed Generations and Microgrid (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
18	23PSPE18	Insulation Materials and Testing for Industrial Applications (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
19	23PSPE19	Modern Power Electronics for Traction Applications (Common to PSE & PED)	PE	40	60	100	3	0	0	3	
20	23PSPE20	Power Quality Assessment and Mitigation (Common to PSE & PED)	PE	40	60	100	3	0	0	3	

LIST OF PROFESSIONAL ELECTIVE SUBJECTS

LIST OF OPEN ELECTIVES

SI				CA	End	Total	Hou		ırs/Week	
No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23SEOE01	Building Bye-Laws and Codes of Practice	OE	40	60	100	3	0	0	3
2	23SEOE02	Planning of Smart Cities	OE	40	60	100	3	0	0	3
3	23SEOE03	Green Building	OE	40	60	100	3	0	0	3
4	23EEOE04	Environment Health and Safety Management	OE	40	60	100	3	0	0	3
5	23EEOE05	Climate Change and Adaptation	OE	40	60	100	3	0	0	3
6	23EEOE06	Waste to Energy	OE	40	60	100	3	0	0	3
7	23GEOE07	Energy in Built Environment	OE	40	60	100	3	0	0	3
8	23GEOE08	Earth and Its Environment	OE	40	60	100	3	0	0	3
9	23GEOE09	Natural Hazards and Mitigation	OE	40	60	100	3	0	0	3
10	23EDOE10	Business Analytics	OE	40	60	100	3	0	0	3
11	23EDOE11	Introduction to Industrial safety	OE	40	60	100	3	0	0	3
12	23EDOE12	Operations Research	OE	40	60	100	3	0	0	3
13	23MFOE13	Occupational Health and Safety	OE	40	60	100	3	0	0	3
14	23MFOE14	Cost Management of Engineering Projects	OE	40	60	100	3	0	0	3
15	23MFOE15	Composite Materials	OE	40	60	100	3	0	0	3
16	23TEOE16	Global Warming Science	OE	40	60	100	3	0	0	3
17	23TEOE17	Introduction to Nano Electronics	OE	40	60	100	3	0	0	3
18	23TEOE18	Green Supply Chain Management	OE	40	60	100	3	0	0	3
19	23PSOE19	Distribution Automation System	OE	40	60	100	3	0	0	3
20	23PSOE20	Electricity Trading and Electricity Acts	OE	40	60	100	3	0	0	3
21	23PSOE21	Modern Automotive Systems	OE	40	60	100	3	0	0	3
22	23PEOE22	Virtual Instrumentation	OE	40	60	100	3	0	0	3
23	23PEOE23	Energy Management Systems	OE	40	60	100	3	0	0	3
24	23PEOE24	Advanced Energy Storage Technology	OE	40	60	100	3	0	0	3
25	23AEOE25	Design of Digital Systems	OE	40	60	100	3	0	0	3
26	23AEOE26	Basics of Nano Electronics	OE	40	60	100	3	0	0	3
27	23AEOE27	Advanced Processor	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL Programming Languages	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI Design	OE	40	60	100	3	0	0	3
30	23VLOE30	High Level Synthesis	OE	40	60	100	3	0	0	3
31	23CSOF31	Artificial Intelligence	OF	40	60	100	3	0	0	3
32	23CSOE32	Computer Network Management	OE	40	60	100	3	0	0	3
33	23CSOE33	BlockChain Technologies	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES (Common to all Branches)

SI	Course			Continuous	End	Total	He	ours/	'Wee	.k
No	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С
1	23PSACZ1	English for Research Paper Writing	AC	40	60	100	2	0	0	0
2	23PSACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23PSACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23PSACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23PSACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23PSACZ6	Stress Management by Yoga	AC	40	60	100	2	0	0	0
7	23PSACZ7	Personality Development Through Life Enlightenment Skills	AC	40	60	100	2	0	0	0
8	23PSACZ8	Sanskrit For Technical Knowledge	AC	40	60	100	2	0	0	0

CURRICULUM DESIGN

Sl.			Ν	lo. of Cre	dits		
No	Course Work Subject Area	I	Π	ш	IV	Total	Percentage
1.	Foundation Courses	6		(-	06	8.7%
2.	Professional Cores	15	11	C -	11 -	26	37.7 %
3.	Professional Electives	8	9	3	11-	12	17.4 %
4.	Open Elective Courses	89	1	3	1	03	4.3%
5.	Audit Courses	0	0	-		00	0%
6.	Employability Enhancement Courses	161 21	2	14	24	22	31.9 %
	Total Credits	21	22	20	24	69	100%

23PSFCZ1	RESEARCH METHODOLOGY AND IP (Common to all programmes)	R	SI	EME	ESTI	ER I			
PREREQUISITES CATEGORY L									
	NIL	FC	2	3	0	0	3		
Course	• To impart knowledge on research methodology,	Quantitati	ve meth	ods	for	prob	lem		
Objectives	solving, data interpretation and report writing.								
	• To know the importance of IPR and patent rights.								
UNIT – I	INTRODUCTION				9	Peri	iods		
Definition and	l objectives of Research - Types of research, Va	rious Step	os in R	esea	rch	proc	ess,		
Mathematical	cools for analysis, Developing a research question-Cho	ice of a pr	oblem I	liter	ature	revi	iew,		
Surveying, syr	thesizing, critical analysis, reading materials, reviewi	ing, rethin	king, cr	itica	l ev	aluat	ion,		
interpretation,	interpretation, Research Purposes, Ethics in research – APA Ethics code								
UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING 9 Peri									
Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of									
Statistical Ana	alysis and Inference, Multivariate methods, Concept	s of Corr	elation	and	Reg	gress	ion,		
Fundamentals	of Time Series Analysis and Spectral Analysis, Error	Analysis,	Applica	tion	s of	Spec	ctral		
Analysis									
UNIT – III	DATA DESCRIPTION AND REPORT WRITING	>			9	Peri	iods		
Tabular and gr	aphical description of data: Tables and graphs of frequen	ncy data of	f one var	iabl	e, Ta	bles	and		
graphs that she	ow the relationship between two variables, Relation b	etween fre	equency	dist	ribut	ions	and		
other graphs, p	reparing data for analysis. Structure and Components of	Research	Report,	Тур	es of	Rep	oort,		
Layout of Rese	arch Report, Mechanism of writing a research report, re	ferencing i	n acadei	nic	writi	ng			
UNIT – IV	INTELLECTUAL PROPERTY				9	Peri	iods		
Nature of Inte	ellectual Property: Patents, Designs, Trade and Cop	oyright. Pi	rocess o	of P	atent	ing	and		
Development:	technological research, innovation, patenting, development	ent.							
International S	cenario: International cooperation on Intellectual Proper	rty. Proced	lure for	gran	ts of	pate	ents,		
Patenting unde	r PCT.	8							
$\mathbf{UNIT} - \mathbf{V}$	UNIT – V PATENT RIGHTS 9 Periods								
Patent Rights:	Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and								
databases. Geographical Indications.									
Contact Perio	Contact Periods:								
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods	Total: 45	Periods	5					

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction", Juta Academic, 2nd
	edition, 2014.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, Cengage Learning, 2013
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2019
4	Dr. C. R. Kothari and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, 4th Edition, 2018

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Formulate research question for conducting research	K3
CO2	Analyze qualitative and quantitative data	K4
CO3	Interpret research findings and give appropriate conclusions	K2
CO4	Develop a structured content to write technical report	K3
CO5	Summarize the importance of IPR and protect their research work through	K2
	intellectual property	

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4
CO1	-	2	3	1
CO2	2	2000-000	3	-
CO3	2	2	3	-
CO4	J Sydeman	3, a 119//	2	-
CO5	W lates	2	3	2
23PSFCZ1	2	2	3	2
1 – Slight, 2 – Moderate, 2	3 – Substantial		5	
		- 44	11	

1

ASSESSMEN	T PATTERN -	- THEORY		T 11			
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	- M	-	-	100%
CAT2	40%	40%	20%	- 11	-	-	100%
Individual		0					
Assessment1/							
Case study1/	-	50%	30%	20%	- U	-	100%
Seminar		800		100	S.		
1/Project1			1				
Individual			2152	acue			
Assessment2/		C. 23/	10 -900	207			
Case study2/	-	50%	30%	20%	-	-	100%
Seminar 2							
/Project2							
ESE	30%	30%	20%	20%	-	_	100%

23PSFCZ2 OPTIMIZATION TECHNIQUES FOR ELECTRICAL ENGINEERING					SEMESTER I			
PREREQUISITES CATEGORY L T								
	NIL	FC	3	0	0	3		
Course	To comprehend the fundamental concepts and prin	nciples of optimiza	tion,	differ	ent ty	ypes		
Objectives	of optimization problems, algorithms, and optimization	ation criteria.			·	1		
UNIT – I	INTRODUCTION TO OPTIMIZATION			Ģ	9 Peri	iods		
Introduction -	Historical Development, Engineering Application	ns of Optimizatio	n, St	ateme	ent of	f an		
Optimization I	Problem, Classification of Optimization Problems, C	Optimization Techr	niques	s, Opt	imiza	tion		
Techniques, En	ngineering Optimization Literature. Case studies.							
UNIT – II	LINEAR PROGRAMMING			9) Per	iods		
Introduction, A	Applications of Linear Programming, Standard For	m of a Linear Pro	gram	ming	Probl	lem,		
Geometry of L	inear Programming Problems, Definitions and The	orems, Solution of	a Sy	stem	of Li	near		
Simultaneous I	Equations, Pivotal Reduction of a General System of	f Equations, Motiv	ation	of the	e Sim	plex		
Method, Simp	lex Algorithm, Revised Simplex Method, Duality in	n Linear Programn	ning,	Trans	porta	tion		
Problem, Karr	narkar's Interior Method, Quadratic Programming,	Engineering Opti	mizat	tion L	literat	ture.		
Case studies.		2)						
	NON-LINEAR PROGRAMMING		N.C. (1		Per	lods		
Elimination I	Elimination Methods-Unrestricted Search, Exhaustive Search; Interpolation Methods-Quadratic							
Search Metho	Method, Cubic Interpolation Methods. Unconstration	athed Demolization	l Tec	nniqu	les-Di	anto		
Directions A1	asithm Simpley Mothed Indirect Search Mathe	day Gradiant of a	Eur	otion	_OIIJU Stoo	gale		
Directions, Al	d Newton's Method Marguardt Method Constrai	ned Optimization	. run Tech			irect		
Methods: Rand	lom Search Methods, Complex Method, Sequential	linear Programmi	ng In	direct	Noth	neet		
- Transformation	on Techniques, Basic Approach of the Penalty Func	tion Method Inter	ior Pe	nalty	Func	tion		
Method Case	studies	tion wiethod, miter		many	I unc	uon		
UNIT – IV	DYNAMIC PROGRAMMING			() Per	iods		
Introduction. N	Aultistage Decision Processes. Definition and Exa	mples. Representat	ion c	faN	Iultis	tage		
Decision Proce	ess. Conversion of a Non-serial System to a Serial S	System. Types of	Multi	stage	Deci	sion		
Problems, Co	ncept of Sub-optimization and Principle of Opt	imality, Computat	ional	Proc	edure	e in		
Dynamic Prog	ramming, Conversion of a Final Value Problem i	into an Initial Val	ue Pi	oblen	n, Li	near		
Programming	Programming as a Case of Dynamic Programming. Continuous Dynamic Programming Additional							
Applications - Design of Continuous Beams, Optimal Lavout (Geometry) of a Truss. Optimal Design of								
a Gear Train, Design of a Minimum-Cost Drainage System, Engineering Optimization Literature. Case								
studies.								
UNIT - VMODERN METHODS OF OPTIMIZATION9 Periods								
Introduction, P	rocedure and Algorithm of Modern methods of opti	mization: Genetic	Algori	thm,	Simul	ated		
Annealing, Part	Annealing, Particle Swarm Optimization, Ant Colony Optimization, Optimization of Fuzzy Systems, Neural-							
Network-Based Optimization, Engineering Optimization Literature. Case studies.								
Contact Perio	ds:							
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1 Singiresu S. Rao, "Engineering Optimization: Theory and Practice", 12 June 2009.

2 G.Srinivasan, "Operations Research-Principles and Applications", second edition, 2010.

3 Osman Güler, **"Foundations of Optimization"**, Springer New York, 2010.

4 Mykel J. Kochenderfer, Tim A. Wheeler, "Algorithms for Optimization", MIT Press, 2019

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Understand the basic concepts and terminology of optimization theory,	K2
	mathematical models for optimization problems.	
CO2	Apply different optimization algorithms, such as linear programming, dynamic	K3
	programming, nonlinear programming and modern optimization techniques.	
CO3	Realize the applications of optimization in various fields, such as engineering,	K6
	economics, and operations research.	
CO4	Utilize optimization software to solve real-world problems.	K3
CO5	Analyze and interpret optimization results.	K4

Course Articulation Matrix							
COs/Pos	PO1	PO2	PO3	PO4			
CO1	3	117142-01-2702	3	2			
CO2	3	Chunny D	3	2			
CO3	3	Contraction of the second	3	2			
CO4	3	AND ALL AND	3	2			
CO5	3	2	3	2			
23PSFCZ2	3	2	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial-							

			CONTRACT OF				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20%	30%	20%	30%	-	_	100%
CAT2	30%	20%	30%	20%	-	-	100%
Individual	20%	30%	20%	30%	i an -	-	100%
Assessment1/		20		A B	8		
Case study1/		and Town	1		5		
Seminar		ALL THE TOTAL	DY AN	ALUD			
1/Project1		E South	ALL STORES	2517			
Individual	30%	20%	30%	20%	-	-	100%
Assessment2/			1.00				
Case study2/							
Seminar 2							
/Project2							
ESE	30%	30%	20%	20%	-	-	100%

23PSPC01	23PSPC01 ELECTRIC DISTRIBUTION SYSTEMS			SE	EME	STE	RI
PREREQUI	ISIT	ES	CATEGORY	L	Т	Р	С
		NIL	PC	3	0	0	3
Course To facilitate the students in understanding the configuration and comport							the
Objectives Electric Distribution Network, the modeling of the distribution system com						onen	ts &
	ana	alyzing the distribution system under normal and al	onormal condition	ns.			
UNIT – I	IN	TRODUCTION TO ELECTRICAL DISTRIBU	TION SYSTEM	1	9	9 Per	riods
Introduction	to I	Electrical Distribution System - Components of I	Distribution Syst	em S	ubsta	ation	and
Busbar Layo	uts -	- Feeder configurations - Nature of Loads in a Dis	stribution System	n - Lo	ad A	lloca	ation
in a Distribu	ition	System - K Factors and Their Applications - A	nalysis of Unifo	ormly	Dist	tribut	ted -
Lumping Lo	ads	n Geometric Configurations Rectangular and Tria	ingular - Impeda	nce c	of Di	stribu	ition
Lines and Fe	eder	8					
UNIT - II		DELLING OF DISTRIBUTION SYSTEM CC	<u>DMPONENTS</u>			Per	riods
Models of D	1stril	oution Lines and Cables - Modelling of Single-Pha	ase and Three-Ph	ase 'I	rans	torm	ers -
Modelling of	Ste	5 Voltage Regulators - Load Models in Distribution	n System - Mode	lling	of D	istrib	uted
Generation -		A D ELOW ANALYSIS OF DISTRIBUTION S	XOTEMO				i a d a
UNII – III Dooleword/Ec		rd Sween Load Flow Analysis Direct Approach	Paged Load Elev			Per v	adial
Backwaru/FC	лwa abbu	Mashed System - Gauss Implicit 7 matrix Mathod	Daseu Loau Fio	w An	arysi	.5 - 17	aurai
$\frac{\mathbf{S}\mathbf{Y}\mathbf{S}\mathbf{U}\mathbf{H}}{\mathbf{U}\mathbf{N}\mathbf{H}} - \mathbf{I}\mathbf{V}$	SE	ORT CIRCUIT ANALVSIS OF DISTRIBUTIO	N SVSTEMS) Por	inde
Sequence Co	mno	ment Based Short Circuit Analysis - Thevenin's E	uivalent and Ph	ase V	 arial	le R	ased
Short Circuit	t An	alvsis - Direct Approach for Short-Circuit Analy	sis. Introduction	and]	[G]		
and LLLG Fault Analysis - Direct Approach for Short-Circuit Analysis for Weakly Meshed System							
UNIT – V	RI	LIABILITY STUDY AND POWER	OUALITY	OF		Per	riods
	DI	STRIBUTION SYSTEMS					
Different rel	liabi	ity indices used in distribution networks - Ma	thematical conce	ept o	f rel	iabil	ity -
Reliability ev	valua	ition of multiple units connected to series and/or p	oarallel - Power o	qualit	y pro	oblen	ns in
distribution s	syste	ms	A.				
Contact Periods:							
Lecture: 45	Peri	ods Tutorial: 0 Periods Practical: 0 Period	s 10tal: 45 Pe	riods			
REFERENC	ES	ALL DO GO GO ALL UN	1				
1 T. Gonen	. "E	lectric Power Distribution System Engineering";	CRC Press, 3rd	Editic	on, 20)14.	
2 Brown R	., W	ills H., "Electric power Distribution Reliability",	Second Edition	, Boc	a Ra	ton	CRC
Press, 20	Press, 2008.						
3 W.H. Kresting, "Distribution System Modeling and Analysis", CRC Press, New York, 2002.							
4 T.A. Short, "Electric Power Distribution Handbook", CRC Press, Boca Raton, 2003							
5 B. Das, "	5 B. Das, "Power Distribution Automation" , IET Power and Energy Series, 75, London, 2016.						
6 J.H.teng,	"A oliva	direct approach for distribution system load flow	w solution", IEE	E Tr	ansa	ction	s on
7 A.A. Salle	am a	and O.P. Malik, "Electric Distribution System", IE	EE Press, Picata	way,	NJ, 2	2011.	
8 J.M.Gers	, "L	vistribution System Analysis and Automation",	IET Power and	Energ	gy Se	eries,	68,
London, 2	2013	•					
9 R.F.Arrit Transact	t ar ions	ed R.C.Dugan, "Distribution system analysis a on Industry applications, vol. 47, no. 6, pp. 2343-2	and the future 350, Nov-Dec. 2	smar 011.	t gr	id",	IEE

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Manned
	Summarize the configuration and components of Electric Distribution	K2
01	Network	112
CO2	Model different distribution system components	K3
CO3	Analyze the distribution system under normal and abnormal conditions	K4
CO4	Evaluate the distribution systems through reliability study	K5
CO5	Design the distribution systems with quality supply	K6

Course Articulation Matrix							
COs/POs	PO1	PO2	PO3	PO4			
CO1	2	-	2	-			
CO2	2	NY CENTRY N	2	-			
CO3	3	4.0.2	3	-			
CO4	3	Anéo ocho	3	-			
CO5	3 69	Paradone a	3	2			
23PSPC01	3		3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMEN	NT PATTERN -	THEORY		No II			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		1 0 2					
CAT1	10%	30%	20%	20%	20%	-	100%
CAT2	10%	20%	30%	20%	20%	-	100%
Individual	10%	30%	20%	20%	20%	-	100%
Assessment1		848	23	2998			
/ Case		2	1				
study1/		CONTRACTOR OF	100	515110			
Seminar		THE PARTY	25	Constant of			
1/Project1		15 all	40 - 50 C				
Individual	20%	30%	30%	10%	10%	-	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	10%	30%	20%	30%	10%	_	100%

23PSPC02	23PSPC02 COMPUTER AIDED POWER SYSTEM ANALYSIS			SEMESTER I			
PREREQUIS	ITES	CATEGORY	L	Т	P	С	
	NIL	PC	2	0	2	3	
Course	To realize the various solution techniques as appli	ed to power syste	m ne	etwor	ks an	nd to	
Objectives	perform steady state and transient analysis of the	power system n	etwo	rks a	nd he	ence	
U	explore the shades of optimal power flow and anal	yze the system sta	bilit	y.			
UNIT – I	POWER SYSTEM SOLUTION TECHNIQUES	5	() 6+06	6 Per	iods	
Sparse Matrix	techniques for large scale power systems - Optin	nal ordering sche	mes	for p	reser	ving	
sparsity - Flex	ible packed storage scheme for storing matrix as co	mpact arrays - F	actor	rizatio	on by	/ Bi-	
factorization a	nd Gauss elimination methods – Gauss Eliminat	ion Solutions usi	ng L	eft a	nd R	light	
factors and L a	nd U matrices.		U			U	
LAB COMPO	DNENT: Simulation of Gauss elimination Technic	que					
UNIT – II	POWER FLOW ANALYSIS	- m	()6+06	6 Per	iods	
Power flow eq	uation in rectangular and polar forms - Formation	of Y-Bus Matrix	- Ne	wton	Rapl	hson	
method - Adju	stment of P-V buses - Fast Decoupled Power Flow	method - Sensitiv	vity f	actor	s for	P-V	
bus adjustmen	t AC-DC System Power Flow Analysis - Incor	porating Load M	[odel	s and	FA	CTS	
devices in Pow	ver Flow Algorithm - Incorporating HVDC converted	er control in powe	r flo	w - S	eque	ntial	
and Simultane	ous Solution Algorithms.	(-		
LAB COMPO	ONENT: Simulation for formation of Ybus & Zbu	ıs matrices					
UNIT – III	OPTIMAL POWER FLOW		()6+06	6 Per	iods	
Problem stater	nent - Solution of Optimal Power Flow (OPF) - The	gradient method	- Ne	wton'	s me	thod	
- Linear Sensi	tivity Analysis - LP methods - With real power v	ariables only - Ll	P me	thod	with	AC	
power flow va	riables and detailed cost functions - Security constr	ained Optimal Po	wer I	Flow	- Inte	erior	
point algorithm	n - Bus Incremental costs.						
LAB COMPO	DNENT: Simulation of Gradient methods for solv	ing non-linear eo	quati	ions			
UNIT – IV	FAULT ANALYSIS		()6+06	6 Per	iods	
Formation of b	ous impedance matrix with mutual coupling (single	phase basis and t	hree	phase	e bas	is) -	
Computer met	hod for fault analysis using ZBUS and sequence co	omponents - Deriv	vatio	n of e	equat	ions	
for bus voltag	es -fault current and line currents - both in seque	ence and phase	- syı	nmet	rical	and	
unsymmetrical	faults - Analysis of Open Circuit faults.	_	-				
LAB COMPONENT: Simulation of symmetrical components computations							
UNIT – V	STABILITY ANALYSIS		()6+06	6 Per	iods	
Classification	of Power System Stability - Classical Model of Sy	nchronous Machi	nes a	and E	xcita	ation	
System - Tran	sient Stability Analysis of Multi-Machine System	ns - Eigen Anal	ysis	of D	ynan	nical	
Systems - Sma	ll Signal Stability Analysis using Classical Model -	Basic Concepts of	of Vo	ltage	Stab	oility	
Analysis, Solu	tion of swing equation using numerical integration a	pproaches.		-		2	
LAB COMPO	DNENT: Simulation of numerical integration tech	niques					
Contact Perio	ds:						
Lecture: 30 P	Lecture: 30 Periods Tutorial: 0 Periods Practical: 30 Periods Total: 60 Periods						
L							

1	D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", Fourth Edition, Tata McGraw Hill
	Publishing Company Limited, New Delhi, 2011.
2	Prabha Kundur, "Power System Stability and Control", Publisher: McGraw Hill Education, January 2006.
3	M. A. Pai "Computer Techniques in Power System Analysis", Tata McGraw Hill Publishing Company
	Limited, New Delhi, 2006.
4	Grainger J.J. and Stevenson W.D., "Power System Analysis", McGraw-Hill, New York, 1994.
5	Glover J.D., Sarma M. and Overbye T.J., "Power System Analysis and Design", Fifth Edition CL
	Engineering Press, 2012.
6	Bergen A.R. and Vijay Vittal, "Power Systems Analysis", Pearson Education Asia, III edition, 2009.
7	A. J. Wood and B. F. Wollenberg, "Power Generation Operation and Control", John Wiley and sons, New
	York, 2016

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to	Mapped
CO1	Apply the various matrix algebra-based solution techniques to power system	K3
	networks	
CO2	Analyze the steady state of power system under normal conditions	K4
CO3	Devise transient analysis of power system networks under faulty conditions	K3
CO4	Illustrate the nuances of optimal power flow of the system	K1
CO5	Evaluate the system stability through modal analysis	K5

Course Articulation Matrix							
COs/POs	PO1	PO2	PO3	PO4			
CO1	3		3	-			
CO2	3		3	2			
CO3	3		3	2			
CO4	3	1-10	3	2			
CO5	3	-	3	3			
23PSPC02	3	-	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

		CHUNDLES CO	Valle and	ALUNO /			
ASSESSMENT	PATTERN – 7	THEORY	- and	STA			
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30%	10%	10%	30%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	30%	10%	30%	30%	-	-	100%
Assessment1/							
Case study1/							
Seminar							
1/Project1							
Individual	30%	10%	20%	20%	20%	-	100%
Assessment2/							
Case study2/							
Seminar 2							
/Project2							
ESE	30%	10%	20%	20%	20%	-	100%
	•	•	•	•	•	-	

23PSPC03	ADVANCED POWER SYSTEM OPERA CONTROL	TION AND	SEMESTER			ERI
PREREQUIS	ITES	CATEGORY	L	Т	P	С
	NIL	РС	3	0	0	3
Course	To impart the knowledge on various operational	and control activ	ities	as a	ppli	ed to
Objectives	the power system, articulate the economic nuance	es and modern cor	ntrol	tech	niqu	es &
U	estimate the states of the power system under norr	nal and abnormal	cond	ition	s.	
UNIT – I	REAL POWER AND FREQUENCY CONTROL	DL			9 Pe	riods
Fundamentals	of speed governing mechanism and modelling:	Speed-load chara	acteri	istics	s –	Load
sharing betwee	en two synchronous machines in parallel - concep	t of control area -	LFC	C co	ntrol	of a
single-area sys	stem: Static and dynamic analysis of uncontrolle	d and controlled	cases	s - I	Econ	omic
Dispatch Cont	rol - Multi-area systems: Two-area system modellin	ng - static analysis	, unc	ontro	olled	case
- tie line with f	requency bias control of two-area system derivation	n - state variable n	nodel			
UNIT – II	REACTIVE POWER AND VOLTAGE CONT	ROL			9 Pe	riods
Production and	absorption of reactive power- Methods of Volta	ge Control – Shur	t rea	ctor	s – S	Shunt
Capacitors – S	Series Capacitors – Synchronous condensers – S	tatic VAR system	ns –	Prir	ncipl	es of
Transmission s	system compensation – Modeling of reactive compension	ensating devices –	App	licat	ion o	of tap
changing trans	formers to transmission systems – Distribution systems	tem voltage regula	tion	- Mo	odeli	ng of
transformer UI	LTC control systems.					U
UNIT – III	UNIT COMMITMENT AND ECONOMIC DI	SPATCH			9 Pe	riods
Statement of U	Jnit Commitment (UC) problem – Constraints in	unit commitmen	t - S	olut	ion	using
Priority List m	ethod, Dynamic programming method - Forward	DP approach, Lag	rang	ian 1	elax	ation
method - The	Economic dispatch problem – Thermal syster	n dispatching with	th ne	etwo	rk l	osses
considered – 7	The Lambda iteration method – Gradient method	of economic dis	patch	1 – I	Econ	omic
dispatch with	Piecewise Linear cost functions - Transmission	system effects –	At	wo	gene	erator
system – coord	lination equations – Incremental losses and penalty	factors - Hydro T	herm	al So	ched	uling
using DP	866 110	2908				-
UNIT – IV	MODERN CONTROL OF POWER SYSTEM	S		9	9 Pe	riods
System operat	ing states by security control functions – Monito	oring, evaluation of	of sy	stem	sta	te by
contingency an	nalysis – Contingency Analysis – Linear Sensitivi	ty Factor – Line	Outa	ge S	ensi	tivity
Factor – Gene	eration Outage Sensitivity Factor – Analysis of 1	nultiple continger	ncies	- (Corre	ective
controls (Prev	entive, emergency and restorative) - Energy co	ontrol center – S	SCAI	DA	syste	em –
Functions – me	onitoring, Data acquisition and controls – EMS sys	tem			•	
UNIT – V	STATE ESTIMATION			9	9 Pe	riods
Maximum like	lihood Weighted Least Squares Estimation: Conce	epts - Matrix form	ulati	on -	Exa	mple
for Weighted	Least Squares state estimation - State estimation o	f an AC network:	Тур	ical	resu	lts of
state estimatio	n on an AC network – State Estimation by Orth	nogonal Decompo	sition	ı alg	gorit	hm –
Introduction to	Advanced topics : Detection and Identification of	f Bad Measuremen	nts -	Esti	mati	on of
Quantities not	being measured, Network Observability and Pseu	udo measurements	s - A	Appli	icati	on of
Power System	State Estimation.					
	1					
Lecture: 45 P	as: eriods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 Po	eriod	ls		

1 A. J. Wood and B. F. Wollenberg, "**Power Generation Operation and Control**", John Wiley and sons, New York, 2016

2 KundurP; "Power System Stability and Control", Tata McGraw Hill, 5th reprint, 2008.

3 Elgerd O.I, "Electric Energy System Theory - An Introduction", - Tata McGraw Hill, New Delhi 2002.

4 D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Fourth Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.

5 L.L. Grigsby, "The Electric Power Engineering, Hand Book", CRC Press & IEEE Press, 2001.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Identify various operational activities as applied to power system for the	K1
	normal operating conditions	
CO2	Summarize various control activities as applied to power system for the	K2
	normal and abnormal operating conditions	
CO3	Articulate the economic nuances of the power system network.	K3
CO4	Illustrate modern control techniques for power systems.	K4
CO5	Evaluate the states of the power system under normal and abnormal	K5
	conditions.	

Course Articulation Matrix		2 1/		
COs/POs	PO1	PO2	PO3	PO4
CO1	3		3	-
CO2	3		3	2
CO3	3		3	2
CO4	3		3	2
CO5	3		3	3
23PSPC03	3		3	2
1 - Slight, $2 - Moderate$, $3 - Slight$	ubstantial		249.	

ASSESSMENT	TPATTERN – T	THEORY	No.	DU UIO			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30%	30%	20%	10%	10%	-	100%
CAT2	20%	20%	20%	20%	10%	-	100%
Individual Assessment1/ Case study1/ Seminar 1/Project1	30%	30%	20%	10%	10%	-	100%
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	20%	20%	20%	20%	-	100%
ESE	20%	20%	20%	20%	20%	-	100%

23PSPC04	3PSPC04 GRAPH THEORY APPLICATION TO POWER SYSTEM			SEMESTER I		
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	РС	3	0	0	3
Course	Upon completion of this course, the students wi	ill be familiar with	the	algo	orithn	ns of
Objectives	graph theory and applications of graph theory to p	power system prob	lem	S		
UNIT – I	INTRODUCTION				9 Pe	riods
Introduction –	Network terminologies, Graph Terminologies - 7	Fypes of Graphs -	Sub	o Gra	ph- 1	Multi
Graph - Regul	ar Graph - Isomorphism - Isomorphic Graphs - Su	ub-graph - Euler g	raph	- Ha	milto	onian
Graph - Direct	ed Graph and undirected Graph					
UNIT – II	TREES AND CUTSETS				9 Pe	riods
Trees -Propert	ies- Distance and Centres - Types - Rooted Tree	Tree Enumeration	on-]	Label	ed T	ree -
Unlabeled Tree	e - Spanning Tree: Minimum spanning tree and ma	aximum spanning t	ree ·	- Fur	ndam	ental
Circuits- Cut S	Sets - Properties - Fundamental Circuit and Cut-se	t- Connectivity- Se	epara	ability	y -Re	lated
Theorems.	Sale and Sales					
UNIT – III	NETWORK FLOWS				9 Pe	riods
Network Flow	vs - Planar Graph - Representation - Detection	n Dual Graph	- (Geom	netric	and
Combinatorial	Dual - Related Theorems - Digraph - Properties - E	Euler Digraph				
UNIT – IV	MATRIX REPRESENTATION	11			9 Pe	riods
Matrix Repres	entation - Adjacency matrix- Primitive matrices-In	cidence matrix- Cu	ut-se	et mat	trix -	Path
Matrix- Prope	rties - Related Theorems - Correlations. Graph	Coloring - Chron	natic	Pol	ynom	nial -
Chromatic Par	titioning - Matching - Covering - Related Theorems	S.				
UNIT – V	POWER SYSTEM APPLICATIONS	11			9 Pe	riods
Graph algorith	ims: Optimal path finding algorithm, Depth first	search, Breadth fin	rst s	earch	, Dij	kstra
algorithms – E	Belman ford and Ford Fulkerson algorithms - Prog	gramming Practices	s for	pow	er sy	vstem
problems.	AL IN-					
Contact Perio	ds:	-3K				
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 4	15 P	eriod	S	
REFERENCES	Contraction of the second seco	2000				
1 Narsingh Deo, "Graph Theory with Application to Engineering and Computer Science", Prentice- Hall of India Pvt. Ltd. 2003.						
2 Diestel, R,	"Graph Theory", Springer, 3rd Edition, 2006.					
3 Bondy, J.	A. and Murty, U.S.R., "Graph Theory w	ith Applications'	', N	lorth	Но	lland

Publication,2008.

4 West, D. B., "Introduction to Graph Theory", Pearson Education, 2011.
5 John Clark, Derek Allan Holton, "A First Look at Graph Theory", World Scientific Publishing *Company*, 1991.

Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Publishers, 1995. 6

COUR	Bloom's Taxonomy		
Upon c	Upon completion of the course, the students will be able to:		
CO1	Understand fundamentals of graph theory.	K2	
CO2	Study techniques related to various concepts in graphs	K1	
CO3	Explore modern applications of graph theory	K6	
CO4	Analyze the algorithms in graph theory	K4	
CO5	Apply graph algorithms to power system	K3	

COs/POs	PO1	PO2	PO3	PO4
CO1	3	3	1	1
CO2	3	2	3	2
CO3	3	2	3	2
CO4	3 - 9	2	3	1
CO5	3	2	1	2
23PSPC04	3	3	3	3
CO5 23PSPC04	3 3 2 Substantial	2 3	1 3	

ASSESSMEN	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
Category*									
CAT1	20%	30%	30%	20%	-	-	100%		
CAT2	30%	20%	20%	20%	10%	-	100%		
Individual Assessment1 / Case study1/ Seminar 1/Project1	20%	30%	20%	20%	10%	-	100%		
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20%	20%	20%	20%	10%	10%	100%		
ESE	20%	30%	20%	20%	10%	-	100%		

23PSPC05	PSPC05 POWER SYSTEM SIMULATION LABORATORY			SEMESTER I		
PREREQUIS	ITES	CATEGORY	L	Т	P	С
	NIL	PC	0	0	3	1.5
Course	To analyze the performance of power system under	er normal and abno	rmal	cond	lition	IS
Objectives	using simulation software					
LIST OF EXH	PERIMENTS					
1. AC Power f	low analysis-Fast decoupled method					
2. AC-DC Pow	ver flow analysis					
3. Transient sta	ability analysis of single machine-infinite bus syster	n using classical m	achii	ne me	odel	
4. Optimal load	d dispatch using lambda-iteration method					
5. Solution to 1	Unit commitment Problem: Priority-list schemes and	d dynamic progran	nming	g		
6. Contingency	analysis					
7. Load flow a	nalysis with STATCOM					
8. Harmonic an	alysis of power system with non-linear load					
9. Study of pro	tective relaying schemes of Power Apparatus					
10. Demand Si	10. Demand Side Management in Smart Power Grid network					
11. Determination of Sequence Impedances of Power Network						
12. Study of S	12. Study of SCADA based system					
Contact Perio	ds:					
Lecture: 0 Pe	riods Tutorial: 0 Periods Practical: 45 Per	iods Total: 45 P	erio	ls.		

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	Mapped	
CO1	Acquire expertise in usage of simulation software as applied to power	K1
	system	
CO2	Apply tools to simulate the mathematical model of power network for	K3
	power system analysis	
CO3	Analyze the power system through various numerical methods under	K4
	normal and abnormal conditions	
CO4	Suggest methods for economic operation of power system for improved	K4
	resource utilization	
CO5	Evaluate the existing power system for its reliable operation.	K5

Course Articulation Matrix								
COs/POs	PO1	PO2	PO3	PO4				
CO1	2	2	3	1				
CO2	2	2	3	1				
CO3	2	2	3	1				
CO4	-	-	3	1				
CO5	3	2	3	2				
23PSPC05	2	2	3	1				
1 – Slight, 2 – Moderate, 3 – Substantial								

23P	23PSPC06 RENEWABLE ENERGY LABORATORY		SEMESTER I					
201	51 C00		(Common to PSE and PED))	0			
PRER	EQUISI	TE	kS	CATEGORY	L	Т	P	С
			NIL	PC	0	0	3	1.5
Cou	irse	То	explore the operation, study the performance	e and visualize th	e rei	newa	ble	based
Objec	ctives	pov	ver electronic systems and to interface signal c	conditioning device	ces v	vith	MAT	LAB
		anc	l hardware components.					
LIST	OF EXP	ER	IMENTS					
1.	Analyze	e th	e given Solar Panel mounted on the roof top usir	ng Solar PV analys	ser.			
2.	Emulate	e So	blar PV characteristics for a specific location usin	ng Solar PV Emul	ator.			
3.	Analyze	e th	e harmonics of grid connected solar systems us	sing Power Qualit	y An	alyse	er. E	xtract
	and stud	lv t	he data logged in the grid connected system.	0		2		
4	Study o	of F	PMSG/DFIG based wind turbine and its assoc	iated parameters	char	acter	istic	s and
	modes	of o	neration	futer parameters,	entai	acter	15010	5 und
5	Emulate	S W	find Energy characteristics for a specific location	n using Wind Emu	lator			
5.	Study o	, w	and Energy characteristics for a specific location	i using wind Eniu	ator	•		
0.	Study 0		iergy storage system.					
Conta Loctu	ct Perio	1S:	a Tutovich O Devicedo - Ducationh 45 Devi	ada Tatali 15 D	onio	Ja		
Lectu	re: 0 Pe	100	is Intorial: 0 Periods Practical: 45 Peri	1005 10tal: 45 P	erio	15		
COUR	PSF OU	ГC	OMES	77		R	loon	n's
	UURSE UUI UURIES: BIOOM'S						ı ə mv	
Upon	Upon completion of the course, the students will be able to: Manned							
CO1	CO1 Emulate the characteristics of renewable sources K6							
CO2	CO2 Analyze the grid connected renewable system.				K4			
CO3	Realize	and	l interface a suitable converter circuit with renewable	e sources.			K3	
CO4	Measur	e th	e performance parameters of various renewable sys	stems and work out	ta		K5	
	suitable solution.							

CO5 Explore the operation of circuits with renewable sources.

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4				
C01	3	3	3	-				
CO2	3	3	3	1				
CO3	3	3	2	1				
CO4	3	3	2	2				
CO5	3	3	-	-				
23PSPC06	3	3	2	1				
1 – Slight, 2 – Moderate, 3 – Substantial								

K2

23PSPC07	PSPC07 POWER SYSTEM DYNAMICS AND CONTROL					II
PREREQUIS	ITES	CATEGORY	L	Τ	Р	С
	NIL	PC	2	0	2	3
Course	To summarize theoretical modeling concepts of v	various power sys	tem c	omp	onent	s for
Objectives	Objectives the stability analysis and hence evaluating the existing system for its satisfactory					
	operation					
UNIT – I	ANALYSIS OF DYNAMICAL SYSTEMS			06+0	6 Per	iods
Concept of Eq	uilibria, Small and Large Disturbance Stability, E	xample: Single N	Iachi	ne In	finite	Bus
System, Modal	l Analysis of Linear Systems, Analysis using Nun	nerical Integration	n Tecl	nniqu	ies, Is	sues
in Modeling: S	low and Fast Transients, Stiff Systems.					
LAB COMPO	NENT: Simulation of Numerical Integration Te	chniques using S	<u>cilab</u>			
UNIT – II	MODELING OF SYNCHRONOUS MACHIN	E		06+0	6 Per	iods
Physical Chara	cteristics, Rotor Position Dependent model, D-Q	Transformation, N	Aodel	with	n Stan	dard
Parameters, St	eady State Analysis of Synchronous Machine, S	hort Circuit Tran	sient	Ana	lysis	of a
Synchronous M	Iachine, Synchronous Machine Connected to Infini	ite Bus.				
LAB COMPO	NENT: Simulation of synchronous machine using	ng Scilab				
UNIT – III	MODELING OF EXCITATION AND H	PRIME MOVE	R	06+0	6 Per	iods
	SYSTEMS					
Physical Chara	acteristics and Models, Control system compon	ents, Excitation	Syste	m C	ontrol	lers,
Prime Mover C	Control Systems.	77				
LAB COMPO	NENT: Simulation of excitation and prime mov	er systems using	Scila	b		
UNIT – IV	MODELING OF TRANSMISSION LINES AN	ND LOADS		06+0	6 Per	iods
Transmission 1	Line Physical Characteristics, Transmission Line	Modeling, Load	Mode	els -	Induc	ction
machine mode	l, Other Subsystems - HVDC, protection systems.	11				
LAB COMPO	NENT: Simulation of transmission lines protect	tion using Scilab				
$\mathbf{UNIT} - \mathbf{V}$	STABILITY ISSUES IN INTERCONNE	CCTED POWE	R	06+0	6 Per	iods
	SYSTEMS					
Single Machine Infinite Bus System, Multi-machine Systems, Stability of Relative Motion, Frequency						
Stability: Centre of Inertia Motion, Concept of Load Sharing: Governors, Single Machine Load Bus						
System: Voltage Stability, Torsional Oscillations						
LAB COMPONENT: Simulation of stability analysis using Scilab						
Contact Perio	ds:	3				
Lecture: 30 Pe	eriods Tutorial: 0 Periods Practical: 30	Periods Tota	al: 60	Per	riods	

-	
	K. R. Padiyar, Anil M. Kulkarni, "Dynamics and Control of Electric Transmission and Microgrids",
	Wiley, 2019
	2 Ramanujam, R. "Power System Dynamics: Analysis and Simulation", PHI Learning Pvt. Ltd.,
	2010
	B Peter W Sauer and M A Pai and Joe H Chow, John Wiley, "Power System Dynamics And Stability
	: With Synchrophasor Measurement And Power System Toolbox", John Wiley, Second edition,
	2017
4	Jan Machowski, Zbigniew Lubosny, Janusz W. Bialek, James R. Bumby, "Power System Dynamics
	- Stability and Control", Wiley, 2020
4	5 Kundur P., "Power System Stability and Control" , McGraw Hill Inc., New York,1995
(5 Padiyar K.R., "Power System Dynamics, Stability & Control", 2nd Edition, B.S. Publications,
	Hyderabad, 2008

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Apply modal analysis to any dynamical system	K3
CO2	Model the various power system components.	K6
CO3	Analyze the dynamics and stability issues in power system	K4
CO4	Interprete the complete response of power system under normal/abnormal	K2
	operating conditions	
CO5	Plan stabilized interconnected power systems.	K5

Course Articulation Matrix

COs/POs	PO1	PO2	PO3	PO4
CO1	3	-	3	3
CO2	3	-	3	-
CO3	3	- Gim	3	1
CO4	3	100 5 02 5 UNE	3	2
CO5	3	N B	3	3
23PSPC07	3	Con 100	3	2
1 - Slight, $2 - $ Moderate, $3 - $ S	Substantial		5	
		Les /	1	

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*		1		11					
CAT1	10%	40%	30%	10%	10%	-	100%		
CAT2	10%	30%	30%	20%	10%	-	100%		
Individual	-	20%	50%	30%	-	-	100%		
Assessment1		A 183		100					
/ Case		20							
study1/			1						
Seminar		ALL THE TOTAL	De Viel and	ALCULO					
1/Project1		Rest I	A SI SI	517					
Individual	-	30%	30%	20%	20%	-	100 %		
Assessment2			1						
/ Case									
study2/									
Seminar 2									
/Project2									
ESE	20%	20%	30%	20%	10%	-	100%		

2206000	RESTRUCTURED POWER SYSTEM AND			CEMECTED II			
2515100	DEREGULATION		SEIVIESTER II				
PREREQUIS	ITES	CATEGORY	L	Τ	Р	С	
	NIL	PC	3	0	0	3	
Course	To explore objectives of national and regional plan	nning of electricity,	, unde	erstar	nd cri	iteria	
Objectives	of generation planning, impart learning about opti-	mal power system e	expar	sion	and	its	
planning, also to learn about un-integrated and bundled power systems							
UNIT – I	UNIT – I FUNDAMENTALS AND ARCHITECTURE OF POWER MARKETS 9 Periods						
Introduction –	Unbundling - Wheeling - Reform motivations-Fu	ndamentals of Der	egula	ted N	Mark	ets –	
Types (Future,	Day-ahead and Spot) - Participating in Markets (0	Consumer and Prod	lucer	Persp	pecti	ve) –	
Bilateral marke	ets - Pool markets. Independent System Operator	(ISO) – Componen	nts -T	ypes	of I	SO -	
Role of ISO	- Lessons and Operating Experiences of Deregu	lated Electricity I	Mark	ets in	n va	rious	
Countries (UK	, Australia, Europe, US, Asia), Regulation and polic	cies for restructured	l pow	er sy	vstem	۱.	
UNIT – II	TECHNICAL CHALLENGES			(9 Pei	riods	
Total Transfer	Capability - Limitations - Margins - Available transmission	ansfer capability (A	ATC)	– Pr	roced	ure -	
Methods to co	mpute ATC - Static and Dynamic ATC - Effect of	of contingency ana	lysis	– Ca	se S	tudy.	
Concept of Co	ongestion Management - Bid, Zonal and Node C	ongestion Principle	es - 1	nter	and	Intra	
zonal congestio	on – Generation Rescheduling - Transmission cong	estion contracts – C	Case S	study	•		
UNIT – III	TRANSMISSION NETWORKS AND	SYSTEM SECU	JRIT	Y 9	9 Pei	riods	
	SERVICES	10					
Transmission of	expansion in the New Environment - Introduction	on – Role of transport	missi	on p	lanni	ng –	
Physical Trans	mission Rights - Limitations - Flow gate - Finan	ncial Transmission	Righ	nts –	Loss	ses –	
Managing Tran	nsmission Risks – Hedging – Investment. Ancillary	V Services – Introdu	uction	ı – D)escr	ibing	
Needs – Com	pulsory and Demand - Side provision - Buyir	ng and Selling An	ncilla	ry S	ervic	es –	
Standards.		dia					
UNIT – IV	MARKET PRICING			9	9 Pei	riods	
Transmission p	pricing in open access system - Introduction - Sp	ot Pricing – Unifo	rm P	ricing	g – Z	Zonal	
Pricing – Loc	ational Marginal Pricing - Congestion Pricing	- Ramping and	Oppo	rtuni	ty C	'osts,	
Embedded cos	t based transmission pricing methods (Postage st	amp, Contract path	h and	l MV	V-mi	le) –	
Incremental co	st based transmission pricing methods (Short run r	narginal cost, Long	g run	marg	inal	cost)	
- Pricing of Losses on Lines and Nodes.							
UNIT – V	INDIAN POWER MARKET			9	9 Pei	riods	
Current Scenar	rio - Regions - Restructuring Choices - Statewise	Operating Strategie	es - S	alien	t fea	tures	
of Indian Electricity Act 2003 – Transmission System Operator – Regulatory and Policy development in							
Indian power Sector – Opportunities for IPP and Capacity Power Producer. Availability based tariff –							
Necessity – Working Mechanism – Beneficiaries – Day Scheduling Process – Deviation from Schedule							
- Unscheduled Interchange Rate - System Marginal Rate - Trading Surplus Generation - Applications.							
Contact Perio	ds:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0	Periods Total	: 45]	Perio	ds		
L							

- Kankar Bhattacharya, Math H.J. Bollen and Jaap E. Daalder, "Operation of Restructured Power 2 Systems", Kluwer Academic Publishers, 2012.
- Shahidehpour M and Alomoush M, "Restructuring Electrical Power Systems", Marcel Decker Inc., 3 2001.
- 4 Daniel S. Kirschen and GoranStrbac, "Fundamentals of Power System Economics", John Wiley & Sons Ltd., 2004.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Review the deregulation and restructuring of power markets	K1
CO2	Analyze the way of secured and reliable operation of power systems.	K4
CO3	Design the efficient economic planning of electricity.	K6
CO4	Understand the Indian Electricity Act	K2
CO5	Know the technical issues in Indian Power Market	K2
	V SPARITO REV	

Course Articulation Matrix								
COs/POs	PO1	PO2	PO3	PO4				
CO1	3	4 //	3	-				
CO2	3	- A //	3	-				
CO3	3		1	2				
CO4	3	(a) - 1	2	3				
CO5	3		3	3				
23PSPC08	3		3	3				
1 – Slight, 2 – Moderate, 3 – Substantial								

1600

		and the		7.64			
ASSESSMENT	Г PATTERN – Т	HEORY		200			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(KO) %	70
Category*		1023	111 - 50	127			
CAT1	20%	40%	30%	10%	-	-	100%
CAT2	10%	20%	30%	20%	20%	-	100%
Individual	-	30%	50%	20%	-	-	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	-	20%	30%	20%	30%	-	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	20%	30%	10%	10%	-	100%

23PSPC09	DIGITAL POWER SYSTEM PROTE	SEMESTER II			R II		
PREREQUIS	L	Т	Р	С			
	NIL	PC	3	0	0	3	
Course	To impart learning about the recent trends in	power system p	orotec	tion	sche	emes	
Objectives	and enable the students to design and work using d	igital relaying cor	cepts				
UNIT – I	NUMERICAL PROTECTION			9	Per	riods	
Essential qual	ities of protection- Primary and Backup protect	ion – Zones of	protec	ction	– ł	oasic	
protective sch	emes - Block diagram of numerical relay - Sam	pling theorem -	Corre	latio	n wi	th a	
reference wav	e - Least Error Squared technique - Digital filt	ering and numer	ical o	over-	Cu	rrent	
protection.							
UNIT – II	DIGITAL PROTECTION OF TRANSMISSIO	N LINE		9	Per	iods	
Introduction -	Protection scheme of transmission line - Distance	relays - Three-ste	epped	prot	ectio	on of	
three-phase lin	e against shunt type faults- Traveling wave relay	s - Digital protec	tion s	scher	ne b	ased	
upon fundame	ntal signal - Hardware design - Software design	- Digital protect	tion c	of EI	HV/U	JHV	
transmission li	ine based upon traveling wave phenomenon - Ne	w relaying schem	ne usi	ng a	mpli	tude	
comparison.							
UNIT – III	DIGITAL PROTECTION OF SYNCHRON	OUS GENERA	TOR	9	Per	iods	
	AND TRANSFORMER						
Synchronous	generator: Stator and Rotor faults - Protection	on schemes -Dig	ital j	prote	ctior	ı of	
Synchronous C	Generator.						
Transformer:	Differential Protection –Percentage Differential	Bias –Inrush	pheno	men	a– I	High	
resistance Gro	und Faults- Restricted Earth fault Protection -	Inter-turn faults	– Inc	pii	nt fa	ults-	
Schemes for T	ransformer Protection – Digital Protection of Transf	ormer.					
UNIT – IV	DISTANCE AND OVERCURRENT RELAY	SETTING AND	CO-	9	Per	iods	
	ORDINATION	2998					
Directional ins	tantaneous IDMT over current relay - Directional	multi-Zone distan	ce rel	ay -	Dist	ance	
relay setting -	Co-ordination of distance relays - Co-ordination	of overcurrent r	elays	- cc	oncep	ot of	
modern coordi	nated control system-Computer graphics display –	Man-machine int	erface	e sub	syste	:m –	
Integrated open	ration of national power system						
$\mathbf{UNIT} - \mathbf{V}$	PC APPLICATIONS FOR DESIGNIN	NG PROTECT	FIVE	9	Per	iods	
	RELAYING SCHEME						
Types of fault	s – Assumptions - Development of algorithm for s	short circuit (SC)	studie	es - I	PC b	ased	
integrated soft	ware for SC studies - Transformation to component	quantities - SC st	udies	of m	ultip	hase	
systems- Ultra high-speed protective relaying scheme for HV long transmission line.							
Contact Perio	ds:						
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

- L. P. Singh, "Digital Protection Protective Relaying from Electromechanical to Microprocessor", New 1 Age International Ltd., New Delhi, Second Edition, 2006.
- 2 Paithankar and Bhide, "Fundamentals of Power System Protection", Prentice Hall of India Pvt. Ltd., New Delhi, Second Edition, 2013.

Rao T.S.M., "Digital Relay / Numerical relays", Tata McGraw Hill, New Delhi, 2005. 3

Badri Ram and D.N. Vishwakarma, "Power System Protection and Switchgear", Tata McGraw-Hill 4 Publishing Company, 2002.

S.R.Bhide, "Digital Power System Protection", PHI, 2014 5

Power system protection, Vol.IV: Digital Protection and Signalling, The Institution of Electrical Engineers, 6 UK7

Related e-Journals and books for advanced work

(i) IEEE Transactions on Power System

(ii) IEEE Transactions on Power Delivery

(iii) IET Research Journal on Generation, Trans and Distribution

(iv) NPTEL Course on Digital Protection of Power System

COUR Upon c	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Know the underlying principle of digital techniques for power system protection	K2
CO2	Design the relaying scheme for protection of power apparatus using digital techniques	K4
CO3	Evaluate and interpret relay coordination	K5
CO4	Develop PC based algorithm for short circuit studies	K6
CO5	Analyze the performance of modern protection schemes	<u>K</u> 4

Course Articulation Matrix	1 151			
COs/POs	PO1	PO2	PO3	PO4
CO1	2		2	-
CO2	2	2	2	-
CO3	3	2	3	2
CO4	3	2	3	1
CO5	3	2	3	2
23PSPC09	3	- 2	3	2
1 - Slight, $2 - $ Moderate, $3 - $ Subs	tantial	Store all	1	

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	30%	10%	30%	10%	-	100%		
CAT2	20%	25%	15%	30%	10%	-	100%		
Individual	10%	25%	15%	20%	30%	-	100%		
Assessment1/									
Case study1/									
Seminar									
1/Project1									
Individual	10%	25%	15%	20%	20%	10%	100%		
Assessment2/									
Case study2/									
Seminar 2									
/Project2									
ESE	20%	20%	15%	25%	20%	-	100%		

23PSPC10	ADVANCED POWER SYSTEM SIMULATION LABORATORY			SEMESTER				
PREREQUIS	ITES	CATEGORY	L	Τ	Р	С		
	NIL	NIL PC 0 0 4						
Course Objectives	To get exposure to modern techniques for solving	g Power System Pro	blem	IS				
LIST OF EXI	PERIMENTS							
1. Study of Ne	ural Network and Fuzzy tool boxes							
2 Solution of U	Jnit commitment Problem through Evolutionary al	gorithm						
3. Solution of	Economic Dispatch using Evolutionary algorithm							
4. Fuzzy logic	based Power System Stabilizer							
5. Study of Co	-ordination of over-current and distance relays for	radial line protectio	n					
6. Power Syste	m Planning-Circuit Breaker Rating							
7. Simulation s	study of Automatic Generation Control using intell	igent control techni	ques					
8. Application	of Soft Computing Technique for Power System P	roblems						
9. State Estima	tion of Power System	0						
10.Analysis of	Integrated Renewable Energy Sources with Power	grid						
11.Design of a	ctive filter for harmonics mitigation							
12.Available T	ransfer Capability calculation	77						
13.Simulation	of faults for multi machine systems.	(
Out of the above	ve, a minimum of ten experiments are to be conduc	cted.						
Contact Perio	ds:							
Lecture: 0 Pe	eriods Tutorial: 0 Periods Practical: 60 Pe	riods Total: 60 P	Perio	ds.				

COURS Upon co	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Acquire expertise in usage of modern techniques as applied to Power System Issues	K1
CO2	Apply soft computing techniques to Power System problems and evaluate the solution	К3
CO3	Analyze the solution obtained through soft computing techniques	K4
CO4	Evaluate the existing power system for its reliable operation.	K5
CO5	Suggest suitable technique as applicable to power system problem	K3

Course Articulation Matrix						
COs/POs	PO1	PO2	PO3	PO4		
CO1	2	2	2	1		
CO2	2	1	3	1		
CO3	3	2	3	1		
CO4	3	2	3	2		
CO5	2	2	3	2		
23PSPC10	2	2	3	1		
1 – Slight, 2 – Moderate, 3 – Substantial						

23PSEE01	MINI PROJECT			SEMESTER II				
PREREQUISIT	'ES	CATEGORY	L	Τ	Р	C		
	NIL	EEC	0	0	4	2		
~ 		1		1		4		

CourseTo develop student's ability to transmit technical information clearly and test theObjectivessame through Seminar presentation based on their Mini Project.

Students can choose problems in the field of Power System Engineering as mini projects. It can be related to providing solutions to an engineering problem, verification and analysis of experimental, simulation data available, conducting experiments on various domains in the field of PSE, material characterization, familiarizing the software tools for the solution of an engineering problem etc.

A project work note should be maintained by the students for proper documentation of the details of work done, challenges faced, technique chosen and solutions evolved etc. and present the same to the committee members during reviews and to answer the questions put forth by the committee The students can utilize the laboratory resources before or after their contact hours as per the prescribed module.

The End Semester Examination for Mini Project Work shall consist of evaluation of the Project Report submitted by the student and viva-voce examination by an external examiner and internal examiner.

Contact Periods:

Lecture: 0 Periods

Tutorial: 0 Periods

Practical: 60 Periods

Total: 60 Periods.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Acquire practical knowledge within the chosen area of technology for	K2
	project development	
CO2	Plan, Identify and implement the hardware/ software project with a	K3
	comprehensive and Systematic approach	
CO3	Develop effective communication skills for presentation of project	K6
CO4	Develop skills to write technical reports, present and defend the work	K6
CO5	Assess on their own, reflect on their learning and take appropriate action	K5
	to improve it	

Course Articulation Matrix

Course An incluation matrix							
COs/POs	PO1	PO2	PO3	PO4			
CO1	2	1	2	1			
CO2	2	1	2	2			
CO3	2	3	1	1			
CO4	2	3	1	1			
CO5	2	3	1	2			
23PSEE01	2	3	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial							

23PSEE02	INTERNSHIP/INDUSTRIAL TRAIN	NING	SEMES		TER III	
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	EEC	-	-	-	_
Course	To get the exposure for the application of theo	retical concepts s	studied	l, ide	entify	the
Objectives	domain specific demands with respect to socie	etal needs and re	novat	e the	e exis	sting
	domain specific technology by the cutting-edge te	chnology.				
Common guide	elines are:					
1. Duratio	n: Industrial training is typically conducted during	the summer brea	ık or s	emes	ster b	reak
and ma	y last 4 weeks for postgraduate students.					
2. Approv	al: The industrial training placement must be appro	oved by the institu	tion to	o ens	ure th	at it
meets t	he academic requirements of the program.					
3. Report:	Students are required to submit a report on their in	dustrial training o	experie	ence,	detai	ling
their ac	tivities and learning outcomes.					
4. Assessi	nent: Students may be assessed based on their perf	ormance during th	ne indu	ıstria	al trai	ning
period,	including attendance, participation, and completion	of assigned tasks	5.			
5. Safety:	The institution and the industrial training compa	ny must ensure t	hat th	e stu	dents	are
provide	d with a safe working environment and appropriate	training on healt	h and	safet	y.	
6. Code o	of conduct: Students must adhere to the code of	of conduct of the	e indu	stria	l trai	ning
compar	ny, as well as the rules and regulations of the institu	tion.				
7. Certific	ation: Students may be awarded a certificate of co	mpletion after su	ccessf	ul co	omple	tion
of their	industrial training program from the Industry.	11				
		11				
	CONTES	1	I	יח	•	
COURSE OUT	COMES:			- Bl Tav	00m ² s	-
Upon completio	n of the course, the students will be able to:	13		тал Ма	annad	⊥y I

Upon completion of the course, the students will be able to:		Mapped
CO1	Apply the theoretical concepts studied	K3
CO2	Analyze the theoretical concepts for the existing methodologies followed by the industrial sector	K4
CO3	Evaluate the theoretical concepts for the existing methodologies followed by the industrial sector	K5
CO4	Sketch the state of art to replace existing technologies.	K2
CO5	Design the cutting-edge technology as per the societal needs	K6

Course Articulation Matrix					
COs/POs	PO1	PO2	PO3	PO4	
CO1	3	-	2	2	
CO2	3	-	2	2	
CO3	3	-	2	2	
CO4	3	2	2	2	
CO5	3	2	2	2	
23PSEE02	3	2	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial					

** Duration of four weeks

23PSEE03	23PSEE03 PROJECT-I		SEMESTER III			
PREREQUI	QUISITES CATEGORY L T P				C	
	NIL EEC		0 0	24	12	
Course	To identify the societal problem related to Power S	ystems Engineerin	g, unde	rtake		
Objectives detailed technical work in the chosen area through simulations for th						
Society and hence analyze, evaluate the technical work done.						
Guidelines fo	a project in Power Systems Engineering:					
1. Choos	e a relevant topic: project should be related to a	real-world problem	n or c	halleng	ge in	
Power	Power Systems Engineering					
2. Define	your objectives: Clearly define the objectives of the	project.				
3. Condu	ct a literature review: Research existing literature re	lated to the chose	n topio	c. This	will	
help t) identify current trends, technologies, and best prac	tices, as well as g	aps in	knowl	edge	
that th	e project can fill.		T		0	
4. Devel	op a methodology: Define the methodology for the pr	oiect, including th	e data s	sources	the	
analys	is methods, and the simulation software (if applic	able). Make sure	the m	ethodo	logy	
aligns	with the objectives.				8,	
5. Collec	t and analyze data: Collect relevant data and analyze	it using chosen m	ethodo	logy. I	f the	
work	nvolves conducting simulations, make sure to validate	the results agains	t real-v	vorld d	lata.	
6. Interp	et and present results: Interpret the results and draw	conclusions base	d on t	ne anal	vsis.	
Preser	t the findings in a clear and concise manner using d	ata visualizations	and gra	phs to	heln	
illustr	illustrate the results					
7 Discu	is implications and future directions. Discuss the in	plications of the	finding	s and	how	
they of	an be applied to address the original problem or ch	allenge Identify i	otenti	al areas	s for	
future	research and development			ii uiou		
8 Concl	ide and summarize: Conclude the project by summar	rizing the findings	and e	mphasi	zino	
their i	mortance. Make sure to highlight how the project of	can contribute to t	he fiel	d of Po	ower	
Syster	Systems Engineering					
9 Consi	ler ethics: Make sure to consider any ethical imr	lications of the	project	inclu	ding	
potent	ial social environmental and economic impacts		project	, 111010	ung	
By following	these guidelines student can develop a well-design	ed project that ad	dresses	a rele	vant	
problem in Po	wer Systems Engineering and contributes to the advar	ncement of the field	d	, a reie	vunt	
Contact Peri	ade					
Lecture 0 P	riods Tutorial: 0 Periods Practical: 360 Per	iods Total: 360	Period	s		
		1045 10441.000	1 01100			
COURSE O	JTCOMES:		I	Bloom'	S	
			Та	axonon	ny	
Upon comple	ion of the course, the students will be able to:		N	Aappe	d	
CO1 Iden	ify the engineering problem based on Societal/I	ndustrial demand		K1		
thro	igh a detailed Literature Survey.			17.7		
CO2 Desi	gn and system using software tools.	implomentation		K5 V6		
CO3 EVal	hate the designed system infough simulation/hardward	v perimentation		K0 K6		
CO4 Dev	sop expertise in the interpretation of simulation and e	Aperimentation.		NU		

Articulate the technical presentation and documentation of the work

CO4

K3

Course Articulation Matrix					
COs/POs	PO1	PO2	PO3	PO4	
CO1	3	-	3	3	
CO2	3	-	3	2	
CO3	3	-	3	2	
CO4	3	-	3	2	
CO5	-	3	3	2	
23PSEE03	3	3	3	2	
1 – Slight, 2 – Moderate, 3 – Substantial					

23PSEE04	23PSEE04 PROJECT-II			SEMESTER IV		
PREREQUISITES CATEGORY L			LI	P	С	
	NIL	EEC	0 0	48	24	
Course	To identify the societal problem related to Pow	er Systems Eng	ineerin	g, unde	rtake	
Objectives	detailed technical work in the chosen area thro	ugh simulations	for th	e benef	fit of	
Society and hence analyze, evaluate the technical work done the					lware	
	implementation (if applicable)			-		
Guidelines for	a project in Power Systems Engineering:					
1. Choose	a relevant topic: project should be related to a	real-world prob	lem or	challen	ge in	
Power	Systems Engineering.	-			-	
2. Define	your objectives: Clearly define the objectives of the	project.				
3. Condu	t a literature review: Research existing literature re	elated to the cho	sen top	ic. This	s will	
help to	identify current trends, technologies, and best prac	tices, as well as	gaps i	n knowl	ledge	
that the	project can fill.	100	• •		•	
4. Develo	p a methodology: Define the methodology for the	project, includin	g the d	ata soui	rces,	
the ana	lysis methods, and the simulation software (if appli	icable). Make su	re the	nethodo	ology	
aligns	vith the objectives.					
5. Collect	and analyze data: Collect relevant data and analyze	it using chosen	method	ology. I	If the	
work in	volves conducting simulations, make sure to validate	e the results agai	nst real	-world o	data.	
6. Interpr	et and present results: Interpret the results and draw	v conclusions ba	sed on	the ana	lysis.	
Present	the findings in a clear and concise manner, using d	ata visualization	s and g	aphs to	help	
illustra	e the results.	1		-	-	
7. Discus	implications and future directions: Discuss the in	nplications of th	e findi	ngs and	how	
they ca	n be applied to address the original problem or ch	allenge. Identify	poten	ial area	us for	
future	esearch and development.		1			
8. Conclu	de and summarize: Conclude the project by summa	rizing the findin	gs and	emphas	izing	
their ir	portance. Make sure to highlight how the project	can contribute to	the fi	eld of P	'ower	
System	s Engineering.					
9. Consid	9. Consider ethics: Make sure to consider any ethical implications of the project, including					
potenti	al social, environmental, and economic impacts.		1 5		U	
By following	By following these guidelines, student can develop a well-designed project that addresses a relevant					
problem in Po	ver Systems Engineering and contributes to the adva	ncement of the f	ield.			
Contact Peri	ods:					
Lecture: 0 Pe	riods Tutorial: 0 Periods Practical: 720 Pe	riods Total:	720 Pei	riods.		
COURSE OF	TCOMES.			Dlagre	20	
			7	חוטטום יממסצפ]	s mv	
Upon complet	on of the course, the students will be able to:				ed and	
CO1 Ident	fy the engineering problem based on Societal/I	ndustrial demar	ıd	K1		
throu	gh a detailed Literature Survey.					
CO2 Desig	n and system using software tools.			K5		
CO3 Evalu	ate the designed system through simulation/hardwar	e implementation	1	K6		
CO4 Deve	op expertise in the interpretation of simulation and e	experimentation.		<u>K6</u>		
CO4 Artic	ilate the technical presentation and documentation of	the work		K3		
Course Articulation Matrix						
---	-----	-----	-----	-----	--	--
COs/POs	PO1	PO2	PO3	PO4		
CO1	3	-	3	3		
CO2	3	-	3	2		
CO3	3	-	3	2		
CO4	3	-	3	2		
CO5	-	3	3	2		
23PSEE04	3	3	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial						

	LINFAR AND NON-LINFAR CONTROL	SYSTEM					
23PSPE01	23PSPE01 (Common to PSE & PED) SEN				MESTER II		
PREREQUISI	ΓΕ	CATEGORY	L	Т	Р	С	
B	ASIC CONTROL, LINEAR ALGEBRA	PE	3	0	0	3	
Course Objectives	To understand the fundamentals of physical systems in t	erms of its linear a	nd no	nlinea	ır mo	dels	
UNIT – I	STATE VARIABLE REPRESENTATION AND STA	TE EQUATION	S	9	Per	riods	
Concept of stat	e- State space modeling- State equations for dynamic sy	stems- Time inva	rianc	e and	linea	arity-	
Non uniqueness	s of state model- Existence and uniqueness of solution	s to continuous t	ime s	state e	equat	ions-	
Solution of line	ar and non-linear time varying state equations- State tra	ansition matrix-Tr	ansfe	r func	tion	from	
state model- Eva	aluation of matrix exponential- Role of Eigen value and E	igen vector.					
UNIT – II	STABILITY ANALYSIS AND STATE FEEDBACK LINEAR SYSTEMS	CONTROL OF		9	Peri	ods	
Controllability	and observability- Kalman Rank conditions- Detection	ctability and stal	bilizal	oility-	Ka	lman	
decomposition-	State feedback controller design using pole placement	- observer design	using	g Kalı	man	filter	
algorithm- LQR	/ LQG controller design.						
UNIT – III	NONLINEAR SYSTEMS			9	Per	iods	
Characteristics of piecewise const periodic solution	of nonlinear systems - Classification of equilibrium points ant inputs using phase plane analysis , perturbation tec as , singular perturbation model, slow and fast manifolds.	s- limit cycles- ana chniques , periodi	lysis c ort	of sys vits, st	tems abili	with ty of	
UNIT – IV	LYAPUNOV STABILITY AND DESIGN	6		9	Per	riods	
Stability of Nor	linear Systems - Lyapunov stability, local stability, local	linearization and	stabili	ity in	the s	mall,	
Direct method of	f Lyapunov, generation of Lyapunov function for linear a	nd nonlinear syste	ms, v	ariabl	e gra	dient	
method, Centre	manifold theorem, region of attraction, Invariance theorem	ns - Input output s	tabilit	y, L s	tabili	ty, L	
stability of sta	te models, L2 stability, Lyapunov based design, Lya	punov redesign,	Robu	st stal	biliza	tion,	
Nonlinear Dam	ping, backstepping, sliding mode control, adaptive control	rol, Model control	ller, r	nodel	refei	ence	
adaptive control		1					
UNIT – V	HARMONIC LINEARIZATION AND DESCRIBING METHOD	G FUNCTION		9	Peri	ods	
Harmonic linearization, filter hypothesis, describing function of standard nonlinearities, study of limit cycles (amplitude and frequency) using SIDF, Dual Input Describing function, study of sub- harmonic oscillations, correction on describing functions.							
Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							
REFERENCE	REFERENCES						
1 Ogata, K., "	Modern control Engineering", Prentice Hall of India, 20)10.	100	0			
2 C.I. Chen,	Linear Systems Theory and Design , Oxford University	rress, 3rd Edition	, 199	9.			

3 M. Vidyasagar, "Nonlinear Systems Analysis", 2nd edition, Prentice Hall, Englewood Cliffs, New Jersey 07632.

4 Hassan K. Khalil, "Nonlinear Systems", Pearson Educational International Inc. Upper Saddle River, 3rd Edition.

5 S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and chaos", Springer, 2010, 2nd Edition.

6 H. Nijmeijer & A.J. Vander Schaft "Nonlinear Dynamic Control Systems", Springer, 2016, 1st Edition.

COUR	SE OUTCOMES:	Bloom's Taxonomy Monned
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Articulate the physical systems in terms of linear and non linear models and solve linear and non linear state equations.	K2
CO2	Analyze the stability of the linear system and design the state feedback observers and controllers	K4
CO3	Explain the behavioural properties of nonlinear controlled systems	K2
CO4	Analyze stability analysis of nonlinear systems, feedback linearization control method, Lyapunov design and sliding mode control method	K4
CO5	Formulate and solve basic robust and nonlinear controller design problems	К3

COs/POs	PO1	PO2	PO3	PO4			
CO1	2	-	1	2			
CO2	3	mo	2	2			
CO3	2	Salar	1	1			
CO4	3	Stranger V	2	2			
CO5	3	CONTROL OF	2	2			
23PSPE01	3		2	2			
1 – Slight, 2 – Moderate, 3 – Substantial							
		- 不 //	8				

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	-	20%	40%	40%	-	-	100%	
CAT2	-	20%	40%	40%	-	-	100%	
Individual Assessment1/ Case study1/ Seminar 1/Project1	-		40%	40%	- -	20%	100%	
Individual Assessment2/ Case study2/ Seminar 2 /Project2	-	-	40%	40%	-	20%	100%	
ESE	-	20%	40%	40%	-	-	100%	

23PSPE02	E02 POWER SYSTEM TRANSIENTS AND SURGE			SEMESTER II				
PREREOUIS	ITES	CATEGORY	T.	Т	р	С		
TREREQUIS	NIL	PE	3	0	0	3		
Course	To familiarize students about the power system t	ransients due to inte	rnal	and o	exter	nal		
Objectives	factors and surge protection methods							
UNIT – I	INTRODUCTION				9 Pe	riods		
Review of var	ious types of power system transients - Lightning	g surges, Switching	surg	ges :	Indu	ctive		
energy transier	nt and capacitive energy transient – Effect of trans	ients on power syste	ems -	Rel	evan	ce of		
the study and o	computation of power system transients – Surge v	oltage and surge cur	rrent	spec	ificat	tions		
(As per BIS).								
UNIT – II	LIGHTNING SURGES				9 Pe	riods		
Lightning – C	Overview- Lightning surges - Electrification of t	thunderclouds – Sin	mpsc	on's	theor	y of		
thunderclouds	- Direct and Indirect strokes - Stroke to conduct	or, midspan and tow	ver –	Con	venti	ional		
lightning prote	ction technique: Collection Volume method.	100						
UNIT – III	SWITCHING SURGES				9 Pe	riods		
Closing and re	closing of lines - Load rejection - Fault initiation	n – Fault clearing –	Sho	rt lin	e fau	lts –		
Ferro Resonar	nce - Isolator switching surges - Temporary ov	ervoltages – Surge	s on	an i	nteg	rated		
system – Swite	ching – Harmonics – Protection scheme.			<u> </u>				
UNIT – IV	TRANSIENT CALCULATION	100			9 Pe	riods		
Travelling way	ve concepts – Telegraphic Equation, Wave Propag	gation, Reflections -	– Be	wley	's La	ittice		
diagrams for v	various cases – Analysis in time and frequency c	10main – Eigen val	ue aj	ppro	ach –	- Z-		
UNIT – V	INSULATION CO-ORDINATION				9 Pe	riods		
Principles of in	nsulation co-ordination – Recent advancements in	insulation co-ordina	ation	- BI	L. De	esign		
of EHV system	n – Insulation co-ordination as applied to transform	ner, substations – Ex	kamp	oles.	_,	8		
Contact Perio	ds:	123						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Per	riods Total: 45 Pe	eriod	S				
REFERENCES :								
1 Indulkar (1 Indulkar C.S., and Kothari D.P., "Power System Transients"- A Statistical approach. Prentice							
Hall 2004.								
2 Allan Greenwood, "Electrical Transients in power Systems", Willey Interscience, Newyork,								
Second Edi	tion, 2010.							
3 Klaus Rage	aller. "Surges in High Voltage Networks" , Plenur	n Press, NewYork, I	1980.					
4 Bewely L.V	/., "Travelling waves and Transmission Systems"	', Dover Publication	ıs, No	ew Y	ork, 1	1963.		
5 SubirRay,	<i>"Electrical Power Systems – Concepts, Theory 6</i>	and Practice", Pre	ntice	Hal	l of l	ndia,		
6 Chabrabar	2007. thy A Soni MI Gunta PV and Rhatnagar I	IS "A Tort Rook	011	Pow	or C	stom		

6 Chakrabarthy A, Soni M.L, Gupta P.V. and Bhatnagar U.S. "A Text Book on Power System Engineering", DhanpatRai & Sons, NewDelhi, 2008.

COUR	Bloom's Taxonomy	
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Understand the various types of power system transients	K2
CO2	Understand the concept of transients and surges occur in power system	K2
CO3	Evaluate surge and transient specification through different techniques	K5
CO4	Analyze the impact of transient and surges on power system	K4
CO5	Perform insulation co-ordination as applied to power system components	K3

Course Articulation Matrix							
COs/POs	PO1	PO2	PO3	PO4			
CO1	3	-	3	1			
CO2	3		3	1			
CO3	3	2	3	1			
CO4	2	ANTING STREAMS	3	1			
CO5	3	TRARE	3	1			
23PSPE02	3		3	1			
1 – Slight, 2 – Moderate, 3 – Substantial							
	1010	5					

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	-	40%	30%	10%	20%	-	100%		
CAT2	-	20%	30%	20%	30%	-	100%		
Individual Assessment1/ Case study1/ Seminar 1/Project1	-	20%	50%	20%	10%	-	100%		
Individual Assessment2/ Case study2/ Seminar 2 /Project2	-	20%	30%	20%	30%	-	100%		
ESE	-	20%	30%	20%	30%	-	100%		

23PSPE03	HYBRID POWER SYSTEM ECONOMICS			SEMESTER II		
PREREQUIS	ITES	CATEGORY	L	Т	P	С
	NIL	PE	3	0	0	3
Course	To give an understanding of the economic prin	nciples underlying	the	oper	atior	and
Objectives	planning of the electricity systems including	concepts of electr	ricity	/ ma	rkets	and
	competition in electricity generation and supply,	and the opening of	of th	e tra	nsmi	ssion
	and distribution systems to third party access					
UNIT – I	POWER MARKET				9 Pe	riods
Market Structu	are and operation:- Objective of market operation	n, Electricity mark	tet n	node	ls, Po	ower
market types,	Market power, Key components in market operation	ation. Demand and	l suj	oply,	Den	nand
analysis – The	ory, elasticity of demand, Demand forecasting -T	ypes, techniques.	Cost	s: Sh	ort r	un –
Long run - Re	elationship between short run and long run cost	s, perfect competi	tion	- M	lonop	oly-
Monopolistic a	nd Oligopolistic, Determination of market price, Pr	rice discrimination				
UNIT – II	ELECTRICITY PRICE	20			9 Pe	riods
Price volatility	, ancillary services in electricity power market,	automatic generati	on c	ontro	ol an	d its
pricing, Gener	ation assets valuation and risk analysisIntroc	luction, VAR for	Gen	erati	on A	Asset
Valuation, Gen	eration Capacity Valuation.					
UNIT – III	TRANSMISSION CONGESTION MANAGEM	MENT AND PRIC	ING	Ţ	9 Pe	riods
Transmission	cost allocation methods, LMP, FTR and Conges	stion Management	. Ro	le of	f FA	CTS
devices in co	mpetitive power market, Available Transfer Ca	apability, Distribut	ed (Gene	ratio	n in
restructured ma	arkets.	11				
UNIT – IV	REACTIVE POWER MARKET MANAGEM	ENT			9 Pe	riods
Reactive powe	er requirements under steady state voltage stab	ility and dynamic	vol	tage	stab	ility,
reactive power	requirements to cover transient voltage stability	y, System losses a	and 1	loss	reduc	ction
methods, Powe	er tariffs and Market Forces shaping of reactive p	ower, reactive pov	ver r	equi	reme	nt of
the utilities.	886 (No.	2938				
UNIT – V	GENERATION SYSTEM CHARACTER	ISTICS, COST	8	è	9 Pe	riods
	RELIABILITY ANALYSIS	6				
Characteristic	operation of power plants - Choice of power plants	- Hydro, Thermal	and	Nucl	ear -	Size
of plant – Inpu	nt / Output curves. Economic Planning - Generation	on system - Cost a	naly	sis -	Cap	acity
cost -Production cost - Plant cost - Timing of unit additions - System cost analysis. Load forecasting						
and system reliability: Load forecasting - Generation system reliability - Co-ordination methods -						
Economic operation of power systems - Simple problems.						
Contact Periods:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 Pe	riod	S		
REFERENCES						

1 KirchmayerL.K., "Economic Operation of Power System", John Wiley, New York, vol.II, 1958.

2 RR Barathwal- Professor IIT Kanpur, "Industrial Economics-an Introductory text book"

3 S.K.Jain, "Applied economics for Engineers and Managers", Vikas Publishing House.

4 *Turner, Wayne. C.* "*Energy Management* ", *Hand Book.*, 2nd Edition.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Elaborate the principles of power system economics	K5
CO2	Know market/managerial economic aspects	K1
CO3	Understand the social efficiency concepts.	K2
CO4	Analyze power systems with application of economics considerations.	K4
CO5	Assess electric power system for socio-economic standpoint.	K6

COs/POs	PO1	PO2	PO3	PO4				
CO1	2	-	3	1				
CO2	3	-	3	1				
CO3	2		3	1				
CO4	2	2	3	1				
CO5	3	ANI US STORAT	3	2				
23PSPE03	2	TOT REV	3	1				
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	30%	20%	20%	10%	20%	-	100%			
CAT2	20%	20%	20%	20%	30%	-	100%			
Individual Assessment1/ Case study1/ Seminar 1/Project1	30%	20%		20%	10%	20%	100%			
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	20%		20%	20%	20%	100%			
ESE	30%	20%	30%	10%	10%	-	100%			

23PS	PE04	04 POWER SYSTEM PLANNING AND RELIABILITY					R II	
PRER	EQUIS	ITES	CATEGORY	L	Т	Р	С	
		NIL	PE	3	0	0	3	
Cou	Course To teach the concepts of load forecasting, short term and long term planning and							
Objec	Objectives methodology of reactive power planning							
UNIT -	– I	LOAD FORECASTING				9 Pe	riods	
Objecti	ives of f	orecasting - Load growth patterns and their impo	rtance in planning -	– Loa	d fo	recas	sting	
Based	on disco	ounted multiple regression technique-Weather sen	sitive load forecast	ing-D)eter	mina	ation	
of annu	al forec	asting-Use of AI in load forecasting.			-			
UNIT -	– II	GENERATION SYSTEM RELIABILITY AN	ALYSIS			9 Pe	riods	
Probab	ilistic g	eneration and load models- Determination of LOI	LP and expected va	lue of	f de	manc	1 not	
served	-Detern	nination of reliability of isolated and interconnecte	d generation system	ns.	-			
UNIT -	– III	TRANSMISSION SYSTEM RELIABILITY A	NALYSIS			9 Pe	riods	
Determ	ninistic c	contingency analysis- Probabilistic load flow-Fuzz	y load flow probab	ilistic	trar	ismis	ssion	
system	reliabi	ity analysis-Determination of reliability indices	like LOLP and	expec	ted	valu	e of	
demand	d not sei	ved.	9					
UNIT -	– IV	EXPANSION PLANNING				9 Pe	riods	
Basic c	concepts	on expansion planning- Procedure followed for in	tegrate transmissio	n syst	em	planr	ning,	
current	practice	e in India - Capacitor placement problem in transn	nission system and	radial	dist	ribut	tions	
system.	•				-			
UNIT -	$-\mathbf{V}$	DISTRIBUTION SYSTEM PLANNING OVE	RVIEW			9 Pe	riods	
Introdu	iction, s	ub transmission lines and distribution substation	ns-Design of prima	ary ar	nd s	econ	dary	
systems	s- Distri	bution system protection and coordination of prote	ective devices.					
Contac Lectur	ct Perio e· 45 Pa	ds: priods Tutorial: 0 Periods Practical: 0 Peri	iods – Total: 45 Pe	riods				
Lectur				11045				
REFER	ENCES							
1 Roy	, Billinte	on and Allan Ronald, "Power System Reliability"	Gardon & Breach,	Newy	ork,	197	0.	
2 Pro	ceeding	of work shop on "Energy systems planning & ma	anufacturing", CI.					
3 Sull	livan R.I	L., "Power System Planning", Mc Graw Hill Inc.,	US 1997.					
4 Tur	anGone	n, "Electric Power Distribution System Engine	eering", Second E	dition	, C	RC r	oress,	
200)7.		C			•		
II								
COURSE OUTCOMES: Bloom's								
	Taxonomy							
Upon completion of the course, the students will be able to: Mapped						d		
CO1	CO1Estimate the trend of power consumption by end users.K1							
CO2	Perform	n efficient short term planning of power systems				K5		
CO3	Carry	out long term planning of power systems.				K3		
CO4	Apply suitable control techniques to meet the constraints of reactive power K4							

K2

CO5

consumption.

Know expansion and distribution system planning.

Course Articulation Matrix								
COs/POs	PO1	PO2	PO3	PO4				
CO1	3	-	2	2				
CO2	3	-	2	1				
CO3	2	-	3	2				
CO4	3	-	3	1				
CO5	3	-	1	2				
23PSPE04	3	-	2	2				
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	T PATTERN –	THEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*			(TROOM)				
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	10%	20%	30%	-	100%
Individual Assessment1 / Case study1/ Seminar 1/Project1	30%	30%	20%	10%	10%	-	100%
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20%	20%	20%	20%	20%	-	100%
ESE	30%	30%	20%	10%	10%	-	100%
		12 Creek	C				

23PSPE05	POWER SYSTEM SECURITY				TER	II			
PREREQUISITES CATEGORY					P	С			
	NIL	3	0	0	3				
Course	To enhance the security of the power system the	rough the study of	f vario	ous as	ssessi	nent			
Objectives techniques.									
UNIT – I	BASICS OF POWER SYSTEM SECURITY			9) Per	iods			
Basic concepts affecting power monitoring, see	Basic concepts: Power system stability – Security-Observability and reliability, deregulation, factors affecting power system security, decomposition and multilevel approach, state estimation, system monitoring, security assessment, static and dynamic – Online and offline, security enhancement.								
UNIT – II	POWER SYSTEM STATE ESTIMATION			9	9 Per	iods			
Power system identification of power system s	state estimation: DC and AC network, orthogon of bad measurements, network observability and state estimation, introduction to supervisory contro	al decomposition pseudo measuren bl and data acquisit	algori nents, tion.	thm, appli	detec catio	tion n of			
UNIT – III	SECURITY ASSESSMENT	V-9)		9	9 Per	iods			
selection, perf optimization programming (Sormance indices, security constrained optimisa techniques, preventive, emergency and rest NLP) and linear programming (LP) methods.	ation, SCOPF, ba	isis of thoug	f evo gh n	olutio lutio	nary near			
UNIT – IV	SECURITY IN DEREGULATED ENVIRON	MENT		9	9 Per	iods			
Need and cond congestion man	litions for deregulation, electricity sector structure nagement methods, available transfer capability (A	e model, power w ATC), system secu	heelin rity in	g trar dereg	nsacti gulati	ons, on.			
UNIT – V	SECURITY ENHANCEMENT AND RECEN	T TECHNIQUES	5	9	9 Per	iods			
Correcting the generator dispatch by sensitivity methods, compensated factors, security constrained optimization, preventive, emergency and restorative control through LP Method. Voltage Security Assessment – Transient Security Assessment – Methods – Comparison.									
Contact Perio	ds:								
Lecture: 45 Pe	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								
REFERENCES									

 Allen J. Wood, Bruce F. Wollenberg, Gerald B. Sheblé., "Power generation, Operation and Control", Third Edition, John Wiley and Sons, 2013.
P. Venkatesh, B.V. Manikandan, S. Charles Raja, A. Srinivasan, "Electrical Power Systems: Analysis, Security and Deregulation", Second Edition, PHI Learning Pvt. Ltd., 2017.
Wood, A.J. and Woolenberg, "Power generation operation for security", John Wiley and sons,

1989.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Explore the basics of power system security	K1
CO2	Develop the mathematical models for power system state estimation.	K3
CO3	Analyze the security assessment and enhancement of power system through	K4
	appropriate technique	
CO4	Evaluate the different control techniques for secured operation of the power	K5
	system	
CO5	Comprehend the recent techniques in power system security	K2

COs/POs	PO1	PO2	PO3	PO4
CO1	1	-	2	2
CO2	3	m	3	2
CO3	3	ALC: NAME OF	3	3
CO4	3	BILLING TO A	3	3
CO5	2	TON TON	2	1
23PSPE05	2		3	2
1 - Slight, $2 - $ Moderate, $3 - $ S	Substantial	- Cal /	1	
		- 泉 //		

ASSESSMEN	<u>T PATTERN –</u>	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30%	30%	20%	20%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1 / Case study1/ Seminar 1/Project1	30%	30%	20%	20%	-	-	100%
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20%	20%	20%	20%	20%	-	100%
ESE	20%	25%	10%	25%	20%	-	100%

23PSPE06	PE06 SMART GRID TECHNOLOGY AND APPLICATIONS SEMES							
DDEDEOLUG	(Common to PSE & PED)	CATECODY			n	C		
PREREQUIS	IIES NIK			1	P	C 2		
	NIL	PE	3	0	0	3		
Course	To comprehend conventional and modern tec	chniques for the	operati	onc	of po	ower		
Objectives	system, elucidate real & reactive power contr	ol techniques to	r the m	loder	n po	ower		
	for the implementation of smart power grid	technologies and	standar	us æ	pon	icies		
UNIT – I	INTRODUCTION			g) Per	iods		
Basic elements	of Electrical Power Systems. Overview of Load Flow	v Analysis, Econor	mic Load	1 Dis	natch	and		
Unit Commitme	nt problems, Desirable Traits of a Modern Grid, Princi	ipal Characteristics	of the S	mart	Grid.	Key		
Technology Are	as, Impact of Smart grid on reliability and carbon emis	ssions.			,			
UNIT – II	SENSING AND MEASUREMENT TECHNOLOG	GIES		9	Per	iods		
Synchro-phasor	Technology – Phasor Measurement Unit, Smart r	metering and dem	and side	e inte	grati	on -		
Communication	infrastructure and protocol for smart metering - Dat	ta Concentrator, M	leter Dat	a Ma	nage	ment		
System. Deman	d side Integration - Services, Implementation and Hard	dware Support of E	OSI, Dist	ributi	on Fe	eder		
Reconfiguration	analysis.	121						
UNIT – III	CONTROL AND AUTOMATION TECHNIQUES	S		9	Per	iods		
Distribution au	tomation equipment - Substation automation equ	uipments: current	transfor	mer,	pote	ntial		
transformer, Int	elligent Electronic Devices, Bay controller, Remote	Terminal Unit. Di	stributio	n ma	nage	ment		
systems – SCAI	DA: modeling and analysis tools, applications. Renewa	able sources (Wind	, Solar) -	– Inte	gratio	on to		
Grid, Controllin	g Techniques, Challenges and Opportunities, Micro gri	ids.						
UNIT – IV	POWER ELECTRONICS AND ENERGY STORA	AGE SYSTEMS		9	Per	iods		
Power Electroni	cs in smart grid - Shunt compensation, Series Compen-	nsation, Power Ele	ctronics	for b	ulk p	ower		
flow – FACTS	, HVDC, Energy Storage Technologies - Batteries,	Flow Battery, Fu	iel Cell	and	Hydr	ogen		
Electrolyser, Fly	wheel, Superconducting Magnetic Energy Storage Sys	stem, Supercapacito	or.					
UNIT – V	COMMUNICATION & INFORMATION TECHN	NOLOGY, ECON	OMICS	9	Per	iods		
	& ENERGY POLICIES	7.63	•			1		
Data Communi	cation, Dedicated and shared communication chann	hels, Layered arch	Itecture	and j	proto	cols,		
Communication	technology and information security for the sn	nart grid. Smart	Gria –		astru	cture		
Development pl	anning, Renability Evaluation, Economics, Power/Ener	rgy Trading, Energ	y Policie	s, See	curity	mort		
homes	Privacy – Cyber security challenges, Load/Demand Profile uncertainties, Privacy Challenges in DSI and Smart							
Contact Period	nomes.							
Culliaci i criuus. L'ecture: 45 Periods Tutorial: A Periods Practical: A Periods Total: 45 Periods								
		100			~			
REFERENCES								
1 Janaka Eka	nayake, Nick Jenkins, Kithsiri Liyanage, " Smart Gri	id Technologies an	ıd Appli	catio	ns ",	John		
2 Lars T Res	ners Lu., 2012. coer Krzysztof Iniewski "Smart Annlications Com	munications and	Security	" L	hn I	Viley,		
Publishers Ltd., 2012.								

3 Bernd M. Buchholz, Zbigniew Styczynski, "Smart Grids – Fundamentals and Technologies in Electricity Networks", Springer Berlin Heidelberg, 2014

4 Caitlin G. Elsworth, "**The Smart Grid and Electric Power Transmission**", Nova Science Publishers, 2010.

5 Shady S. Refaat, Omar Ellabban, Sertac Bayhan, Haitham Abu-Rub, Frede Blaabjerg, Miroslav M. Begovic, "Smart Grid and Enabling Technologies", Wiley, 2021.

6 Bimal K. Bose, "Power Electronics in Renewable Energy Systems and Smart Grid Technology and Applications", Wiley, 2019

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Recognize various advanced technologies for improving the performance of the	K2
	power system operation.	
CO2	Compare the control and automation techniques.	K2
CO3	Develop modern techniques for the power grid operation.	K6
CO4	Realize advanced techniques with respect to standards in power system.	K3
CO5	Correlate the electrical power storage technologies for improving the generation	K4
	and stability	

COs/POs	PO1	PO2	PO3	PO4			
CO1	3	-	3	2			
CO2	2	-	2	2			
CO3	3	mo	3	3			
CO4	2	Stansular	2	2			
CO5	3	Million No	3	1			
23PSPE06	3	Care Con	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

the second

11

Igi L

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	30%	30%	20%	20%	-	-	100%			
CAT2	20%	20%	20%	20%	20%	-	100%			
Individual Assessment1/ Case study1/ Seminar 1/Project1	30%	30%	20%	20%	-	-	100%			
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	20%	20%	20%	20%	-	100%			
ESE	20%	20%	20%	20%	20%	-	100%			

	POWER ELECTRONICS IN WIND AND SOLAR					
23PSPE07	POWER CONVERSION	SE	EME	STE	R II	
	(Common to PSE & PED)					
PREREQUIS	ITES CATEGORY L T P					
AN	ALYSIS OF POWER CONVERTERS	PE	3	0	0	3
Course	To enrich the knowledge of power electronics	to design powe	er co	onvei	ters	for
Objectives	improving the performance of wind and solar energy	y systems.				
UNIT – I	ENERGY SOURCES AND GRID CODES			7	Peri	ods
Trends in energ	y consumption - World energy scenario - Energy sourc	es and their availa	bility	- Co	nven	tional
and renewable s	sources - Need to develop new energy technologies and	Hybrid Systems –	Grid	requi	reme	nts of
solar PV and wi	nd turbine (International standards)- Indian grid code for	wind energy				
UNIT – II	SOLAR PHOTOVOLTAIC ENERGY CONVE	RSION		9	Peri	ods
Solar radiation	and measurement - Solar atlas of India - Solar cells	and their characte	eristic	s -In	fluen	ce of
insulation and t	emperature - PV arrays - Electrical storage with batteri	es – Converters fo	r Sol	ar P	V sys	tems-
Maximum powe	er point tracking techniques- Analysis of PhotoVoltaic Sy	stems.				
UNIT – III	WIND ENERGY CONVERSION SYSTEM	2)		10	Peri	ods
Wind survey in	India - Basic Principle of wind Energy conversion -Pow	er in the wind - Co	ompo	nents	of W	/ind -
Energy Convers	sion System- Classification of WECS - Performance of I	Induction Generato	rs (S	CIG a	and E	OFIG)
and PMSGs for	WECS- Converters for WECS-Maximum Power point tra	acking algorithms				
UNIT – IV	STAND ALONE SYSTEMS	1		9	Peri	ods
Self- Excited In	nduction Generator for isolated Power Generators - Th	eory of self -excit	tation	1 - C	apaci	itance
requirements –	Standalone solar PV system with energy storage- Hy	brid system (Wind	d-Die	sel-S	olar)-	-Load
sharing and sizi	ng of system components			10	Deer]
$\mathbf{UNII} - \mathbf{V}$	CONVERTERS FOR WIND AND SOLAR PO		n d T		Peri	oas
DC -DC Colly	paration with grid supply Grid connected inverters for	me commutated a	nu r			l sido
converter topolo	peration with grid supply - Ond connected inverters it	nd I CL) Control c	of con	verte	rs for	· fault
operation with I	VRT canability	nd LCL). Control C		iverte	15 101	Taun
Contact Perio	ds:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Per	iods Total: 45	5 Pe	riods	5	
	Contraction and and					
REFERENCI	ES					
1 Mukund R	Patel, "Wind and Solar power systems: design	, analysis and o	pera	tion	", Se	cond
Edition, Ta	ylor & Francis, 2006					
2 Rai, G.D.,	"Non-conventional Energy Sources", Khanna P	ublications, New	Del	hi, V	Ed	ition,
2013.						
3 Thomas N	Iarkvart and Luis Castaser, "Practical hand	book of Photov	olta	ics",	Els	evier
Publication	ns, 2nd Edition, 2011			_		
4 Teodoresci	I.R, Liserre, and Rodr'iguez. P, "Grid converter.	s for photovoltai	c an	d wi	nd p	ower
systems" J	ohnWiley and sons limited, 2011					
5 Bin Wu, "	High-Power Converters and AC Drives", IEEE	Press, A John V	Viley	, &	Sons	, Inc
Publication, New York,2006.						

COUR Upon c	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Gain Knowledge of trends in renewable energy and standards for grid	K2
	interconnection of resources.	
CO2	Demonstrate the concept of solar PV energy conversion	K4
CO3	Analyze the concepts of different wind energy conversion systems.	K4
CO4	Extend the concepts of standalone wind and solar energy systems.	K6
CO5	Summarize the concepts of Grid connected wind and solar energy systems.	K5

2

-

3

1

-

2

Course Articulation Matrix PO2 PO3 COs/POs **PO1 PO4** CO1 2 --2 CO2 3 -CO3 3 -1 110 CO4 3 1 CO5 3 3 80 CR CICL **23PSPE07** 3 2 1 1 – Slight, 2 – Moderate, 3 – Substantial -

ASSESSMEN	T PATTERN -	- THEORY	-1	K (
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30%	30%	20%	20%	-	-	100%
CAT2	10%	30%	20%	20%	10%	10%	100%
Individual Assessment1/ Case study1/ Seminar 1/Project1	10%	30%	30%	20%	10%	-	100%
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	20%	30%	10%	10%	10%	100%
ESE	20%	40%	30%	10%	-	-	100%

22DCDE09	HVDC AND FACTS						
231 31 EUð	(Common to PSE & PED)		51				
PREREQUIS	ITES	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
Course	To impart knowledge about HVDC transmission	systems and sign	ificar	nce o	of FA	CTS	
Objectives	devices in power systems.						
UNIT – I	DC POWER TRANSMISSION TECHNOLOG	Y			9 Per	iods	
Introduction -	Comparison of AC and DC transmission – Applica	tion of DC transm	issio	n –D	escrip	otion	
of DC transmi	ission system - MTDC systems - Types, Control	l and protection of	of M	TDC	syste	ms-	
Planning for H	VDC transmission – Modern HVDC – State of the a	art.					
UNIT – II	ANALYSIS AND CONTROL OF HVDC CON	VERTERS			9 Per	iods	
Pulse number -	- Choice of converter configuration - Simplified at	nalysis of Graetz of	circui	ts –	Conv	erter	
bridge charact	eristics - Characteristics of twelve-pulse converte	er - General prin	ciple	s of	DC 1	Link	
control – Conv	verter control characteristics - System control hier	archy Firing angle	e con	trol	– Cui	rent	
and extinction	angle control- Generation of harmonics – Design of	AC filters – DC f	ïlters	•			
UNIT – III	STATIC VAR COMPENSATION	H)			9 Per	iods	
FACTS- Basic	concepts of static VAR compensator - Resonance	e damper, Thyrist	or co	ntrol	led se	eries	
capacitor -Stat	tic condenser-Phase angle regulator - Thyristor Con	ntrolled Reactor -	Thyr	istor	Swite	ched	
Reactor - Thyr	istor Switched Capacitor -Saturated Reactor - Fixed	Capacitor – appli	catio	ns.			
UNIT – IV	SERIES COMPENSATION	(E)			9 Per	iods	
Sub-Synchrono	ous resonance-Torsional interaction, torsional torq	ue – Compensatio	on of	con	ventio	onal,	
ASC, NGH dat	mping schemes - Modeling and control of thyristor	controlled series c	ompe	ensat	ors		
UNIT – V	UNIFIED POWER FLOW CONTROL				9 Per	iods	
Introduction -	Implementation of power flow control using con	ventional thyristo	r - l	Unifi	ed Po	wer	
Flow concept -	Implementation of Unified Power Flow controller.						
Contact Perio	ds:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0	Periods To	otal:	45 P	eriod	S	
REFERE	NCES:	.)					

- 1 Padiyar .K .R., "HVDC Power Transmission Systems", New age international(P) Ltd, New Delhi, third edition, 2015.
- 2 Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", Wiley Eastern Ltd, New Delhi, 2007.
- 3 Vijay K. Sood, "HVDC and FACTS Controllers Applications of Static Converters in Power Systems", Kluwer Academic Publishers, 2006.
- 4 Hingorani Narin G., Gyugyi Laszlo, "Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems", Wiley-IEEE Press, 2001.

5 Narin G.Hingorani, "Flexible AC Transmission", IEE Spectrum, April 1993, pp 40-45.

6 Narin G.Hingorani, "High Power Electronics and Flexible AC Transmission Systems", IEEE High Power Engineering Review, 1998.

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Articulate the concept and identify the merits of HVDC transmission.	K4
CO2	Analyze and Design power converters for HVDC transmission systems and develop HVDC controllers in Real time power system environments.	K5
CO3	Assess Harmonics and Disturbances in the HVDC environment.	K6
CO4	Explain the concept of FACTS and Illustrate the concepts of Static VAR compensator.	K6
CO5	Classify the FACTS devices and implementation in the Real Power network.	K6

Course Articulation Matrix	Bight min Dame	ANT 116 1 11 80/10		
COs/POs	PO1	PO2	PO3	PO4
CO1	1		-	-
CO2	2		1	1
CO3	3	- G //	3	-
CO4			-	2
CO5	1		2	3
23PSPE08	2		2	2
1 - Slight, $2 - $ Moderate, $3 - $ S	ubstantial			
	0			

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	30%	30%	10%	10%	-	100%		
CAT2	10%	20%	20%	30%	10%	10%	100%		
Individual Assessment1 / Case study1/ Seminar 1/Project1	10%	20%	30%	30%	10%	-	100%		
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20%	10%	20%	30%	10%	10%	100%		
ESE	20%	20%	20%	20%	10%	10%	100%		

23PSPE09	23PSPE09 FEM MODELING OF HIGH VOLTAGE APPARATUS			MES	TER	II
	AND SYSTEMS			1	1	1
PREREQUIS	ITES	CATEGORY	L	Т	P	C
	NIL	PE	3	0	0	3
Course	To acquire knowledge and skills about model	lling of high vo	ltage	appa	ratus	and
Objectives	systems using FEM					
UNIT – I	GENERAL CONCEPT				8 Per	iods
Introduction to	Finite Element method – Discretisation - Advan	tages and disadv	antage	es - I	Histor	y of
development a	nd applications - Recent trends.					
UNIT – II	VARIATIONAL AND WEIGHTED RESIDUA	AL FORMULAT	TION	1	0 Per	iods
Boundary valu	e problem - Approximate method of solution -	Review of variat	ional	calcu	lus -	The
Euler - Lagran	ge equation - Boundary conditions - Method of w	reighted residuals	- Ray	leigh	Ritz	and
Galerkin metho	ods of finite element formulations.					
UNIT – III	GENERAL APPROACH TO FIELD ANALYS	SIS			9 Per	iods
Problem defin	ition - Field properties - Maxwell's equations in	the Dynamic, Q	uasi-st	atic	and s	tatic
cases - Static f	ields in unbounded regions- Continuity conditions of	of fields at a medi	um di	scont	inuit	у.
UNIT – IV	ELEMENT SHAPE FUNCTIONS				8 Per	iods
Parametric fui	nctions - Shape functions for 1-D, 2-D and 3-	D simplex and	compl	ex e	lemer	its -
Asymmetric el	ements – Isoparametric element formulations.	1				
UNIT – V	FIELD MODELING OF HIGH VOLTAGE A	PPARATUS		1	0 Per	iods
Finite element	formulation for interior and exterior problems - S	Static electric field	d and	magr	netic	field
problems - Ed	dy current problems - Field computation in high	voltage apparat	us - E	Electro	o the	rmal
analysis - Tran	sient field analysis.	1				
Contact Perio	ds:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 H	Period	S		
DECEDE		200				
KEFEKE	NCES					
1 Charles W	Steels, "Numerical Computation of Electric a	nd Magnetic fie	lds",	Van	Nost	rand
Reinhold C	ompany, New York, 2013.	7				
2 G. Ramam	urty, "Applied Finite Element Analysis", I K Inte	ernational Publis	hing H	louse	Pvt.	Ltd,
2013.						
3 Zienkiewicz	z.O.C., " The Finite Element Method ", Tata McG	raw Hill Publish	ing C	0., N	ew D	elhi,
2000.						
4 Reddy.J.N.,	"An Introduction to the Finite Element Method	", McGraw Hill	Book (Co., 1	Vew I	'ork,

- 2006.
- 5 Matthew. N.O. Sadiku, S.V. Kulkarni, "Elements of Electromagnetics", Sixth Edition, Oxford University Press, Asian Edition 2015

6 Selected reference papers in IEEE Transactions and IEEE Proceedings.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Acquire the knowledge of Finite Element Method and formation methods.	K2
CO2	Familiarize the use of field analysis and element shape functions for HV	K1
	systems.	
CO3	Comprehend the concepts of finite element formulations	K2
CO4	Realize the field modelling techniques of High Voltage Apparatus.	K3
CO5	Analyze the HV apparatus using Finite Element Method	K3

COs/POs	PO1	PO2	PO3	PO4
CO1	1	-	2	1
CO2	- General	mo	2	1
CO3	Cost los	Sabine	2	2
CO4	2	MILL DELV	2	2
CO5	2	Con Ol	3	2
23PSPE09	1	-	2	2
1 - Slight, $2 - $ Moderate, $3 - $ S	ubstantial	Cal /	1	·

11

ASSESSMEN	T PATTERN –	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30%	30%	40%	- 11	-	-	100%
CAT2	20%	20%	20%	40%	-	-	100%
Individual Assessment1 / Case study1/ Seminar 1/Project1	20%	30%	20%	20%	10%	-	100%
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20%	20%	20%	20%	20%	-	100%
ESE	20%	20%	20%	30%	10%	-	100%

23PSPE10	HIGH VOLTAGE AND INSULATION SYSTEMS SET			MES	STEF	RII		
PREREQUIS	UISITES CATEGORY L 7					С		
	NIL	PE	3	0	0	3		
Course Objectives	Course Objectives To familiarize students about high voltage materials and testing techniques							
UNIT – I	INSULATING MATERIALS IN POWER SY	STEM		9) Per	iods		
Review of ins	ulating materials: Gases, Vacuum, liquids and s	solids - Characteriz	ation	of i	nsula	tion		
condition – Per	mittivity, capacitance, resistivity and insulation re	esistance, dielectric o	dissip	ation	fact	ors -		
Partial dischar	ges sources, forms and effects - Ageing effects	- Electrical breakd	own	and	opera	ting		
stresses - Stand	lards relating to insulating materials. Application of	of Insulating Materia	als.					
UNIT – II	BREAKDOWN MECHANISMS OF DIELEC	CTRICS		9) Per	iods		
Breakdown me	echanisms of gases- Townsend Breakdown -Stre	eamer Mechanism o	of Sp	ark-F	Pasch	en's		
Law-Penning H	Effect-Corona discharge-Breakdown in Electroneg	ative Gases. Breakd	lown	mecł	nanis	m in		
Solid Dielectri	cs-Intrinsic Breakdown -Electromechanical Break	down - Breakdown	due t	o Tre	eeing	and		
Tracking-Ther	nal Breakdown - Electrochemical Breakdown	. Breakdown mech	nanisr	ns o	of lic	uid:		
Suspended Sol	id Particle Mechanism and Cavity Breakdown- Br	eakdown in Vacuun	n					
UNIT – III	GENERATION OF TEST SIGNALS AND M	EASUREMENT		9) Per	iods		
Generation of	high voltage AC: cascaded transformers and serie	es resonant circuit -	Gene	ratio	n of	high		
DC voltages:	rectifier circuit, voltage multiplier circuit and E	lectrostatic Generat	or - (Gene	ratio	n of		
impulse voltag	es and Currents: multistage impulse generator ci	rcuit and Impulse C	Currer	nt Ge	enerat	tion.		
Measurement of	of high AC, DC and impulse voltages: voltage d	ivider circuits, Elec	trosta	tic V	/oltn	neter		
and Generating	Voltmeter - Digital Storage Oscilloscope for imp	ulse voltage and cur	rrent 1	neas	urem	ents		
(Spectrum Ana	lysis)	1						
UNIT – IV	INSULATION TESTING OF ELECTRICAL	EQUIPMENT		9) Per	iods		
Necessity for h	igh voltage testing - Testing of transformers - Bu	shings – Overhead	line a	and s	ubsta	tion		
insulators - Su	rge arresters – High voltage cables – Power Capa	acitors-Circuit break	cers a	nd is	solate	ors –		
IEC and Indian	standards.							
UNIT – V	NON-DESTRUCTIVE TESTING	00		9) Per	iods		
Insulation resis	stance measurement - Measurement of tan delta an	nd capacitance of di	electr	ics –	-Sche	ering		
Bridge Method	d for Grounded Test Specimen- Measurement o	f Partial discharges	5 - B1	idge	Circ	cuit–		
Oscilloscope as	s PD Measuring Device - Testing of Transformer	oil.						
Contact Perio	ds:							
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Per	iods Total: 45 Pe	riods					
REFERENCES								
1 Kuffel.E. ar	nd Zaengl, W.S, "High Voltage Engineering Fun	ndamentals". Perga	mon	Pres	s Oxt	ord.		
New York, 2	2013.	, 0			5			
2 Naidu,M.S.	and Kamaraju, V, "High Voltage Engineering",	Tata McGraw Hill,N	Vew L	Delhi,	2009).		
3 C.L.Wadwa Second Edi	3 C.L.Wadwa, "High Voltage Engineering Fundamentals", New Age International Publishers, Second Edition, 2017							
4 Gallagher, Sons New	T.J., and Permain,A., " High Voltage Measurem York 1983	ent, Testing and D	esign	", Jo	hn W	Viley		
5 IEC & IS S	tandards on HV testing: website: https://archive.o	rg/details/gov.in						
6 Adrianus, J	Dekker, "Electrical Engineering Materials", Pr	entice Hall of India,	New	Dell	ni, 20	07.		

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	Mapped	
CO1	Acquire the knowledge of insulating materials and suggest suitable materials	K2
	to power Apparatus.	
CO2	Comprehend the mechanism of breakdown in dielectric.	K2
CO3	Analyze the methods of generation of high voltages in power system	K3
CO4	Realize the different techniques for measuring the electrical quantities in	K3
	power system	
CO5	Evaluate the condition of High voltage apparatus through appropriate testing	K4
	method	

COs/Pos	PO1	PO2	PO3	PO4
CO1	10	nno	2	2
CO2	Care 170		2	2
CO3	2		3	3
CO4	2		3	3
CO5	2	_	3	3
23PSPE10	2	- <u>G</u>	3	3
– Slight, 2 – Moderate, 3 – S	ubstantial	_ / /	<u>.</u>	1

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	30%	30%	20%	20%	-	-	100%			
CAT2	20%	20%	20%	40%	-	-	100%			
Individual Assessment1 / Case study1/ Seminar 1/Project1	30%	30%	20%	20%	-	-	100%			
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20%	20%	20%	20%	20%	-	100%			
ESE	20%	20%	20%	30%	10%	-	100%			

23PSPE11	BIG DATA ANALYTICS FOR POWER	SYSTEMS	SI	EMES	STER	RIII
PREREQUIS	ITES	CATEGORY	L	Т	P	С
	NIL	PE	3	0	0	3
Course	To monitor, analyze, and optimize power syst	em operations, l	eadi	ng to	imp	roved
Objectives	efficiency, enhancing grid reliability, Predicti	ve Maintenance,	Rer	newab	le E	nergy
	Integration, Demand Response, Regulatory Compliance and Cost Reduction through					
	Big data analytics					
UNIT – I	BIG DATA FROM POWER SYSTEMS				9 Pe	riods
Introduction –	Harness the data from power systems: Holistic ap	proach - Emergin	ng Se	ecurity	/ and	Data
Privacy Challe	nges for Utilities - cognitive computing on big da	ata Bottom of For	rm –	frame	eworł	ks for
big data integra	ation					
UNIT – II DATA ANALYTICS FOR POWER SYSTEMS-I					9 Pe	riods
Agile Machine	e Learning for Data Analytics in Power Systems-	Unsupervised L	earni	ng M	ethod	ls for
Power System	Data Analysis - Deep Learning for Power System	Data Analysis				
UNIT – III	DATA ANALYTICS FOR POWER SYSTEMS	S-11			9 Pe	riods
Compressive S	ensing for Power System Data Analysis - Time-Se	eries Classificatio	n M	ethods	s - Re	eview
and Applicatio	ns to Power Systems Data, R Programming.	77				
UNIT – IV	BIG DATA APPLICATIONS IN POWER SYS	STEM			9 Pe	riods
Supervised Lea	arning-Based Fault Location in Power Grids - Dat	a-Driven Voltage	Unb	alanco	e An	alysis
in Power Dist	ribution Networks - Predictive Analytics for C	omprehensive Er	nergy	y Syst	ems	State
Estimation		11				
UNIT – V	DATA ANALYTICS IN ENERGY MARKETI	NG			9 Pe	riods
Data Analytics	for Energy Disaggregation: Methods and Applica	tions - Energy Di	sagg	regati	on an	d the
Utility-Privacy	Tradeoff	Vh.				
Contact Perio	ds:	2638				
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 H	Perio	ds		
	The second second	1				

REFERENCES

1	Reza Arghandeh, Yuxun Zhou, "Big Data Application in Power Systems", Elsevier Science, 2017,
	ISBN 10: 0128119683
2	Ali Tajer, Samir M. Perlaza ,H. Vincent Poor "Advanced Data Analytics for Power Systems",
	Cambridge University Press, 2021, ISBN 10:1108494757
3	Hasmat Malik, Md. Waseem Ahmad, D.P. Kothari, "Intelligent Data Analytics for Power and
	Energy Systems ", Springer, 2022, ISBN 10: 9811660808
4	Ahmed F. Zobaa, Trevor J. Bihl, "Big Data Analytics in Future Power Systems", CRC Press,
	2018, ISBN:9781351601283, 1351601288

COUR	SE OUTCOMES:	Bloom's
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Understand the fundamentals of big data analytics and its applications in power systems and the concepts of data pre-processing and cleaning of power system data	K1
CO2	Learn the basics of power systems, including power generation, transmission, and distribution.	K2
CO3	Explore different types of data sources available in power systems and their characteristics.	K6
CO4	Evaluate critical thinking and problem-solving skills in the context of big data analytics for power systems.	K5
CO5	Realize the ethical and legal considerations related to the collection, storage, and use of power system data.	K6

Course Articulation Matrix							
COs/Pos	PO1	PO2	PO3	PO4			
CO1	3	THE REAL PROPERTY	3	2			
CO2	3	a bruns	2	2			
CO3	3	TO A MAN	3	2			
CO4	3		3	2			
CO5	3		3	2			
23PSPE11	3		3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*		A P		12						
CAT1	30%	30%	20%	20%		-	100%			
CAT2	20%	20%	20%	20%	20%	-	100%			
Individual Assessment 1/ Case study1/ Seminar 1/Project1	30%	30%	20%	20%	-	-	100%			
Individual Assessment 2/ Case study2/ Seminar 2 /Project2	20%	20%	20%	20%	20%	-	100%			
ESE	20%	20%	20%	20%	20%	-	100%			

23PSPE12	ADVANCED ELECTRIC DRIVES AND CONTROL SEMESTER II						
	(Common to PSE & PED)						
PREREQUIS	ITES	CATEGORY	L	T	P	С	
	NIL	PE	3	0	0	3	
Course	To study and analyze the performance of electric	c drives with mod	ern c	ontro	ollers	and	
Objectives	techniques						
UNIT – I	INTRODUCTION				9 Pei	riods	
Need for adva	nced controls - Principle factor affecting the choice	ce of drive – Para	neter	ide	ntific	ation	
techniques for	electric motors - Electromagnetic compatibility of	electric drives – D	oiffer	ent o	ption	s for	
an adjustable	speed electric drive - Simulation of electrical driv	ves – Advanced co	ontrol	stra	tegie	s for	
electrical drive	S						
UNIT – II	PWM INVERTER CONTROL				9 Pei	riods	
Inverter – Ope	ration principle – Inverter switching – Unipolar – I	Bipolar – Inverter	dead	time	– Inv	reter	
modulation -	PWM types - Sine Triangle - Analysis of Sine	Triangle Modula	tion	– Tr	apez	oidal	
Modulation –	Third harmonic Modulation – Analysis of Third I	Harmonic Modulat	tion -	- Ou	tput	filter	
requirement fo	r different PWM techniques						
UNIT – III	SPACE VECTOR MODULATION				9 Per	riods	
Concept of a S	pace Vector – dq0 Components for Three-phase si	ine wave source-d	q0 C	ompo	onent	s for	
Voltage Sourc	e Inverter operated in Square Wave Mode -Sync	hronously rotating	refe	rence	e fra	me –	
Space Vector	Modulation– Principle –SVM compared to regular	sampled PWM - F	hase	Lag	refei	ence	
for SVM – Nat	turally sampled SVM – Analytical solution						
UNIT – IV	DSP CONTROLLERS				9 Per	riods	
DSP controlle	rs – Architecture – Address modes – interrupts -	- Instruction set: A	Asser	nbly	lang	uage	
instructions -	Auxiliary register and data page pointer instr	ructions – TREG	, PR	EG,	Mu	tiply	
instructions –	Branch instructions – Control instructions – I/O a	nd memory instru	ction	s - D	SP t	ased	
control of elect	trical drives						
UNIT – V	ADVANCED CONTROLLERS				9 Pei	riods	
Current and sp	eed control of Induction Motor - Current control a	algorithm – Sensor	less 1	notio	on co	ntrol	
strategy – Indu	ction Motor Controller using VHDL design - Fuzz	zy Logic Control o	of a E	BLDO	C mo	tor –	
VHDL Modelling – FPGA implementation of electrical drives							
Contact Periods:							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Pe	riods Total: 4	45 Pe	riod	S		
REFERE	NCES 090 "Down Electronics and Variable Engrances D	winag Tashaalaa	and	1	ligat	ome "	
I Dimai A. B	ose, 10wer Electronics and variable Frequency D 1997	rives – rechnology	and	Арр	ucuil	ons,	

2 Grafame Holmes. D and Thomas A. Lipo, "Pulse Width Modulation for PowerConverters – Principles and Practice", IEEE Press, 2003

3 Peter Vas, "Vector Control of AC Machines", Oxford University Press, 1990

4 Hamid A. Toliyat and Steven G.Campbell, "DSP based Electromechanical MotionControl", CRC Press 2004

5 Ned Mohan, "Advanced Electric Drives: Analysis, Control and Modelling using SIMULINK", John Wiley & Sons Ltd., 2001

COUR	Bloom's Taxonomy Mapped	
Opon	completion of the course, the students will be able to.	Mappeu
CO1	Identify the performance parameters and requirements of control strategies	K2
CO2	Examine the performance of inverter for drives with various PWM techniques	K4
CO3	Apply and Analyze the performance of drives by SVM based control	K3
CO4	Apply DSP controller to study the performance of drives	K3
CO5	Expertise to enhance the performance of drives with modern controllers	K3

COs/POs	PO1	PO2	PO3	PO4			
CO1	3	-	2	2			
CO2	3	-	3	2			
CO3	3		3	3			
CO4	3	m P	3	2			
CO5	6 8 9 0 3 . D	Aur 110 = 119/15	2	2			
23PSPE12	3	- And And	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMEN	T PATTERN -	- THEORY		F /			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	30%	20%	-	-	100%
CAT2	-	20%	30%	30%	10%	10%	100%
Individual Assessment1 / Case study1/ Seminar 1/Project1	_	30%	40%	30%	-	_	100%
Individual Assessment2 / Case study2/ Seminar 2 /Project2	-	30%	40%	30%	-	-	100%
ESE	10%	20%	30%	20%	10%	10%	100%

22PSPE12	COMPUTER RELAYING AND WI	DE AREA	SE	мес	TEL	2 11
231 31 113	MEASUREMENT SYSTEM	/[J E) I LI	、 II
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course	To interpret the operating principles of a compu	iter relays and wide	area	mea	surer	nent
Objectives systems, articulate the computer hierarchy in the substation, system relaying and						
	control and update the power grids with the state	-of-art technologies				
UNIT – I	INTRODUCTION			9	Per	iods
Historical back	ground - Expected benefits - Computer relay arch	itecture - Analog to	digita	al con	nvert	ers -
Anti-aliasing f	ilters - Substation computer hierarchy - Fourier s	series Exponential f	ourier	seri	es -	Sine
and cosine four	rier series – Phasor.					
UNIT – II	FILTERS IN COMPUTER RELAYING			9	Per	iods
Walsh function	ns - Fourier transforms - Discrete fourier transfo	orm - Random proc	esses	- Fil	terin	g of
random proces	sses - Kalman filtering - Digital filters - Wind	dows and windowi	ng -	Line	ar p	hase
Approximation	- Filter synthesis - Wavelets - Elements of artific	ial intelligence.				
UNIT – III	REPRESENTATION OF PHASORS	1 ~)		9	Per	iods
Introduction -	Phasor representation of sinusoids - Fourier se	eries and Fourier th	ansfo	orm a	and]	DFT
Phasor represe	ntation - Phasor Estimation of Nominal Freque	ency Signals - Form	nulas	for	upda	ating
phasors - Nonr	ecursive updates - Recursive updates - Frequency	Estimation.				
UNIT – IV	PHASOR MEASUREMENT UNITS	10		9	Per	iods
A generic PM	U - The global positioning system - Hierarch	y for phasor meas	ureme	ent s	yster	ns -
Functional req	uirements of PMUs and PDCs - Transient Respo	onse of: Phasor Mea	suren	nent	Unit	s, of
instrument tra	nsformers, filters. Transient response during e	electromagnetic tran	nsient	s an	d po	ower
swings, Optima	al number of PMUs in the grid, WAMPAC.	. 11				
UNIT – V	PHASOR MEASUREMENT APPLICATION	IS		9	Per	iods
State Estimation	on - History, Operator's load flow - Weighted leas	st square: least squar	re, Liı	near	weig	hted
least squares, N	Nonlinear weighted least squares - Static state esti	mation - State estin	nation	with	n Pha	sors
measurements	- Linear state estimation - Protection system	with phasor input	s: Dif	ffere	ntial	and
distance protec	tion of transmission lines - Adaptive protection - A	Adaptive out-of-step	o prote	ectio	n.	
Contact Perio	ds:					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Per	riods Total: 45 Pe	riods			

REFERENCES

1	A.G. Phadke, J.S. Thorp, "Computer Relaying for Power Systems", John Wiley and Sons Ltd.,
	Research Studies Press Limited, 2nd Edition, 2009.
2	A.G. Phadke, J.S. Thorp, "Synchronized Phasor Measurements and Their Applications", Springer
3	Antonello Monti, Carlo Muscas, Ferdinanda Ponci, "Phasor Measurement Units and Wide Area
	Monitoring Systems", Academic Press, 09-Jun-2016
4	Stanley H. Horowitz, Arun G. Phadke, "Power System Relaying", John Wiley & Sons, 25- Oct-
	2013

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Demonstrate knowledge of fundamental theories, principles of relaying and	K2
	measurement systems	
CO2	Practice computer relaying, Wide area measurement system	K3
CO3	Analyze the power system with computer relaying and Wide area	K4
	measurement system	
CO4	Validate the recent relaying technologies which work towards smart grid	K5
CO5	Design wide area measurement systems for Smart grid.	K6

Course Articulation Matrix					
COs/Pos	PO1	PO2	PO3	PO4	
CO1	2	-	2	-	
CO2	3	Marris D	2	-	
CO3	3	- Well	2	2	
CO4	3	The grund	3	2	
CO5	122	SAMPLE A	_	-	
23PSPE13	3	-	2	2	
1 – Slight, 2 – Moderate,	3 – Substantial	1	11		
	100	A A	11		

ASSESSMEN	T PATTERN -	THEORY		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10%	30%	40%	10%	10%	-	100%
CAT2	10%	30%	30%	20%	10%	-	100%
Individual Assessment1 / Case study1/ Seminar 1/Project1	10%	30%	30%	10%	20%	_	100%
Individual Assessment2 / Case study2/ Seminar 2 /Project2	-	30%	50%	20%	-	-	100%
ESE	10%	20%	40%	20%	10%	-	100%

23PSPE14	INTELLIGENT TECHNIQUES IN POWE	R SYSTEMS	SI	EME	STE	RII
PREREQUIS	ITES	CATEGORY	L	Т	P	С
	NIL	PE	3	0	0	3
Course	Course To enhance the security of the power system through the study of various assessment					
Objectives	techniques.					
UNIT – I	INTRODUCTION AND EXPERT SYSTEMS				9 Pe	riods
Introduction to	intelligent systems- Soft computing techniques- C	Conventional Con	nputi	ng v	ersus	Soft
Computing -	Classification of meta-heuristic techniques - A	pplication domai	in -	Dis	crete	and
continuous pro	blems - Single objective and multi-objective problem	ns				
Expert System	s : Concepts and theory - Knowledge representati	on techniques - S	Struc	ture	of a	rule-
based expert sy	stem - Forward and backward chaining inference te	chniques.				
UNIT – II	ARTIFICIAL NEURAL NETWORKS A MEMORY	ND ASSOCIA	TIV	E	9 Pe	riods
Artificial Neur	on and its model- activation functions- Neural ne	twork architectur	e- si	ngle	laye	r and
multilayer feed	d forward networks- McCulloch Pitts neuron mod	lel- perceptron m	odel	- Ac	laline	e and
Madaline- bacl	c propagation learning methods. Counter propagation	on network- archit	ectu	re- fi	inctio	oning
& characteristi	c - Hopfield/ Recurrent network configuration - stal	oility constraints a	assoc	iativ	e me	mory
and characteris	tics- limitations and applications- Hopfield v/s Bolt	zman machine- A	dapt	ive F	Resor	nance
Theory- Archit	ecture- classifications- Implementation and training	- Associative Me	mory	<i>'</i> .		
UNIT – III	FUZZY SYSTEMS	6			9 Pe	riods
Basic fuzzy set	t operation and approximate reasoning - Membersh	ip Functions and	Fuzz	zy se	ts - F	Fuzzy
rules - Fuzzy in	nference -Defuzzification methods- Building a fuzzy	y expert system. F	uzzy	, moo	delin	g and
control scheme	s for nonlinear systems Self organizing fuzzy logic	c control				
UNIT – IV	GENETIC ALGORITHM				9 Pe	riods
Concepts of E	volutionary computing - Genetic Algorithm (GA)) versus Convent	ional	l Op	timiz	zation
Techniques - C	Genetic representations and selection mechanisms;	Genetic operators	s- Va	ariou	s typ	es of
crossover and	mutation operators -Application of GA to Optim	nization problems	wit	h dis	screte	e and
continuous var	iables - Single objective and multi-objective probler	ns				
UNIT – V	HYBRID CONTROL TECHNIQUES AND AP	PLICATIONS			9 Pe	riods
Fuzzification a	nd rule base using ANN-Neuro fuzzy systems-AN	FIS – Fuzzy Neu	ron	- Op	timiz	cation
of membership	function and rule base using Genetic Algorithm -C	Overview of Supp	ort V	ecto	r Ma	chine
and Particle Sw	varm Optimization - Case study – Familiarization of	NN, FLC and AN	IFIS	solv	er.	
Contact Perio	ds:					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Perio	ds Total:45 Per	riods	5		
REFERENCES						
1 K.Y. Lee a	und M.A. El-Sharkawi, "Modern Heuristic Opti	mization Techni	ques.	: Th	eory	and
Application	us to Power Systems", Wiley-IEEE Press, 2008.	11 TT7-7 T 7-	D	T . 1	•	1 1 1
2 S N Sivana 2011	indam., S N Deepa, "Principles of Soft Computin	ig", Wiley India	Pvt.	Ltd.,	2na	! Ed.,
3 David E.G Pearson Fo	oldberg, " Genetic Algorithms in Search, Optin Jucation 2009	nization, and Mo	ichin	ne L	earn	ing",
4 Zimmerman	nn H.J. "Fuzzy set theory and its Applications" Spri	nger internationa	l edit	tion	2011	
5 Timothy J.	Ross, "Fuzzy Logic with Engineering Applications	" Wiley India, 200		,	1	-
6 D.P.Kothar	i, "Power system optimization", PHI Learning Pvi	. Ltd, 2010				

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Familiarize the basic architectures of Neural Networks and Fuzzy sets	K1
CO2	Design and implement ANN architectures, algorithms and know their	K3
	limitations.	
CO3	Analyze the different operations on fuzzy sets.	K4
CO4	Develop ANN and fuzzy logic based models and control schemes for non-	K6
	linear systems.	
CO5	Explore the suitable hybrid intelligent techniques to real world problem	K2

COs/Pos	PO1	PO2	PO3	PO4
CO1	1	-	2	-
CO2	2	m	3	2
CO3	2		3	1
CO4	2	BILLID STORE	3	2
CO5	2	TRA SIL	3	2
23PSPE14	2		3	2
- Slight, 2 $-$ Moderate, 3 $-$ S	ubstantial		2	<u> </u>

ASSESSMEN	T PATTERN –	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	30%	20%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1 / Case study1/ Seminar 1/Project1	20%	25%	20%	20%	15%	-	100%
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20%	25%	20%	20%	15%	-	100%
ESE	20%	20%	20%	30%	10%	-	100%

	MODERN COMMUNICATION SYST	EMS FOR	CT		orr	р 11
23PSPE15	POWER SYSTEMS		5E	IVIES	51E	КП
PREREQUI	SITES	CATEGORY	L	Τ	Р	С
	NIL	PE	3	0	0	3
Course	Understanding the importance and challenges of con	nmunication in mode	ern p	ower	r sys	tems
Objectives	through familiarization with modern communicati	on technologies, Le	earnii	ng a	bout	the
	architecture of communication systems, Exploring	applications of mode	ern c	omm	unic	ation
	systems and analyzing the impact of communication on	power system perform	nanc	e		
UNIT – I	STANDARDS AND COMMUNICATION SYSTEMS			9	Per	iods
Smart Grid	Communication Standards - Communication for	Substation Automat	ion:	IEC	C 61	850,
Communicatio	n for Telecontrol: IEC 60870-5, IEC 60870-6	Standards for Int	er-Co	ontro	1 C	enter
Communicatio	ns, IEC 60834 Standards for Teleprotection Equipm	ent, IEC 61970 Star	ndarc	ls fo	r En	nergy
Management	Services Application Program Interface (EMS-API),	IEC 61968—Applica	tion	Integ	gratic	on at
Electric Utiliti	es-System Interfaces for Distribution Management S	ystems, IEC 62351 S	Stand	ard f	for C	yber
Security, IEEE	2 1815-2012 Standard for Electric Power Systems Comm	unications- Distributed	i Net	twork	c Pro	tocol
(DNP3). Smar	t Grid Communication Systems- Wired and wireless Com	munication Systems.				
UNIT – II	5G COMMUNICATION SYSTEMS			9	Per	iods
Fundamentals	and State of the Art, Challenges of 5G Networks and S	Some Potential Soluti	on, I	Promi	sing	Key
Technologies	for 5G Networks , Massive Multiple-Input Multiple	-Output (Massive M	IMO) Te	chno	logy,
Beamforming	Techniques for 5G Mobile Communication Systems,	Channel Characteristi	ics f	or 50	G M	obile
Communicatio	n Networks, Potential Application Areas of the 5G Netwo	orks, 5G Modulation	Sche	mes.		
UNIT – III	OPTICAL COMMUNICATIONS AND MODULATI	ON TECHNIQUES	IN	9	Per	iods
	5G					
Introduction,	Optical Fiber Communications, Fiber Characteristics fo	r Communications, (Optic	al M	odul	ation
and Modulator	rs, Multiplexing Technologies in Optical Fiber Telecor	nmunications, Feature	es of	Opti	ical I	Fiber
Communicatio	ns in 5G Networks, Key Technologies of 5G Optical T	ransmission Network	s, Op	otical	W1r	eless
Communicatio	ns in 5G, Modulation Technologies in 5G.					• •
	INTERNET OF THINGS ON POWER LINE COMM	IUNICATIONS	N 7 1	9	Per	10 ds
PLC Specifica	tions and Regulations, Security Mechanisms in PLC, Ev	valuation Using PLC	Mod	ems a	as "E	Slack
Boxes, Evalua	A DYANGED METERING INER ASTRONOTIOES AN	ntemgence.	7		D	• 1
UNII - V	ADVANCED METERING INFRASTRUCTURES A	ND CYBER SECURI	1	9	Per	10 d S
Advanced Me	tering Infrastructures- Introduction, AMI Communic	ation Architectures a	and	Requ	urem	ents,
Network Plann	ing for AMI, Routing and Communication Reliability,	Fault Tolerance and F	kedu	ndan	cy. C	yber
Security—Obj	ectives and Requirements for Smart Grid, Attacks an	d countermeasures ag	gains	t Sn	art (Grid,
Assessing the	Vulnerabilities Associated with Smart Grid Components	and Their Potential Im	ipact	, Hor	neypo	ots—
Concept and C	lassification.					
L octuro: 45 D	us: ariada Tutarial: A Dariada Practical: A Dariada	Total: 15 Dariada				
Lecture. 451	erious futoriai. O ferious fracticai. O ferious	Total. 45 Terrous				
REFERENCE	S					
1 Ersan Kal	balci, Yasin Kabalci, "Smart Grids and Their Comn	unication Systems",	Spr	inger	·- En	nergy
Systems in	Electrical Engineering, 2019.					
2 Mohamam	ad Shahidehpour and Yaoyu Wang, "Communication a	ind Control in Electr	ic P	ower	Syst	ems:
Application	n of Farallel and Distributed Processing", IEEE Wiley In	nierscience, 2005.	Seic	noc I	in ?	010

4 Andrea M. Tonello, Lutz Lampe, Theo G. Swart, **"Power Line Communications-Principles, Standards and** Applications from Multimedia to Smart Grid", Wiley, 2016.

Upon completion of the course, the students will be able to:MappeCO1Understanding the fundamental concepts of communication systems in power systems, including communication protocols, architectures, and technologies.K1CO2Analyzing the challenges of communication in power systems and developing strategies to mitigate these challenges.K4CO3Familiarizing with the types of communication networks used in power systems, including wired, wireless, and hybrid networks, and their applicationsK2CO4Developing skills to design and evaluate modern communication systems for power systems based on system requirements, performance criteria, and network topologiesK3	COUR	SE OUTCOMES:	Bloom's Taxonomy
CO1Understanding the fundamental concepts of communication systems in power systems, including communication protocols, architectures, and technologies.K1CO2Analyzing the challenges of communication in power systems and developing strategies to mitigate these challenges.K4CO3Familiarizing with the types of communication networks used in power systems, including wired, wireless, and hybrid networks, and their applicationsK2CO4Developing skills to design and evaluate modern communication systems for power 	Upon c	completion of the course, the students will be able to:	Mapped
CO2Analyzing the challenges of communication in power systems and developing strategies to mitigate these challenges.K4CO3Familiarizing with the types of communication networks used in power systems, including wired, wireless, and hybrid networks, and their applicationsK2CO4Developing skills to design and evaluate modern communication systems for power systems based on system requirements, performance criteria, and network topologiesK5CO5Exploring the role of communication systems in the integration of renewableK2	CO1	Understanding the fundamental concepts of communication systems in power systems, including communication protocols, architectures, and technologies.	K1
CO3 Familiarizing with the types of communication networks used in power systems, including wired, wireless, and hybrid networks, and their applications K2 CO4 Developing skills to design and evaluate modern communication systems for power systems based on system requirements, performance criteria, and network topologies K5 CO5 Exploring the role of communication systems in the integration of renewable K2	CO2	Analyzing the challenges of communication in power systems and developing strategies to mitigate these challenges.	K4
CO4 Developing skills to design and evaluate modern communication systems for power systems based on system requirements, performance criteria, and network topologies K5 CO5 Exploring the role of communication systems in the integration of renewable K2	CO3	Familiarizing with the types of communication networks used in power systems, including wired, wireless, and hybrid networks, and their applications	K2
CO5 Exploring the role of communication systems in the integration of renewable K2	CO4	Developing skills to design and evaluate modern communication systems for power systems based on system requirements, performance criteria, and network topologies	K5
energy sources into power grids and developing strategies for efficient energy management.	CO5	Exploring the role of communication systems in the integration of renewable energy sources into power grids and developing strategies for efficient energy management.	K2

COs/Pos	PO1	PO2	PO3	PO4
CO1	3	THE PARTY OF	2	3
CO2	3		2	2
CO3	3	Ter /	2	3
CO4	3		2	2
CO5	3		2	3
23PSPE15	3		2	3
ight, 2 – Moderate, 3 –	Substantial			1

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	30%	30%	20%	20%	-	-	100%				
CAT2	20%	20%	20%	20%	20%	-	100%				
Individual	30%	30%	20%	20%	-	-	100%				
Assessment1/		more		7							
Case study1/											
Seminar											
1/Project1											
Individual	20%	20%	-	20%	20%	20%	100%				
Assessment2/											
Case study2/											
Seminar 2											
/Project2											
ESE	20%	20%	20%	20%	20%	-	100%				

	ELECTROMAGNETIC INTERFEREN	ICE AND						
23PSPE16	COMPATIBILITY IN SYSTEM DI	ESIGN	SEN	MES	TER	III		
	(Common to PSE & PED)							
PREREQUI	SITES	CATEGORY	L	Т	Р	С		
	NIL	PE	3	0	0	3		
Course	To Outline the EMI/EMC problems and provide info	ormation for solution	ons to	mitig	gate I	EMI		
Objectives	through system level design as per prescribed standards	. To impart comprel	hensiv	e insi	ght ał	oout		
	the current EMC standards and about various measurem	he current EMC standards and about various measurement techniques.						
UNIT – I	EMI ENVIRONMENT			9	Peri	ods		
EMI/EMC con	ncepts and definitions - Sources of EMI- conducted and	radiated EMI- Pract	ical E	xperie	ences	and		
Constraints –	An Overview of EMI and EMC - Analytical exampl	es – Celestial Elect	tromag	gnetic	Nois	se –		
Lightning disc	harge – ESD - EMP.							
UNIT – II	OPEN AREA TEST SITES, MEASUREMENT OF RI AND CI					ods		
Open area Te	st site and measurements - Measurement precautions,	errors and site imp	erfect	ions	– Ter	rain		
roughness imp	perfections, normalized site attenuation - Antenna fac	tor measurement -	RI m	easur	emen	ts –		
Anechoic cha	mber - TEM cell - Reverberating chamber - GTH	EM – Comparison.	CI r	neasu	remei	nt -		
characterizatio	n of conduction currents and voltages - conducted EM n	noise on power supp	ly line	es - C	Condu	cted		
EMI from equ	ipment, immunity, detectors and measurement.							
UNIT – III	EMI MITIGATION	77		9	Peri	ods		
Grounding –	Shielding - Electrical Bonding - EMI Filters - cha	aracteristics – Powe	er line	filte	er des	ign,		
installation an	d evaluation - EMI suppression cables - Connectors -	gaskets – isolation	transf	forme	ers – o	opto		
isolators – trar	sient and surge suppression devices – EMC accessories.	10						
UNIT – IV	SIGNAL INTEGRITY AND EMC STANDARDS	11		9	Peri	ods		
SI problems	- analysis – issues in design – modeling and simula	tion. Standards for	EMI	/ EN	IC –	BS,		
FCC, CISPR	, IEC, EN - IEEE/ANSI standards - Military stan	dards - MIL STD	461E	E/462	2 – V	'DE		
standards – E	MI/EMC standards in Japan. Comparison.							
UNIT – V	EMC DESIGN OF PCBs	7.4A		9	Peri	ods		
PCB Traces	impedance - Routing, Control, Power Distribution	Decoupling - Zo	ning,	Mot	herbo	oard		
Designs and I	Propagation Delay Performance Models.	0/						
Contact Peri	iods:	A						
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 Pe	riods					

REFERENCES

1	Yang Zhao, Wei Yan, Jun Sun, Mengxia Zhou, Zhaojuan Meng, "Electromagnetic Compatibility						
	Principles and Applications", Springer Singapore, 2021.						
2	Paolo Stefano Crovetti, "Electromagnetic Interference and Compatibility", Electronics, 2021.						
3	C.Saranya, "Electromagnetic Interference and Compatibility", AR Publications, 2018.						
4	S.Janani, R. Ramesh Kumar, "Electro Magnetic Interference and Compatibility", Sruthi						
	Publishers, 2013.						

COUR	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Mapped
CO1	Review the basics of EMI/ EMC	K4
CO2	Demonstrate the EMI measurements, diagnose and solve basic electromagnetic compatibility problems.	K4
CO3	Recognize the EMI mitigation technologies and able to design filters	K2
CO4	Categorize various standards for EMC	K4
CO5	Design the Cable routing & connection and understand the Interconnection Techniques for EMI free system in PCB.	K4

Course Articulation Matrix							
COs/POs	PO1	PO2	PO3	PO4			
CO1	2	-	2	1			
CO2	2	-mm	2	1			
CO3	2	1 And and a second	2	1			
CO4	2	a prine at	2	1			
CO5	2	Carlo Carlo	2	1			
23PSPE16	2	-	2	1			
1 – Slight, 2 – Moderate, 3 –	Substantial	- GJ /	/	•			
		8 //					

ASSESSMEN	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	30%	40%	15%	15%	-	-	100%			
CAT2	15%	10%	25%	30%	20%	-	100%			
Individual Assessment1/ Case study1/ Seminar 1/Project1	10%	20%	20%	30%	20%	-	100%			
Individual Assessment2/ Case study2/ Seminar 2 /Project2	25%	40%	20%	15%	_	-	100%			
ESE	30%	25%	15%	20%	10%	-	100%			

DISTRIBUTED GENERATIONS AND MICROGRID				AEC	тгр	ттт	
23P5PE17	(Common to PSE & PED)		SEMESTER L T P 3 0 0 ntegration and kr 9 Peri 9 Peri 9 Peri s - Review of Sesystems: Batterie 9 Peri enewable Energy 9 Peri d Microgrid – Po - Case Studies. 9 Peri 9 Peri 0 Microgrid – Po - Case Studies. 9 Peri 9 Peri 0 oop Control, Vir 5 Simulation Studie 9 Peri	111			
PREREQUIS	ITES	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
Course	To introduce the concept of distributed generation,	microgrid, grid int	egrati	on ai	nd kr	low	
Objectives	the recent developments on microgrid technology.						
UNIT – I	DISTRIBUTED GENERATION			9	Peri	ods	
Trends in Ener	gy Consumption, Conventional and Nonconvention	al Energy Sources	- Rev	view	of S	olar	
Photovoltaic a	nd Wind Energy Conversion Systems - Fuel Cells-	Energy storage sy	stems	: Ba	tterie	es –	
ultra capacitor	s - fly wheels-Distributed Generation: Concept an	d topologies, Ren	ewab	le Er	nergy	in in	
Distributed Ge	neration-Sitting and sizing of DGs						
UNIT – II	JNIT – II INTRODUCTION TO MICROGRID				Peri	ods	
Introduction –	sypes – Structure and configuration of a Microgrid – A	C, DC and hybrid	Micro	grid	- Po	wer	
Electronic Inter	faces for Microgrid – Energy Management Control Strateg	ies of a Microgrid -	Case S	Studie	es.		
UNIT – III	CONTROL AND OPERATION OF AC MICRO	GRID		9 Periods		ods	
Hierarchical C	ontrol: Primary, Secondary and Tertiary Control-Pri-	mary Control: Droo	op Co	ntrol	, Vir	tual	
Synchronous C	Generator Control for voltage source converter - Seco	ndary Control – Si	mulat	ion S	tudie	es	
UNIT – IV	CONTROL AND OPERATION OF DC MICRO	GRID		9	Peri	ods	
Hierarchical C	Control: Primary, Secondary and Tertiary Control	- Primary Contro	l: Dr	oop	Cont	rol,	
Virtual Inertia	Control – Secondary Control: Centralized and Decen	tralized Control – S	Simul	ation	Stuc	lies	
UNIT – V	GRID INTEGRATION OF MICROGRIDS	5		9	Peri	ods	
Modes of open	ation and control of microgrid: Grid connected and	islanded mode, A	ctive	and	reac	tive	
power control,	protection issues, anti-islanding schemes, stability a	nd power quality is	ssues	- IEI	EE 1.	547	
Standard for Interconnecting Distributed Generation to Electric Power Systems, concept of multi							
microgrid.							
Contact Perio	ds:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0	Periods Tota	al: 45	Peri	ods		

REFERENCES

H. Bevrani, Bruno Francois and ToshifumiIse, "Microgrid Dynamics and Control", Wiley, 2017.
Li Fusheng, Li Ruisheng and Zhou Fengquan, "Microgrid Technology and Engineering Application", Elsevier, 2016.
Egingen Hassen and Math. H. L. Bellen, "Integration of Distributed Conception in the Bayer System", John

Fainan Hassan and Math H. J. Bollen, "Integration of Distributed Generation in the Power System", John Wiley and Sons. 2011.

COUR	SE OUTCOMES:	Bloom's
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Explain the concept of distributed generation and microgrid	K2
CO2	Summarize classification and control aspects of microgrid	K2
CO3	Analyze the configurations and control aspects of AC microgrid	K4
CO4	Analyze the configurations and control aspects of DC microgrid.	K4
CO5	Evaluate and apply the knowledge to understand the grid integration of microgrid	K5

Course Articulation Matrix							
COs/POs	PO1	PO2	PO3	PO4			
CO1	3	-	-	3			
CO2	3	-	3	-			
CO3	3	-	3	-			
CO4	3	-	3	-			
CO5	3	-	3	3			
23PSPE17	3	-	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10%	30%	30%	20%	10%	-	100%	
CAT2	10%	30%	30%	20%	10%	-	100%	
Individual Assessment1 / Case study1/ Seminar 1/Project1	-	30%	30%	20%	10%	10%	100%	
Individual Assessment2 / Case study2/ Seminar 2 /Project2	-	30%	30%	20%	20%	-	100%	
ESE	10%	30%	30%	20%	10%	-	100%	

	INSULATION MATERIALS AND TEST	TING FOR				
23PSPE18	INDUSTRIAL APPLICATION	S	SEMESTER III			
	(Common to PSE & PED)					
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course Objectives	To familiarize with insulation materials, testing and n	neasurement for inc	lustrial	appli	cation	s.
UNIT – I	INSULATION MATERIALS AND MEASUREM	ENTS			9 Per	shoi
Dielectrics and	insulators resistance of insulation materials tests ar	nd models Electric	cal stre	ss - 1	Vecha	nical
stress - Chemical Attack - Thermal stress - Environmental contamination - Predictive Maintenance - Benefit of						
new technolog	v – Measurement of Insulation Resistance – Operation	ion of insulation	Resista	nce to	ester -	The
Guard Terminal	- Evaluation and Interpretation of Results.					
UNIT – II	INSULATION TESTS				9 Per	shoi
Diagnostic High	Voltage Insulation Tests - Spot reading test - Time V	s Resistance test	Polari	zatio	index	x test
- Step voltage te	est - Ramp voltage test - Dielectric discharge test - Di	fferent Problems/d	ifferen	tests	- Pote	ntial
sources of error	/ensuring Quality test - Results - Test leads - Making	Measurements abo	ve 100	GO	- Acci	iracy
statements - De	livery of stated voltage - Interference Rejection - Rule	es on testing and co	mnari	ισ - C	'AT R	ating
- CAT Rating G	uidelines – Importance of CAT rating - CAT Rating ba	sic statistics	mparn	15 0		uung
	TESTING INSULATION RESISTANCE OF BOT	TATING MACHI	NERV		0 Por	inde
Effects of tom	Arotura Effects of Humidity Ingress Protection	High Dotontial	tosting		rront	$\frac{1003}{(nA)}$
Readings Vs R	esistance (MO) Burn capability Drying out elec	trical equipment	Test	tom (discha	(IIA)
Charging time t	for large equipment Motor driven insulation tester	Test Lead Desi	ion S	ionifi	cont s	afoty
enhancements	Things to consider for safe operation Safety Way	rnings Electrical	ign - 5 incula	tion f	Cant S	ating
machines Insul	ating liners separators sleeving and stator winding ins	ulation	IIISula		01 101	ating
	FAPTH DESISTIVITY AND MEASUREMENT				0 Dor	inda
Eastors offectin	A Minimum Forth Desistance Desis Definitions Des	winomanta fan a Ca	od Cre	un din	9 Fer	lous
National Electric	ical Code Maximum Valuas Nature of Forth L	Unements for a Go		unun.	ig Sysi al :n I	Conth
Rational Electric	ing Basic Test Methods for Earth Desistance Effects	of Different Perform	ines III	robal	u III I Locati	2arun
Lezy Spikes St	upplementary Tests	s of Different Refer	ence r		Locali	0115 -
Lazy Spikes - S	A COUDATE MEASUDEMENT OF FADTU DE	SISTANCE FOR	TADO		0 Day	
ONII - V	GROUND	SISTANCE FOR	LAK	τĽ	9 Per	10 a s
Testing Challen	ges in Large Ground Systems - Addressing the Testir	g Challenges in La	arge G	ound	Syste	ms –
Nomograph Gu	ide to Getting Acceptable Earth Resistance - Clamp-G	On Method – Attac	ched R	od Te	chniqu	ies –
Measurement of	f the Resistance of Large Earth Electrode Systems: I	ntersecting – Curv	es Me	hod -	- Test	as a
Large Substatic	on – General Comments – Slope Method – Four P	otential Method –	Star	Delta	Meth	od –
Determining To	ugh and Step Potential – Ground Testing Methods Cha	rt.				
Contact Period	S:					
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Per	iods Total: 4	15 Peri	ods		
DEFEDENCE	q					
1 André O D	5 esiarlais and Robert R Zarr "Insulation Materials."	Testing and Applic	rations	" ⊿ th	Vol	ume
ASTM Intern	national, March-2002		unons	, ,	101	unic,
2 Andrew R. H.	lileman, "Insulation Coordination for Power Systems	", CRC Press, June	e 1999.			
3 Joseph F. K	impflen, "Insulation Materials, Testing, and Applicati	ons", ASTM Intern	ationa	l, Jan	1990.	
4 George L S	hew, "Earth Resistivity Measurement and its Applic	cation to Layer Pr	oblems	s", Ui	niversi	ty of

Southern California Press, 1936.
COUR Upon c	Bloom's Taxonomy Mapped	
CO1	Articulate different materials for insulation	K2
CO2	Illustrate various measurements and tests of insulators in power system.	K2
CO3	Comprehend the approaches of calculations of insulation specifications.	K4
CO4	Practice the requirements of insulation as applied to large power system.	K3
CO5	Familiarize with the measurement of earth resistance	K2

Course Articulation Matrix								
COs/POs	PO1	PO2	PO3	PO4				
CO1	2	-	2	1				
CO2	2	-	2	1				
CO3	2	1	2	1				
CO4	2	mil	2	1				
CO5	2		2	1				
23PSPE18	2 ⁰ 6.06	bicub 1	2	1				
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %			
CAT1	30%	40%	15%	15%	-	-	100%		
CAT2	15%	10%	25%	30%	20%	-	100%		
Individual	10%	10%	20%	30%	20%	10%	100%		
Assessment1/		// 0.		6 N					
Case study1/		1 8							
Seminar		1							
1/Project1	8	AL IS							
Individual	25%	40%	20%	15%	- i	-	100%		
Assessment2/	2		2		8				
Case study2/		RUNN	100	Distio					
Seminar 2		T.T. C.L.		A LAND					
/Project2		00	THE REAL	39					
ESE	30%	25%	15%	20%	5%	5%	100%		

	MODERN POWER ELECTRONIC	OWER ELECTRONICS FOR						
23PSPE19	TRACTION APPLICATION	S	SEMESTER II					
	(Common to PSE & PED)							
PREREQUIS	ITES	CATEGORY	L	Т	Р	С		
	SOLID STATE DRIVES	PE	3	0	0	3		
Course	To annotate the theoretical concepts of dynami	ics of electric trad	ctions	usi	ng m	odern		
Objectives	power electronics.							
UNIT – I	INTRODUCTION TO ELECTRIC DRIVES				8 Pe	eriods		
Basic concepts	, Characteristics and operating modes of drive mot	tors, Four quadran	t driv	es, S	elect	ion of		
motors and rati	ng- Desirable characteristics of Traction motors-M	lotors used for Tra	action	pur	pose.			
UNIT – II	DC MOTOR DRIVES				10 Pe	eriods		
Single phase a	nd three phase controlled rectifier fed dc motors	- Dual converter	with	circı	ılatin	g and		
non-circulating	current controlled drives - Closed loop control	ol of dc motor d	lrives	, An	alysi	s and		
performance cl	naracteristics of chopper fed dc motors - Analysi	s of separately ex	cited	dc 1	noto	r with		
continuous arm	nature current and discontinuous armature current	- Analysis of dc s	series	mot	or dr	ives –		
Starting - speed	d control - Motoring and braking operations - Rev	versible drives - N	Aultip	hase	e cho	pper -		
Phase locked lo	pop control of dc drive.							
UNIT – III	INDUCTION MOTOR DRIVES				9 Pe	eriods		
Stator voltage	control of induction motor, Variable voltage va	riable frequency	(VVV	/F) (opera	tion -		
Voltage source	inverter (VSI) fed induction motor drive - Static	c rotor resistance	contro	ol - S	Slip]	power		
recovery system	ms - Operation with unbalanced source voltages	s and unbalanced	rotor	imj	pedai	nces -		
Effect of time	harmonics on the motor performance - Braking	- closed loop con	trol -	Fiel	ld or	iented		
control - Comp	arison of ac and dc drive.							
UNIT – IV ELECTRIC TRACTION 9 Periods								
General feature	es of electrical traction, Mechanics of train move	ement, Nature of t	ractio	n lo	ad, S	peed-		
time curves, Ca	alculations of Traction drive rating and Energy co	nsumption, Train	resist	ance	, Adl	nesive		
weight and Co	efficient of Adhesion, Tractive effort for accelerat	ion and propulsion	n, Pov	ver a	nd E	nergy		
output from dr	iving axles, Methods of speed control and brakin	g of motors for tr	action	n loa	d, E	lectric		
drive systems f	or electric traction.							
UNIT – V	TRACTION MOTORS AND CONTROL	-38 ·			9 Pe	eriods		
Methods of sta	rting and speed control of D.C Traction motors-R	heostatic Control-	- Ener	gy s	aving	g with		
plain Rheostatic control Series-parallel control- Energy saving with series parallel starting - Shunt								
Transition -Bridge-Transition Drum control- contactor type bridge Transition controller -Metadyne								
control- Multiple unit control -Regenerative braking.								
Contact Periods:								
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Per	iods Total: 45 I	Period	ls				
REFERENCES	5:							

1 G.K. Dubey, "Fundamental of Electrical Drives", Narosa Publication, Reprint 2015

2 B.K. Bose, "Power Electronics & Variable Frequency drive", IEEE press, 1997

3 K. Pillai, "First Course on Electrical Drives", New Age International 3rdedition 2017.

4 VedamSubramanyam, "Electric Drives– concepts and applications", Tata McGraw Hill, 2011.

5 C. Garg, "Utilization of Electrical Power and Electrical Traction", Khanna Publication. 1990.

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the power converters for traction applications.	K4
CO2	Analyze the performance of dc motor drives and induction motor drives for various	K4
	operating conditions.	
CO3	Estimate energy consumption rating of motor for traction application.	K5
CO4	Discriminate various control methods for electrical traction.	K6
CO5	Apply the knowledge to identify the suitability of the motor for traction application.	К3

Course Articulation Matrix

COs/POs	PO1	PO2	PO3	PO4		
CO1	2	1	1	2		
CO2		- 1000	1	2		
CO3	2			3		
CO4	3 416	a grund a	-	3		
CO5	2	TERES	3	2		
23PSPE19	3		2	3		
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	30%	20%	10%	20%	-	100%		
CAT2	-	30%	20%	30%	10%	10%	100%		
Individual Assessment1/ Case study1/ Seminar 1/Project1	20%	10%	10%	30%	30%	-	100%		
Individual Assessment2/ Case study2/ Seminar 2 /Project2	-	20%	20%	30%	20%	10%	100%		
ESE	10%	20%	30%	20%	20%	10%	100%		

22DCDE20	22PSPE20 POWER QUALITY ASSESSMENT AND MITIGATION SEL					SEMESTED II		
251 51 620	(Common to PSE & PED)		J E	VILC		× 11		
PREREQUIS	ITES	CATEGORY	L	Τ	Р	С		
	NIL	PE	3	0	0	3		
Course	Course To identify, analyze and create solutions for the power quality problems in power							
Objectives	system networks.							
UNIT – I	INTRODUCTION			9	Peri	iods		
Importance of p	power quality - Terms and definitions as per IEEE s	td.1159 for transier	nts, sl	nort a	and l	ong		
duration voltag	ge variations, interruptions, short and long voltage	e fluctuations, imb	alanc	e, fl	licke	rs -		
Symptoms of p	poor power quality- Definitions and terminology of	f grounding- Purpo	se of	grou	ındiı	ngs-		
Good groundin	g practices - problems due to poor grounding.							
UNIT – II	ANALYSIS OF CONVENTIONAL MITIGATI	ON METHODS		9	Peri	iods		
Classical load	balancing problem: Open loop balancing, Closed	loop balancing, c	urrer	nt ba	lanc	ing,		
Harmonic redu	action, Voltage sag reduction. Analysis of pow	er outages, Analy	sis c	of ur	ıbala	ince		
condition: Syn	nmetrical components in phasor quantities, Insta	ntaneous symmetr	ical	com	pone	ents,		
Instantaneous	real and reactive powers - Analysis of distortion:	On-line extraction	n of	fund	lame	ntal		
sequence comp	oonents from measured samples - Harmonic indice	s – Analysis of vo	ltage	sag	Det	torit		
Edison sag sco	re, Voltage sag energy, Voltage Sag Lost Energy	Index (VSLEI)- Ai	nalys	is of	vol	tage		
flicker, Reduce	d duration and customer impact of outages.			_				
UNIT – III	VOLTAGE INTERRUPTIONS	6		9	Peri	ods		
Definitions -Ve	oltage sags versus interruptions - Economic impac	t, Major causes an	d co	nseq	uenc	es -		
characteristics,	assessment, Influence of fault location and fault	It level on voltage	e sag	- A	Areas	s of		
vulnerability,	Assessment of equipment sensitivity, Voltage sa	ng limits for com	puter	equ	iipm	ent-		
CBEMA, ITIC	C, SEMI F 42curves, Report of voltage sag analy	sis, Voltage sag in	dices	s, M	itiga	tion		
measures for ve	oltage sag- DSTATCOM, UPQC,UPS, DVR, SMEs	s, CVT, utility solut	ions	and	end	user		
solutions.		194						
UNIT – IV	FLICKERS AND TRANSIENT VOLTAGES	198		9	Peri	ods		
RMS voltage	variations in power system, complex power, volta	ge regulation and	per u	init s	syste	m -		
Basic power f	low and voltage drop - Devices for voltage regul	ation and impact of	of rea	activ	e po	wer		
management -	Causes and effects of voltage flicker - Short term	and long term flic	kers	-Me	thod	s to		
reduce flickers	- Transient over voltages, impulsive transients, sv	vitching transients	- Ef	fect	of si	ırge		
impedance and	line termination - control of transient voltages.							
UNIT – V	WAVEFORM DISTORTION			9	Peri	ods		
Definition of h	armonics, inter-harmonics, sub-harmonics- Causes	and effects - Volta	ige v	ersus	s cur	rent		
distortion, Fourier analysis, Harmonic indices, A.C. quantities under non-sinusoidal conditions, Triplet								
harmonics, characteristic and non characteristic harmonics- Series and Parallel resonances-								
Consequence -	Consequence - Principles for controlling and Reducing harmonic currents in loads, K-rated transformer							
-Computer tool	s for harmonic analysis- Locating sources of harmo	nics, Harmonic filte	ering	- Pas	sive	and		
active filters - I	Modifying the system frequency response- IEEE Ha	rmonic standard 51	9-19	92.				
Contact Perio	ds:		_					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Perio	ds Total: 45 Peri	iods					

REFERENCES

-	
1	Arrillaga J. and Watson N., "Power System Harmonics", 2 nd edition on; John Willey & sons, 2003
2	M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press,
	series on Power Engineering, 2000.
3	Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power System
	Quality", Second Edition, McGraw Hill Publication Co., 2008.
4	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).
5	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis",
	John Wiley and Sons, 2001.
6	IEEE Std. 519-1992/ IEEE Std. 1159 IEEE recommended practices and requirements for harmonics
	control in electrical power system.

COUR Upon c	Bloom's Taxonomy Mapped	
CO1	Acquire knowledge about the power quality issues and standards like IEEE, IEC on voltage, Frequency and harmonics.	K1
CO2	Recognize the practical issues in the power system	K2
CO3	Articulate the concepts of harmonics	K2
CO4	Analyze the impact of power electronic devices and techniques in power system	K4
CO5	Develop trouble shooting skills and innovative remedies for various power quality problems in power system	K5

Course Articulation Matrix								
COs/Pos	PO1	PO2	PO3	PO4				
CO1	3		2	2				
CO2	3	2	3	3				
CO3	2	1-1	2	2				
CO4	3		3	2				
CO5	2	1	3	2				
23PSPE20	3	P	3	2				
1 – Slight, 2 – Moderate, 3 – Substantial								

1990 - 190 -

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %		
CAT1	20%	50%	-	10%	20%	-	100%	
CAT2	20%	20%	10%	20%	30%	-	100%	
Individual	30%	30%	-	20%	20%	-	100%	
Assessment1/								
Case study1/								
Seminar								
1/Project1								
Individual	20%	40%	-	20%	20%	-	100%	
Assessment2/								
Case study2/								
Seminar 2								
/Project2								
ESE	30%	30%	-	10%	30%	-	100%	

23SEOE01	BUILDING BYE-LAWS AND CODES OF PRACTICE								
(Common to all Branches)									
PREREQUISITES CATEGORY L T P									
	NIL OE 3 0 0								
Course T	Course To impart knowledge on the building bye - laws and to emphasize the significant								
Objectives of	f codes of practice in construction sector.								
UNIT – I II	NTRODUCTION TO BUILDING BYE-	LAWS		9	Perio	ds			
Introduction to I	Building Bye Laws and regulation, their n	eed and relevance,	Ger	neral	defini	tions			
such as building	g height, building line, FAR, Ground Co	verage, set back l	ine.	Intro	ductio	on to			
Master Plan a	nd understanding various land uses	like institutional,	res	identi	ial et	c			
Terminologies o	f Building bye-laws.								
UNIT – II R	OLE OF STATUTORY BODIES			9	Perio	ds			
Role of variou	s statutory bodies governing building	works like develo	opm	ent a	uthor	ities,			
municipal corpo	rations etc. Local Planning Authority, Tow	vn and Country pla	nnii	ng org	ganisa	tion,			
Ministry of urba	n development.	Billie							
UNIT – III A	PPLICATION OF BUILDING BYE-LA	WS		9	Perio	ds			
Interpretation of	f information given in bye laws including	ongoing changes a	is sh	nown	in va	rious			
annexure and ap	opendices. Application of Bye-laws like st	ructural safety, fire	e saf	fety, e	earthq	uake			
safety, basement	t, electricity, water, and communication lin	es in various buildi	ng t	ypes.					
UNIT – IV II	NTRODUCTION TO CODES OF PRAC	CTICE		9	Perio	ds			
Introduction to	various building codes in professional pr	actice - Codes, re	gula	tions	to pr	otect			
public health, s	safety and welfare - Codes, regulations	to ensure complia	nce	with	the	local			
authority.		11							
UNIT – V A	PPLICATION OF CODES OF PRACT	ICE		9	Perio	ds			
Applications of	various codes as per various building	types. Bureau of	Inc	dian	Stand	ards,			
Eurocode – Intro	oduction to other international codes.	13							
Contact Period	s:	2938				_			
Lecture: 45 Per	riods Tutorial: 0 Periods Practice	al: 0 Periods	Fota	al: 45	Perio	ods			
REFERENCES :									
1 "National Building Code of India 2016 – SP 7", NBC 2016, Bureau of Indian Standards.									
2 "Model Buil	2 "Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization,								
Ministry of Housing and Urban Affairs, Government of India.									
3 "Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.									

4 Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the building bye-laws in planning, design and construction works.	K3
CO2	Familiarize with the role of various statutory bodies.	K2
CO3	Execute safety related work practices in the construction sector.	K3
CO4	Ensure compliance with the rules and regulations in design and construction	K3
	practices.	
CO5	Perform design and construction practices based on national and	K3
	international codal provisions.	

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	3	1	1	2	3				
CO2	1	3	1	1	2	3				
CO3	1	3	1	1	2	3				
CO4	2	3	1	1	2	3				
CO5	2	3	1	1	2	3				
23SEOE01	2	3	1	1	2	3				
1 - Slight, 2 - Moderate	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*	0	and the second	1							
CAT1	40	40	20		-	-	100			
CAT2	40	40	20		-	-	100			
Individual	40	40	20	1	-	-	100			
Assessment 1	5		-	· 77						
/ Case Study	0	1 11								
1/ Seminar 1 /			$ = \sqrt{1} $							
Project1				× 11						
Individual	40	40	20	11	-	-	100			
Assessment 2	1	3		11						
/ Case Study	1	0	-	1						
2/ Seminar 2 /	A			A.						
Project 2		100	1	193						
ESE	40	40	20	L.	-	-	100			
		Curryon S.	632	Diculo /						
		105-200	-Storel2	STA						

22650502	PLANNING OF SM	MART CITIES								
235EOE02	(Common to all Branches)									
PREREQUISITES CATEGORY L 7										
	NIL	OE	3	0	0	3				
Course	To have an exposure on planning of smart	cities with consid	eratio	n of	the re	ecent				
Objectives challenges and to address the importance of sustainable development of urban										
	area.									
UNIT – I	SMART CITIES DEVELOPMENT	POTENTIALS	AND	9	Peri	ods				
Perspectives	of Smart Cities: Introduction and Overvi	iew - Implemen	tation	Ch	alleng	ges -				
Methodologic	al issues - Spatial distribution of startup cities	s – Re imagining	postin	dust	rial ci	ties -				
Implementatio	on Challenges for Establishing Smart U	Jrban Informatio	n an	d k	Knowl	edge				
Management	System.									
UNIT – II	SUSTAINABLE URBAN PLANNING			9) Peri	ods				
Optimising G	reen Spaces for Sustainable Urban Planning -	3D City Models	for Ex	tract	ting U	Jrban				
Environmenta	I Quality Indicators - Assessing the Rainwate	er Harvesting Pote	ential	- Th	e Stra	tegic				
Role of Green	Spaces - Monitoring Urban Expansion.									
UNIT – III	ENERGY MANAGEMENT ANI	D SUSTAINA	BLE	9) Peri	ods				
	DEVELOPMENT			_		_				
Alternatives f	for Energy Stressed Cities - Social Acceptab	oility of Energy -	Effic	ient	Light	ing -				
Energy Mana	gement - Urban Dynamics and Resource Co	nsumption - Issue	es and	Cha	alleng	es of				
Sustainable T	ourism - Green Buildings: Eco-friendly Techn	ique for Modern (Cities.							
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR	R SMART CITIE	<u>S</u>	9]	Perio	ds				
Assessment o	of Domestic Water Use Practices - Issue of (Governance in Ur	ban V	Nate	r Sup	ply -				
Assessment o	of Water Consumption at Urban Household	Level - Water Su	istaina	abilit	y - S	0C10-				
economic De	terminants and Reproductive Healthcare Sys	stem - Problems a	and D	evel	opme	nt of				
Slums.	AL JA	3								
UNIT – V	INTELLIGENT TRANSPORT SYSTEM	199		9]	Perio	ds				
Introduction t	to Intelligent Transport Systems (ITS) - The	Range of ITS Ap	oplica	tions	-Net	work				
Optimization	- Sensing Traffic using Virtual Detectors -	Vehicle Routing	and	Pers	onal	route				
information -	The Smart Car - Commercial Routing and I	Delivery - Electron	nic To	oll C	ollect	ion -				
The Smart Ca	ard - Dynamic Assignment - Traffic Enforce	ement. Urban Mo	bility	and	Econ	omic				
Development										
Contact Peri	ods:					_				
Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods										
REFEREN	ICES									
1 Poonam S	harma, Swati Rajput, "Sustainable Smart C i	ities In India Cha	illeng	es A	nd Fi	uture				
Perspectiv	pes", Springer 2017 Co.(P) Ltd. 2013.									
2 Ivan Nune 2016.	es Da Silva, "Rogerio Andrade Flauzino-S	Smart Cities Tech	nolog	gies-	Exli4	eva",				
3 Stan Mc	Clellan, Jesus A. Jimenez, George Kou	titas "Smart C er International P	ities_	Ap inc	plicat	tions,				

4 Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems And Smart Cities", Springer, 2015.

5 Pradip Kumar Sarkar and Amit Kumar Jain, "Intelligent Transport Systems", PHI Learning, 2018.

COURS	SE OUTCOMES:	Bloom's		
		Taxonomy		
Upon co	Upon completion of the course, the students will be able to:			
CO1	Indicate the potential challenges in smart city development.	K2		
CO2	Select the different tools for sustainable urban planning.	K3		
CO3	Choose appropriate energy conservation system for smart cities.	K3		
CO4	Identify the proper method of water management system.	K3		
CO5	Apply Intelligent Transport System concepts in planning of smart city.	K3		

COURSE ARTICULATION MATRIX

	DO1	DO1	DO3	DO4	DO5	DOC					
COS/POS	POI	PO2	POS	P04	PO5	PO0					
CO1	1	-	2	3	1	1					
CO2	1	1 perm	$m_1 1$	3	2	1					
CO3	1	1	1.52	2	2	1					
CO4	169	- Carnod	01-114	2	1	1					
CO5	1	の学って	(TRICE)	3	1	-					
23SEOE02	1	1	2	3	2	1					
1 – Slight, 2 – Modera	1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY												
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*		1 1		11 4								
CAT1	25	45	30	-	-	-	100					
CAT2	25	45	30	- 3	-	-	100					
Individual	15	40	45	123	-	-	100					
Assessment	2		1									
1 / Case		Runut C	YEL	ALUM								
Study 1/		STE TO	Sec.15	STA								
Seminar 1 /		-013										
Project1												
Individual	10	45	45	-	-	-	100					
Assessment												
2 / Case												
Study 2/												
Seminar 2 /												
Project 2												
ESE	20	40	40	-	-	-	100					

GREEN BUILDING											
25520205		(Common	to a	all Branches)							
PREREQUI	SITI	ES		CATEGORY	7		Т	Р	С		
	NIL OE 3								3		
Course	То	introduce the different concepts	introduce the different concepts of energy efficient buildings, indoor								
Objectives	env	vironmental quality management, green buildings and its design.									
UNIT – I	IN	FRODUCTION						9 Per	iods		
Life cycle im	pact	s of materials and products - sustaina	able	design concep	ts –	sti	ateg	ies of	design		
for the Envir	onm	ent -The sun-earth relationship and t	he	energy balance	on	th	e eai	th's s	surface,		
climate, wind	l – So	olar radiation and solar temperature –	Sun	shading and so	lar r	ad	iatio	n on s	urfaces		
– Energy im	pact	on the shape and orientation of bu	ildi	ngs – Therma	pro	pe	erties	of t	uilding		
materials.											
UNIT – II	EN	ERGY EFFICIENT BUILDINGS						9 Per	iods		
Passive cool	ing a	and day lighting – Active solar an	d p	hotovoltaic- B	uildi	ng	ene	ergy a	inalysis		
methods- Bu	ildin	g energy simulation- Building energy	rgy	efficiency sta	ndar	ds	-Ligł	nting	system		
design- Light	ting	economics and aesthetics- Impacts of	of li	ghting efficien	icy -	-]	Energ	gy au	dit and		
energy target	ing- '	Technological options for energy man	age	ment.							
UNIT – III	IN	DOOR ENVIRONMENTAL QUAL	ITY	MANAGEM	ENI	Γ		9 Per	iods		
Psychrometry	/- Co	mfort conditions- Thermal comfort-	√ent	ilation and air	qual	ity	-Air	condi	tioning		
requirement-	Vis	sual perception- Illumination requi	irem	ent- Auditory	re	qu	irem	ent-	Energy		
management	optic	ons- Air conditioning systems- Energy	cor	servation in pu	mps	- I	Fans	and b	lowers-		
Refrigerating	mac	hines- Heat rejection equipment- Ener	gy (efficient motor	- Ins	sul	atior	1.			
UNIT – IV	GR	EEN BUILDING CONCEPTS	Š					9 Per	iods		
Green buildir	ng co	ncept- Green building rating tools- L	eeds	and IGBC co	les.	_]	Mate	rial se	election		
Embodied en	ergy	- Operating energy- Façade systems-	Ver	tilation system	s-Tr	an	sport	ation	- Water		
treatment sys	tems	- Water efficiency- Building economic	cs								
UNIT – V	GR	EEN BUILDING DESIGN - CASE	ST	UDY				9 Per	iods		
Case studies	- Bu	ilding form, orientation and site cons	side	rations; conser	atio	n	meas	sures;	energy		
modeling; he	eatin	g system and fuel choices; renewa	able	energy syste	ns;	m	ateri	al ch	oices -		
construction budget											
Contact Peri	ods:										
Lecture: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										
-											

REFERENCES:

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM,
	and Green Globes", Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design
	and Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating",
	2010.

COURS	SE OUTCOMES:	Bloom's		
		Taxonomy		
Upon completion of the course, the students will be able to:				
CO1	Apply the concepts of sustainable design in building construction.	K3		
CO2	Execute green building techniques including energy efficiency management	К3		
	in the building design.			
CO3	Establish indoor environmental quality in green building.	К3		
CO4	Perform the green building rating using various tools.	K3		
CO5	Create drawings and models of green buildings.	K3		

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	3	3	3				
CO2	3 84	3	2	3	3	3				
CO3	2	2	2	2	3	3				
CO4	2	3		3	3	3				
CO5	3	3	1	3	3	3				
23SEOE03	3	3	2	3	3	3				
1 – Slight, 2 – Modera	1 – Slight, 2 – Moderate, 3 – Substantial									

78

11

11

ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20		-	-	100
CAT2	40	40	20	100	-	-	100
Individual	40	40	20	200	-	-	100
Assessment 1 /	5	Comparison of		2-1-1			
Case Study 1/		1000	252 5	ALC: NO			
Seminar 1 /		10000	0.00	Y			
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

23FEOE04	ENVIRONMENT HEALTH AND S	SAFETY MANA	١GE	ME	NT		
25220204	(Common to all Branches)						
PREREQUIS	SITES	CATEGORY	L	Τ	Р	С	
	NIL	OE	3	0	0	3	
Course	To impart knowledge on occupational health	n hazards, safety	mea	asure	s at	work	
Objectives	place, accident prevention, safety management	and safety measu	res i	n inc	lustrie	es.	
UNIT – I	OCCUPATIONAL HEALTH HAZARDS			9	Perio	ds	
Occupation, H	lealth and Hazards - Safety Health and Manager	ment: Occupation	al H	ealth	Haza	ırds -	
Ergonomics -	Importance of Industrial Safety - Radiation	and Industrial H	azar	ds: 7	Types	and	
effects - Vibr	ation - Industrial Hygiene - Different air pollut	tants in industries	and	l the	ir effe	ects -	
Electrical, fire	and Other Hazards.						
UNIT – II	SAFETY AT WORKPLACE			9	Perio	ds	
Safety at Wor	kplace - Safe use of Machines and Tools: Saf	ety in use of diff	ferer	nt typ	pes of	unit	
operations - I	Ergonomics of Machine guarding - working in	n different workp	place	es -	Opera	ation,	
Inspection and	l maintenance - Housekeeping, Industrial lightin	g, Vibration and I	Nois	e.			
UNIT – III	ACCIDENT PREVENTION			9	Perio	ds	
Accident Prev	vention Techniques - Principles of accident pre	evention - Hazard	l ide	ntifi	catior	and	
analysis, Even	nt tree analysis, Hazop studies, Job safety an	alysis - Theories	and	l Pri	nciple	es of	
Accident caus	ation - First Aid: Body structure and functions -	Fracture and Dis	loca	tion,	Injuri	ies to	
various body	parts.						
UNIT – IV	SAFETY MANAGEMENT			9	Perio	ds	
Safety Manag	ement System and Law - Legislative measures	s in Industrial Saf	fety	- Oc	cupat	ional	
safety, Health	safety, Health and Environment Management, Bureau of Indian Standards on Health and Safety,						
IS 14489 stan	IS 14489 standards - OSHA, Process safety management (PSM) and its principles - EPA standards						
UNIT - VGENERAL SAFETY MEASURES9 Periods						ds	
Plant Layout	Plant Layout for Safety - design and location, distance between hazardous units, lighting, colour						
coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines -							
Work Permit System - Significance of Documentation - Case studies involving implementation of							
health and safety measures in Industries.							
Contact Perio	ods:						
Lecture: 45 P	Periods Tutorial: 0 Periods Practical: 0 I	Periods Total	l: 45	Per	iods		
ч							

REFERENCES:

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara
	Rao , Pharma Med Press, 1st edition, 2021.

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon c	ompletion of the course, the students will be able to:	Mapped				
CO1	Identify the occupational health hazards.	K3				
CO2	Execute various safety measures at workplace.	K3				
CO3	Analyze and execute accident prevention techniques.	K3				
CO4	Implement safety management as per various standards.	К3				
CO5	Develop awareness on safety measures in Industries.	K3				

Course Articulation Matrix

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	2	2	3	2
CO2	2	2	2	1	2	2
CO3	2	3	2	1	2	2
CO4	-1 8 4	and a links	up of a weather	2	2	2
CO5	rv)	991.00	and the	1	1	2
23EEOE04	17	2	2	1	2	2
1 – Slight, 2 – Moderat	e, 3 – Substar	ntial		3		

ASSESSMENT PATTERN – THEORY Remembering Understanding Applying Analyzing Evaluating Creating Total Test / (K3) % (K4) % (K5) % % Bloom's (K1) % (K2) % (K6) % Category* CAT1 25 35 20 10 5 5 100 CAT2 25 35 20 5 5 100 10 1124 Individual Assessment 1/ Case 30 10 20 40 100 Study 1/ Seminar 1 / Project 1 Individual Assessment 2/ Case 20 40 30 10 100 _ _ Study 2/ Seminar 2/ Project 2 ESE 25 35 20 10 5 5 100

23EEOE05 CLIMATE CHANGE AND ADAPTATION												
	(Continion to an branches)											
PREREQUISITES CATEGORY									L	Т	Р	С
			NIL				OE		3	0	0	3
Course	To u	nderstand	d the Earth	ı's clima	ite system, c	chang	ges and their	r effe	cts	on t	he e	arth,
Objectives	identi	ifying th	e impacts,	adaptati	ion, mitigatio	on c	of climate ch	nange	and	l for	: gai	ning
	know	ledge on	clean tech	nology, c	carbon tradin	g an	d alternate er	nergy	soui	rces.		
UNIT – I	EAR	TH'S CI	LIMATE S	SYSTEM	1					9 P	erio	ds
Introduction-C	limate	in the sp	otlight - Tl	he Earth'	's Climate M	[achi	ne – Climate	Clas	sific	atior	1- G	lobal
Wind Systems	– Tr	rade Wir	nds and the	e Hadle	y Cell – Th	ne W	Vesterlies –	Clou	d Fo	orma	tion	and
Monsoon Rain	s – Sto	orms and	Hurricane	s - The H	Hydrological	Cyc	ele – Global (Ocear	n Cir	cula	tion	– El
Nino and its Ef	fect -	Solar Ra	diation – T	'he Earth	's Natural Gr	reen	House Effec	t – Gı	een	Hou	ise C	Bases
and Global Wa	rming	– Carbo	n Cycle.	22	2		100					
UNIT – II	OBS	ERVED	CHANGE	S AND	ITS CAUSE	S				9 P	erio	ds
Observation of	Clima	ate Chan	ge – Chang	ges in pat	terns of temp	perat	ture, precipit	ation	and	sea	leve	l rise
– Observed eff	fects o	of Climat	te Changes	- Patte	rns of Large	e-Sca	le Variabilit	y –D	rivei	s of	Cli	mate
Change – Clin	nate 3	Sensitivi	ty and Fee	edbacks	- The Mor	ntrea	l Protocol -	-UNF	CCO	C –	IPC	C –
Evidences of C	hange	es in Clin	nate and En	vironme	nt – on a Glo	obal	Scale and in	India	- cl	imat	e ch	ange
modeling.	-					0						_
UNIT – III	IMPA	ACTS O	F CLIMA'	ТЕ СНА	NGE	1				9 P	erio	ds
Impacts of Cli	mate	Change	on various	s sectors	s – Agricult	ure,	Forestry an	d Eco	osyst	tem	– V	Vater
Resources – H	uman	Health –	Industry, S	Settleme	nt and Socie	ty –	Methods and	d Sce	nario	os —l	Proje	ected
Impacts for Dif	fferent	t Regions	s – Uncerta	unties in	the Projecte	d Im	pacts of Clin	nate	Chai	nge -	– Ri	sk of
Irreversible Ch	anges.	.		1 st			B.					
UNIT – IV	CLIN	MATE	CHANGE	ADAP	TATION A	ANE	MITIGA'	ΓΙΟΝ	1	9 P	erio	ds
	MEA	SURES	CONTR	and a second		inter						
Adaptation Str	rategy	/Options	in variou	is sector	rs – Water	T	Agriculture	Iı	nfras	truc	ture	and
Settlement inc	luding	g coastal	zones –	Human	Health - Te	ouris	sm – Transj	ort -	- Er	nerg	у —	Key
Mitigation Tec	hnolo	gies and	Practices	– Energ	gy Supply -	- Tr	ansport – B	uildir	ngs -	– In	dust	ry –
Agriculture – F	orestr	y - Carbo	on sequestr	ration – C	Carbon captur	re ar	nd storage (C	CS) -	- Wa	iste ((MS [*]	W &
Bio waste, Bior	Bio waste, Biomedical, Industrial waste – International and Regional cooperation.											
UNIT - VCLEAN TECHNOLOGY AND ENERGY9 Periods						ds						
Clean Develop	ment N	Mechanis	sm – Carbo	n Tradin	g - examples	s of f	uture Clean	Гechr	olog	gy –l	Biod	iesel
– Natural Com	post –	Eco- Fri	endly Plast	tic – Alte	ernate Energy	y – ł	Hydrogen – I	Biofu	els-	Sola	ır En	ergy
– Wind – Hydr	oelect	ric Powe	r – Mitigati	ion Effor	rts in India ar	nd A	daptation fur	nding				
Contact Perio	ds:											
Lecture: 45 Pe	eriods	Tuto	orial: 0 Per	riods	Practical	l: 0 I	Periods	Tota	al:45	5 Per	riods	5

REFERENCES

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C.
	Van Dam, Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical
	sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and
	Vulnerability", 2007
5	IPCC fourth assessment report – Working Group III Report, "Mitigation of Climate
	Change ", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on
	Climate Change, Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC
	Secretariat, Geneva, 2008.

COU	RSE OUTCOMES:	Bloom's
T	the second state of the se	1 axonomy
Upon	completion of the course, the students will be able to:	марреа
CO1	Classify the Earths climatic system and factors causing climate change and global warming.	K2
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and Observed effects of Climate Changes	K2
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible changes.	K3
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	K3
CO5	Discover clean technologies and alternate energy source for sustainable growth.	K3

Course Articulation Matrix							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	2	3	2	3	1	
CO2	3	2	2	2	3	2	
CO3	2	2	2	2	3	2	
CO4	3	2	2	2	2	2	
CO5	3	3	2	3	3	3	
23EEOE05	3	3	3	3	3	3	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSME	NT PATTERN -	- THEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual	20	30	40	10	-	-	100
Assessment							
1/ Case							
Study 1/							
Seminar 1 /							
Project 1							
Individual	20	30	40	10	-	-	100
Assessment		CALLER	1.00	NIRUNA .			
2/ Case		CV 1	yea an mo	EN-2			
Study 2/		C O'ET	STORAGE STORAGE				
Seminar 2/							
Project 2				= 77			
ESE	25	30	35	10	-	-	100

22EE0E06	WASTE TO ENE	RGY							
23EEOE00	(Common to all Branches)								
PREREQUIS	REQUISITES CATEGORY L T P								
	NIL	OE	3	0	0	3			
Course	To classify waste as fuel, introduce conversion	n devices, gain k	now	ledg	ge a	bout			
Objectives	Biomass Pyrolysis, demonstrate methods, factor	ors for biomass	gasit	ficat	ion,	and			
	acquire knowledge about biogas and its developn	nent in India.							
UNIT – I	INTRODUCTION			9 P	erio	ds			
Introduction t	o Energy from Waste: Classification of waste as	fuel – Agro based	l, Fo	orest	resi	idue,			
Industrial was	te - MSW – Conversion devices – Incinerators, Ga	sifiers, Digestors.							
UNIT – II	BIOMASS PYROLYSIS			9 P	erio	ds			
Biomass Pyro	lysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyro	lysis – Manufactu	ire (of ch	arco	oal –			
Methods – Y	ields and Applications - Manufacture of Pyro	lytic oils and ga	ses,	Yie	elds	and			
Applications.	Bighterin D								
UNIT – III	BIOMASS GASIFICATION	S)		9 P	erio	ds			
Gasifiers – F	ixed bed system - Downdraft and updraft gasi	fiers – Fluidized	bec	l ga	sifie	ers –			
Design, Const	truction and Operation – Gasifier burner arrangem	ent for thermal h	eatir	ng –	Gas	sifier			
Engine arrang	gement and electrical power - Equilibrium and l	Kinetic Considera	tion	s in	gas	sifier			
operation.		6							
UNIT – IV	BIOMASS COMBUSTION	l		9 P	erio	ds			
Biomass Com	bustion - Biomass Stoves - Improved Chullahs,	types, some exoti	c de	esign	is, F	ixed			
bed combust	ors, types - Inclined grate combustors - Flu	idized bed com	bust	ors,	des	sign,			
construction a	nd operation of all the above biomass combustors.	11							
UNIT – V	BIOENERGY SYSTEM			9 P	erio	ds			
Biogas: Prope	Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and								
status - Bio energy system - Design and constructional features - Biomass resources and their									
classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion									
- biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic									
digestion – Types of biogas plants – Applications – Alcohol production from biomass – Bio diesel									
production – Urban waste to energy conversion – Biomass energy programme in India.									
Contact Perio	ods:								
Lecture: 45 H	Periods Tutorial: 0 Periods Practical: () Periods Tota	l: 4	5 Pe	riod	ls			

REFERENCES:

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies",
	P Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste - to - Energy: Technologies and project Implementations", Marc J Rogoff,
	Francois Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications,
	Illustrated Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", Prabir ELSEVIE
	Publications, 2010.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	K3
CO3	Demonstrate methods and factors considered for biomass gasification.	K3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

Course Articulation Matrix									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	3	3	2	3	1			
CO2	3	2	2	2	3	1			
CO3	3	3	2	3	2	1			
CO4	3	2	2	3	3	1			
CO5	2	3	3	3	2	1			
23EEOE06	3	3	3	3	3	1			
I – Slight, 2 – Moderate	e, 3 – Substant	ial		10		L			

ASSESSME	ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*		AN JA								
CAT1	10	20	20	25	15	10	100			
CAT2	10	25	20	10	25	10	100			
Individual	-	15	35	50	-	-	100			
Assessment		100	C AND							
1/ Case										
Study 1/										
Seminar 1 /										
Project 1										
Individual	-	10	40	50	-	-	100			
Assessment										
2/ Case										
Study 2/										
Seminar 2/										
Project 2										
ESE	10	25	25	20	10	10	100			

	ENERGY IN BUILT ENVIRONMENT								
23GEU	JE07	(Com	mon to all Bran	ches)					
PRERE	QUISI	TES		CATEGORY	L	Τ	Р	С	
		NIL		OE	3	0	0	3	
Cour	se	To understand constructional en	ergy requiremen	ts of buildings,	ene	ergy	auc	lit	
Object	tive	methods and conservation of ene	rgy.						
UNIT	Г—І	INTRODUCTION				91	Peri	ods	
Indoor	activit	es and environmental control -	Internal and ex	sternal factors o	on e	ener	gy	use –	
Charact	teristics	of energy use and its manageme	ent -Macro aspec	t of energy use	in d	lwel	ling	s and	
its imp	lication	ns –Thermal comfort-Ventilation	and air qualit	y-Air-conditioni	ng	req	uire	ment-	
Visual p	percept	ion-Illumination requirement-Aud	itory requiremen	t.					
UNIT	'–II	LIGHTING REQUIREMENTS	IN BUILDING			91	Peri	ods	
The sur	n-earth	relationship - Climate, wind, so	lar radiation and	temperature - S	Sun	sha	din	g and	
solar ra	diation	on surfaces-Energy impact on the	e shape and orier	ntation of buildin	igs-	-Lig	htin	g and	
day ligh	nting: C	Characteristics and estimation, met	hods of day-ligh	ting–Architectur	al c	onsi	der	ations	
for day-	-lightin	g.	REF SEL	9					
UNIT-	-111	ENERGY REQUIREMENTS	N BUILDING			91	Peri	ods	
Steady	and u	nsteady heat transfer through v	vall and glazed	window-Standa	urds	to	th:	ermal	
perform	nance c	f building envelope- Evaluation of	of the overall the	ermal transfer- T	her	mal	gai	n and	
net hea	it gain	End-Use energy requirements-S	tatus of energy	use in building	gs-E	estir	nati	on of	
energy	use in a	building.							
UNIT-	-IV	ENERGY AUDIT				91	Peri	ods	
Energy	audit	and energy targeting-Technologi	cal options for	energy manager	men	t-N	atur	al and	
forced v	ventilat	ion–Indoor environment and air q	uality-Air flow a	and air pressure of	on b	uild	ings	s-Flow	
due to S	stack e	tect.		2		0.1			
UNIT	<u>'-V</u>	COOLING IN BUILT ENVIRO	ONMENT	68		91	?eri	ods	
Passive	build	ling architecture–Radiative coo	oling-Solar coo	ling techniques	-So	lar	des	siccant	
dehumi		on for ventilation-Natural and a	ctive cooling wi	th adaptive con	nfor	t–E	vap	orative	
cooling	-Zero	energy building concept.	804 237						
Contact	45 D	S:	Den offerels () De		1. 4	<i>5</i> D		J.,	
Lecture:	45 Pe	riods Tutoriai: 0 Periods	Practical: 0 Pe	rious 10ta	1:4	5 P	erio	as	
RE	FERE	NCES							
1 J.	Kriede	r and A.Rabl, "Heating and C	Cooling of Build	dings: Design j	for	Eff	ficie	ncy",	
M	lcGraw	-Hill, 2000.							
2 S.	M.Gui	nnes and Reynolds, "Mechanical	and Electrical E	quipment for Bi	uild	ings	5", I	Viley,	
19	989.								
3 A.	Shaw,	"Energy Design for Architects",	AEE Energy Boo	oks, 1991.					
4 A.	SHRAE	, "Hand book of Fundamentals",	ASHRAE,Atlanta	ı,GA.,2001.					
5 Re	eferenc	e Manuals of DOE-2 (1990), Or	ando Lawrence-	Berkeley Labord	ator	у, <i>U</i>	Jniv	ersity	
of	^c Califo	rnia, and Blast, University of Illin	ois ,USA.						

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand energy and its usage	K2
CO2	Know lighting to be given to a building	K1
CO3	Analyse the energy requirements in a building	K3
CO4	Apply the energy audit concepts.	K3
CO5	Study architectural specifications of a building	K1

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	3	1	2	1
CO2	2	P-11	3	1	2	1
CO3	2	and a	3	1	2	1
CO4	2	A COLORING	3	1	2	1
CO5	2	10 ¹² m	3		2	1
23GEOE07	2	-	3	1	2	1
-Slight, 2–Modera	ate, 3–Substar	tial	- Cal	71	1	1

ASSESSMEN	ASSESSMENT PATTERN – THEORY								
Test/ Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	40	40	20	- 3	-	-	100		
CAT 2	40	40	20	之战	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50			-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100		
ESE	40	40	20	-	-	-	100		

	EARTH AND ITS ENVIR	ONMENT							
23GEOE08	(Common to all Branches)								
PREREQUISI	ES CATEGORY L T P C								
	NIL	OE	3	0	0	3			
Course	To know about the planet earth, the geosystems an	d the resources l	ike	grou	ind w	ater			
Objective	and air and to learn about the Environmental Assess	ment and sustaina	abili	ity.					
UNIT–I	EVOLUTION OF EARTH			91	Perio	ds			
Evolution of	earth as habitable planet-Evolution of continents-o	ceans and landfo	orms	s-evo	olutio	n of			
life through g	geological times - Exploring the earth's interior -	thermal and che	mic	al st	tructu	re -			
origin of grav	itational and magnetic fields.								
UNIT–II	GEOSYSTEMS			91	Perio	ds			
Plate tectonic	s - working and shaping the earth - Internal geosys	stems – earthqual	kes	- vo	lcanc	es -			
climatic excu	ursions through time - Basic Geological proces	ses - igneous,	sed	limer	ntatio	n –			
metamorphic	processes.								
UNIT–III	GROUND WATER GEOLOGY	E.		91	Perio	ds			
Geology of g	round water occurrence -recharge process-Ground	d water moveme	ent-O	Grou	nd w	ater			
discharge and	catchment hydrology - Ground water as a resource	- Natural ground	wat	er qu	ıality	and			
contamination	-Modelling and managing ground water systems.	2							
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SUSTAI	NABILITY		91	Perio	ds			
Engineering a	nd sustainable development - population and urban	ization - toxic ch	emi	cals	and f	inite			
resources - wa	ater scarcity and conflict - Environmental risk - risk	assessment and	cha	racte	rizati	on –			
hazard assessi	ment-exposure assessment.								
UNIT-V	AIR AND SOLIDWASTE			91	Perio	ds			
Air resources	engineering-introduction to atmospheric composit	ion-behaviour-a	tmo	sphe	ric pl	noto			
chemistry-Sol	id waste management-characterization-management	concepts.							
Contact Period	ls:	34							
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Perio	ods Total:	45 I	Perio	ods				
	AUTO AT A AUTO								
REFER	ENCES								
1 John	Grotzinger and Thomas H.Jordan, "U	nderstanding	Ear	th",	Si.	xth			
Edition	n,W.H.Freeman, 2010.								
2 Younge	er,P.L., "Ground water in the Environment:	An introducti	on"	, <i>B</i>	lackw	ell			

- Publishing,2007.
- 3 Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals, Sustainability and Design", Wiley, NJ, 2010.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K)
	the Various geological processes.	K2
CO3	To able to find the geological process of occurrence and movement of	K3
	Ground water and the modeling systems.	KJ
CO4	To assess the Environmental risks and the sustainability developments.	K3
CO5	To learn about the photochemistry of atmosphere and the solid waste	V 1
	Management concepts.	K1

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1 7	Store Danie	NAME OF BUSE	2	2	-
CO2	3	1 and	3	3	-	3
CO3	2	1			-	-
CO4	- 6	2	-	57	1	-
CO5	2	2		1	-	-
23GEOE08	2	2	3	3	2	3
-Slight, 2–Moderat	e, 3–Substant	ial		- Mai		

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT 1	40	40	20		-	-	100	
CAT 2	40	40	20	ALU10	-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100	
ESE	40	40	20	-	-	-	100	

	NATURAL HAZARDS	AND MITIGA	TIOI	V		
23GEOE09	(Common to a	ll Branches)		•		
PREREQUISIT	ES:	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To get idea on the causes, effects and mitigat	tion measures of d	iffere	nt typ	es of h	nazards
Objective	with case studies.					
UNIT–I	EARTH QUAKES				9 Per	iods
Definitions and	basic concepts-different kinds of hazards-	causes-Geologic	Haza	rds-E	arthqu	ıakes-
causes of earth	quakes-effects-plate tectonics-seismic way	ves-measures of	size	of e	arthqu	ıakes-
earthquake resist	ant design concepts.					
UNIT–II	SLOPE STABILITY				9 Per	iods
Slope stability a	and landslides-causes of landslides-princip	oles of stability	analy	sis-re	emedia	l and
corrective measu	res for slope stabilization.					
UNIT–III	FLOODS				9 Per	iods
Climatic Hazard	ds-Floods-causes of flooding-regional flo	ood frequency a	inalys	is–flo	ood c	ontrol
measures-flood r	outing-flood forecasting-warning systems.					
UNIT-IV	DROUGHTS				9 Per	iods
Droughts -cause	es - types of droughts -effects of drought -	hazard assessme	nt – (decisi	on ma	aking-
Use of GIS in na	tural hazard assessment-mitigation-manage	ment.				
UNIT–V	TSUNAMI				9 Per	iods
Tsunami-causes	-effects-under sea earthquakes-landslides-	volcanic eruption	s–im	pact c	of sea	
meteorite-remed	lial measures-precautions-case studies.	11				
Contact Periods						
Lecture: 45 Peri	iods Tutorial: 0 Periods Practical: 0	Periods	Total	: 45 1	Period	ls
REFEREN	NCES	3				
1 Donald Hyr	ndman and David Hyndman, "Natural H	lazards and Dis	saster	s", E	Brooks	Cole
Cengage Le	arning, 2008.					
2 Edward Bry	ant, "Natural Hazards" , Cambridge Univer	sity Press, 2005.				
3 J Michael D	Duncan and Stephan G Wright, "Soil Streng	th and Slope Sta	ıbility	, J o	hn Wi	ley &
Sons, Inc,20	05.					
4 AmrS.Elnash	hai and Luigi Di Sarno, "Fundamentals 25 Ino 2008	of Earthquake	Eng	ineer	ing",	John
wiley & Son	15,111C,2008					
COURSE OUT	COMES:				Bloo	m's
					Taxoi	nomy
Upon completion	n of the course, the students will be able to:				Map	oped
CO1 Learn	the basic concepts of earthquakes and	the design con	cepts	of	K	2
earthq	uake Resistant buildings.	6		-		
CO2 Acqui	re knowledge on the causes and reme	dial measures	of sl	ope	K	.3
stabili	zation.					-
CO3 As cer	rtain the causes and control measures of floo	d.			K	3
CO4 Know	the causes affects and presentioners mass	8.			<u>К</u> И	2
COS Study	me causes, effects and precautionary measu	res of Tsunami.			Ň	.∠

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	1	-	3	2	3		
CO2	3	1	2	3	3	3		
CO3	3	2	3	-	-	3		
CO4	3	-	-	3	2	3		
CO5	3	-	2	2	-	3		
23GEOE09	3	1	2	3	2	3		
1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	40	40	20		-	-	100		
CAT 2	40	40	20	1	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100		
ESE	40	40	20	altino	-	-	100		
		10.20	910 (SIC)	P)			•		

23FDOF10	BUSINESS ANALYTICS							
20100110	(Common to all Branches)							
PREREQUIS	SITES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course	• To apprehend the fundamentals of business	analytics and its li	fe cy	/cle.				
Objectives	• To gain knowledge about fundamental busin	less analytics.						
	• To study modeling for uncertainty and statis	tical inference.						
	• To apprehend analytics the usage of Hadoop	and Map Reduce	fran	new	orks	•		
	• To acquire insight on other analytical framework	works.						
UNIT – I	BUSINESS ANALYTICS AND PROCESS		ļ	9 Pe	rioc	ls		
Business ana	lytics: Overview of Business analytics, Scope	e of Business an	alyti	ics,	Bus	iness		
Analytics Pro	ocess, Relationship of Business Analytics Proc	ess and organization	tion	, co	mpe	titive		
advantages of	f Business Analytics. Statistical Tools: Statistic	al Notation, Desc	ripti	ve S	Stati	stical		
methods, Rev	iew of probability distribution and data modellin	g, sampling andes	stima	tion	met	hods		
overview.	Balance and a strain	6 60						
UNIT – II	REGRESSION ANALYSIS	F-1)	9	9 Pe	rioc	ls		
Trendiness ar	d Regression Analysis: Modelling Relationships	and Trends in Da	ata, s	simp	le L	inear		
Regression. I	mportant Resources, Business Analytics Person	nel, Data and mo	dels	for	Bus	iness		
analytics, pro	blem solving, Visualizing and Exploring Data, B	usiness Analytics	Tech	nol	ogy.			
UNIT – III	STRUCTURE OF BUSINESS ANALYTICS	10	9	9 Pe	rioc	ls		
Organization	Structures of Business analytics, Team m	nanagement, Mar	nage	men	t Is	sues,		
Designing In	formation Policy, Outsourcing, Ensuring Data (Quality, Measurin	g co	ontri	butio	on of		
Business ana	lytics, Managing Changes. Descriptive Analytic	es, predictive anal	lytics	s, pr	edic	ative		
Modelling, Pr	redictive analytics analysis, Data Mining, Data M	Mining Methodolo	ogies	, Pre	escri	ptive		
analytics and	l its step in the business analytics Process,	Prescriptive Mod	lellir	ng, 1	nonl	inear		
Optimization								
UNIT – IV	FORECASTING TECHNIQUES		ļ	9 Pe	rioc	ls		
Forecasting T	echniques: Qualitative and Judgmental Forecast	ing, Statistical Fo	recas	sting	g Mo	odels,		
Forecasting N	Iodels for Stationary Time Series, Forecasting M	odels for Time Se	ries	with	n a L	inear		
Trend, Foreca	asting Time Series with Seasonality, Regression	Forecasting with	Cası	ial V	/aria	ıbles,		
Selecting Ap	propriate Forecasting Models. Monte Carlo Sim	nulation and Risk	Ana	alysi	s: N	Ionte		
Carle Simul	ation Using Analytic Solver Platform, Ne	ew-Product Deve	elopn	nent	Μ	odel,		
Newsvendor	Newsvendor Model, Overbooking Model, Cash Budget Model.							
UNIT – V	DECISION ANALYSIS AND RECENT	TRENDS IN	9	9 Pe	rioc	ls		
	BUSINESS ANALYTICS							
Decision An	alysis: Formulating Decision Problems, Deci	sion Strategies v	with	the	wi	thout		
Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision								
Making.Rece	nt Trends: Embedded and collaborative business	intelligence, Visi	ual d	lata	reco	very,		
Data Storytel	ling and Data journalism.							
Contact Per	iods:					ĺ		
Lecture: 45 l	Periods Tutorial: 0 Periods Practical:	0 Periods To	tal:4	5 P	erio	ds		

REFERENCES

- VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
 Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R A Practical Approach", Apress, 2017.
 Anand Rajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge
- University Press, 2012.
- 4 Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
- 5 U. Dinesh Kumar, "Business Analytics: The Science of Data-Driven Decision Making", Wiley, 2017.
- 6 Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COU	RSE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
CO1	Identify the real world business problems and model with analytical	K4			
	solutions.				
CO2	Solve analytical problem with relevant mathematics background	K4			
	knowledge.				
CO3	Convert any real world decision making problem to hypothesis and	K4			
	apply suitable statistical testing.				
CO4	Write and Demonstrate simple applications involving analytics using	K4			
	Hadoop and Map Reduce				
CO5	Use open source frameworks for modeling and storing data.	K4			

Course Articulation Matrix								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	1	2	1	2	1			
CO2	A1	1	1/3	2	1			
CO3	2	2	1/2/908	1	-			
CO4	2	2		-	-			
CO5	1 maria	2		-	-			
23EDOE10	T.L.	2	5-1-1	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	25	25	25	25	-	-	100				
CAT2	20	25	25	30	-	-	100				
Assignment 1	25	30	25	20	-	-	100				
Assignment 2	30	20	30	20	-	-	100				
ESE	20	30	20	30	-	-	100				

23 EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY						
25120111	(Common to all Br	anches)					
PREREQUISIT	TES	CATEGORY	L	Т	P	С	
	NIL	OE	3	0	0	3	
Course	• Summarize basics of industrial safety.						
Objectives	• Describe fundamentals of maintenance eng	gineering.					
	• Explain wear and corrosion.						
	• Illustrate fault tracing.						
	Identify preventive and periodic maintenance.						
UNIT – I	INTRODUCTION			9 F	Perio	ds	
Accident, causes	s, types, results and control, mechanical and el	ectrical hazards,	type	s, ca	uses	and	
preventive steps/	procedure, describe salient points of factories a	ct 1948 for health	n and	l safe	ety, v	vash	
rooms, drinking	water layouts, light, cleanliness, fire, guarding,	pressure vessels,	etc.	, Saf	ety c	color	
codes. Fire preve	ention and firefighting, equipment and methods.						
UNIT – II	FUNDAMENTALS OF MAINTENANCE E	NGINEERING		9 F	Perio	ds	
Definition and a	im of maintenance engineering, Primary and sec	ondary functions	and	resp	onsit	oility	
of maintenance	department, Types of maintenance, Types and	nd applications	of to	ools	used	for	
maintenance, Ma	aintenance cost & its relation with replacement e	conomy, Service	life (of eq	uipm	ent.	
UNIT – III	WEAR AND CORROSION AND THEIR PL	REVENTION		9 F	Perio	ds	
Wear- types, cau	ses, effects, wear reduction methods, lubricants-	types and applica	tions	5,			
Lubrication met	hods, general sketch, working and application	ns, i. Screw dow	n g	rease	e cup), ii.	
Pressure grease	gun, iii. Splash lubrication, iv. Gravity lubricatio	on, v. Wick feed l	ubric	atio	n vi.	Side	
feed lubrication	, vii. Ring lubrication, Definition, principle an	nd factors affecti	ng t	he c	orros	sion.	
Types of corrosi	on, corrosion prevention methods.						
UNIT – IV	FAULT TRACING	de		9 F	Perio	ds	
Fault tracing-con	ncept and importance, decision tree concept, n	need and applicat	ions	, seq	uenc	e of	
fault-finding act	ivities, show as decision tree, draw decision tr	ree for problems	in n	nachi	ne to	ools,	
hydraulic, pneun	natic, automotive, thermal and electrical equipm	ent's like, I. Any	one	mac	nine	tool,	
ii. Pump iii. Air	compressor, iv. Internal combustion engine, v.	Boiler, vi. Electri	cal r	noto	rs, T	ypes	
of faults in mach	ine tools and their general causes.	2020					
UNIT - VPERIODIC AND PREVENTIVE MAINTENANCE9 Periods						ds	
Periodic inspect	ion-concept and need, degreasing, cleaning and	repairing scheme	es, o	verh	aulin	g of	
mechanical components, overhauling of electrical motor, common troubles and remedies of electric							
motor, repair complexities and its use, definition, need, steps and advantages of preventive							
maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii.							
Pumps, iii. Air o	compressors, iv. Diesel generating (DG) sets, P	rogram and schee	lule	of p	rever	ntive	
maintenance of 1	maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair						
cycle concept an	d importance						
Contact Period	ls:						
Lecture: 45 Per	iods Tutorial: 0 Periods Practical:0	Periods Total	l :45]	Peri	ods		

REFERENCES

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London, 2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd.,
	Publishers, 2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition,
	2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Ability to summarize basics of industrial safety	K4
CO2	Ability to describe fundamentals of maintenance engineering	K4
CO3	Ability to explain wear and corrosion	K4
CO4	Ability to illustrate fault tracing	K4
CO5	Ability to identify preventive and periodic maintenance	K4
	A manufactory of the second se	

_				
	Course	Articulat	tion Mat	riv

COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	2		1	-	-			
CO2	2	2	1	-	1			
CO3	1 3	2	1	1	1			
CO4	2	1	1	1	1			
CO5	2	1	2	1	1			
23EDOE11	2	1	1 S	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

12.

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	25	25	25	-	-	100
CAT2	20	25	25	30	-	-	100
Assignment 1	25	30	25	20	-	-	100
Assignment 2	30	20	30	20	-	-	100
ESE	20	30	20	30	-	-	100

23EDOE12	OPERATIONS RI	OPERATIONS RESEARCH								
ZJEDOEIZ	(Common to all F	Branches)								
PREREQUIS	SITES	CATEGORY	L	Т	Р	С				
	NIL	OE	3	0	0	3				
Course	• Solve linear programming problem and solve	using graphical m	etho	d.						
Objectives	• Solve LPP using simplex method.									
	• Solve transportation, assignment problems.									
	 Solve project management problems. Solve scheduling problems 									
UNIT – I	INTRODUCTION			9 P	eriod	c				
Optimization	Techniques Model Formulation models (General I R For	muls		Sim	nlex				
Techniques S	ensitivity Analysis Inventory Control Models		mun	uloll,	SIII	piex				
UNIT – II	LINEAR PROGRAMMING PROBLEM			9 P	eriod	9				
Formulation of	of a LPP - Graphical solution revised simplex m	ethod - duality the	eorv	- dua	l sim	plex				
method - sens	itivity analysis - parametric programming		, or l							
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM	6 18		9 P	eriod	s				
Nonlinear pr	ogramming problem - Kuhn-Tucker conditions	min cost flow pr	oble	m - 1	max f	low				
problem - CP	M/PERT									
UNIT – IV	SEQUENCING AND INVENTORY MODEL	37		9 P	eriod	s				
Scheduling ar	d sequencing - single server and multiple server m	odels - determinist	ic in	vento	ry mo	dels				
- Probabilistic	inventory control models - Geometric Programmin	ng.								
UNIT – V	GAME THEORY			9 P	eriod	S				
Competitive	Models, Single and Multi-channel Problem	ns, Sequencing	Mod	lels,	Dyna	mic				
Programming	, Flow in Networks, Elementary Graph Theory, Ga	me Theory Simula	tion							
Contact Per	ods:	2								
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0	Periods Total	: 45	Perio	ds					
	and the	7 <u>0</u> 99								
REFERI	ENCES									
1 H.A. Taha	a, "Operations Research, An Introduction", PHI, 2	2017.								
2 "Industri	al Engineering and Management", O. P. Khanna,	2017.								
3 "Operatio	ons Research", S.K. Patel, 2017.									

4 "Operation Research", Anup Goel, Ruchi Agarwal, Technical Publications, Jan 2021.

COU: Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

Course Articulation Mat	rix				
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	-	-
CO2	2	2	1	-	-
CO3	1	1	2	1	1
CO4	1	1	-	-	-
CO5	2	1	-	-	-
23EDOE12	2	1	1	1	1
1 - Slight, 2 - Moderate, 3	3 – Substantial				

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25	-	-	100
CAT2	20	25	25	30	-	-	100
Assignment 1	25	30	25	20	-	-	100
Assignment 2	30	20	30	20	-	-	100
ESE	20	30	20	30	-	-	100

23MFOE13	OCCUPATIONAL HEALTH AND SAFETY							
	(Common to all I	Branches)				1		
PREREQUI	SITES	CATEGORY	L	Τ	P	C		
	NIL	OE	3	0	0	3		
Course	To gain knowledge about occupational health haza	ard and safety mea	sures	s at v	vork p	lace.		
Objectives	To learn about accident prevention and safety man	agement.						
Ŭ	To learn about general safety measures in industrie	es.						
UNIT – I	OCCUPATIONAL HEALTH AND HAZA	RDS			9 Per	iods		
Safety- Histo	bry and development, National Safety Polic	cy- Occupationa	1 H	ealtl	n Ha	zards -		
Ergonomics -	Importance of Industrial Safety Radiation and	Industrial Haza	rds-	Mac	chine	Guards		
and its types,	Automation.							
UNIT – II	SAFETY AT WORKPLACE				9 Per	iods		
Safety at Wo	rkplace - Safe use of Machines and Tools: Sa	afety in use of d	iffer	ent	types	of unit		
operations -	Ergonomics of Machine guarding - working	in different wor	kpla	ices	- Op	eration,		
Inspection an	d maintenance, Plant Design and Housekeepin	ng, Industrial lig	htin	g, V	<i>ibrati</i>	on and		
Noise Case st	udies.	all a state						
UNIT – III	ACCIDENT PREVENTION	121			9 Per	iods		
Accident Pre	vention Techniques - Principles of accident	prevention - D) efin	itior	ns, Tl	neories,		
Principles –	Hazard identification and analysis, Event tree	e analysis, Hazoj	p sti	udie	s, Job	safety		
analysis - The	eories and Principles of Accident causation - Fi	rst Aid : Body st	ruct	ure a	and fu	nctions		
- Fracture and	Dislocation, Injuries to various body parts.	11						
UNIT – IV	SAFETY MANAGEMENT	10			9 Per	iods		
Safety Manag	gement System and Law - Legislative measur	es in Industrial	Safe	ety:	Vario	us acts		
involved in D	Detail- Occupational safety, Health and Environ	ment Manageme	ent:	Bure	eau of	Indian		
Standards on	Health and Safety, 14489, 15001 - OSHA, Proc	ess safety manag	geme	ent (PSM)	and its		
principles -	EPA standards- Safety Management: Organ	isational & Safe	ety	Con	imitte	e - 1ts		
structure and	functions.							
UNIT - V	GENERAL SAFETY MEASURES		•,	1.	<u>9 Per</u>	iods		
Plant Layout	for Safety -design and location, distance betw	een hazardous u	inits	, 11g	hting,	colour		
coding, pilot	plant studies, Housekeeping - Accidents Rela	ted with Mainte	nanc		f Mac	nines -		
work Permit	System: Significance of Documentation Direc	ung Salety, Lea	Jers	mp -	Case	studies		
Conto at D	beneficiation of nearth and safety measures in In	idustries.						
Contact Per			T	1 4	7 D	• 1		
Lecture: 45 I	Periods Tutorial: 0 Periods Practica	1: U Periods	Tota	al: 4	5 Per	iods		
REFEREN	JCES.							

- Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
 Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.
 Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
- 4 Deshmukh. L.M., **Industrial Safety Management**, 3rd Edition, Tata McGraw Hill, New Delhi, 2008.
- 5 https://nptel.ac.in/courses/110105094
- 6 https://archive.nptel.ac.in/courses/110/105/110105094/

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety	K3
	measures at work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures	K3
	in industries.	
CO4	Know various laws, standards and legislations.	K2
CO5	Implement safety and proper management of industries.	K4

Course Articulation Matrix:

Cos/Pos	PO1	PO2	PO3	PO4	PO5
CO1	2	and the second	1	1	1
CO2	2	2		1	1
CO3	1 1 1	100 2 10	1	1	1
CO4	2	STOL C	C 1	1	1
CO5	2		2	1	1
23MFOE13	2	1	177	1	1
1 – Slight, 2 – Moderate, 3	– Substantial		11		1

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
Category*									
CAT1	- 4	50	50	-hi	-	-	100		
CAT2	- 656	50	30	20	-	-	100		
Individual	- 24-	50	50	NER.	-	-	100		
Assessment 1		Contractor of	SID!	intro /					
/Case Study 1/	5		1 C	ET.					
Seminar 1 /		2 Dece	10	2					
Project1									
Individual	-	50	30	20	-	-	100		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE	-	40	40	20	-	-	100		

22MEOE14	COST MANAGEMENT OF ENGINEERING PROJECTS									
25MIFUE14	(Common to all B	ranches)								
PREREQUIS	SITES	CATEGORY	L	Т	Р	С				
	NIL	OE	3	0	0	3				
Course	To understand the costing concepts and their role	To understand the costing concepts and their role in decision making.								
Objectives	To acquire the project management concepts and	their various aspection	ets in	sele	ction.					
	To develop knowledge of costing techniques in	service sector an	d va	rious	budg	etarv				
	control techniques.					J				
	To familiarize with quantitative techniques in cos	t management.								
UNIT – I	INTRODUCTION TO COSTING CONCE	CPTS		9]	Perio	ds				
Introduction	and Overview of the Strategic Cost Manag	gement Process,	Co	st co	oncep	ts in				
decision-maki	ng; Relevant cost, Differential cost, Increm	nental cost and	Op	portu	inity	cost.				
Objectives of	a Costing System; Inventory valuation; Crea	tion of a Databa	ise 1	for o	perati	onal				
control; Provi	sion of data for Decision - Making.									
UNIT – II	PROJECT PLANNING ACTIVITIES			9]	Perio	ds				
Project: mean	ing, Different types, why to manage, cost o	verruns centers,	var	ious	stage	es of				
project execu	ition: conception to commissioning. Project	execution as o	cong	glom	eratio	n of				
technical and	nontechnical activities. Detailed Engineering	g activities. Pre	pro	ject	exect	ution				
main clearanc	es and documents Project team: Role of each	member. Impor	tand	ce Pr	roject	site:				
Data required	l with significance. Project contracts. Types	s and contents.	Pro	ject	exect	ution				
Project cost c	ontrol. Bar charts and Network diagram. Proje	ect commissionin	g: n	nech	anical	and				
process.		11								
UNIT – III	COST ANALYSIS	1		9]	Perio	ds				
Cost Behavio	ur and Profit Planning Marginal Costing; Dis	tinction between	Ma	rgina	al Co	sting				
and Absorptic	on Costing; Break-even Analysis, Cost-Volume	e-Profit Analysis	Va	rious	s deci	sion-				
making proble	ems. Standard Costing and Variance Analysis.									
UNIT – IV	PRICING STRATEGIES AND BUDGETO	DRY CONTROL	[]	9]	Perio	ds				
Pricing strate	gies: Pareto Analysis. Target costing, Life (Cycle Costing, (Cost	ing	of set	rvice				
sector, Just-in	-time approach, Material Requirement Plann	ing, Enterprise F	Reso	urce	Plan	ning.				
Budgetary Co	ntrol; Flexible Budgets; Performance budgets;	Zero-based bud	gets	. Me	asure	ment				
of Divisional	profitability pricing decisions including transfe	r pricing.								
UNIT – V	TQM AND OPERATIONS REASEARCH	TOOLS		9]	Perio	ds				
Total Quality	Management and Theory of constraints, Activi	ty-Based Cost M	lana	geme	ent, B	ench				
Marking; Bal	anced Score Card and Value-Chain Analysis	s. Quantitative to	echr	ique	s for	cost				
management,	Linear Programming, PERT/CPM, Trans	sportation probl	ems	, A	ssign	ment				
problems, Sim	nulation, Learning Curve Theory.									
Contact Peri	ods:									
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

REFERENCES:

 Charles T. Horngren and George Foster, "Advanced Management Accounting", 2018.
 John M. Nicholas, "Project Management for Engineering, Business and Technology", Taylor & Francis, 2016

3 Nigel J, "Engineering Project Management", John Wiley and Sons Ltd, Smith 2015.

4 Charles T. Horngren and George Foster, "Cost Accounting a Managerial Emphasis", Prentice Hall of India, New Delhi, 2011.

5 https://archive.nptel.ac.in/courses/110/104/110104073/

COURSE OUTCOMES: Bloom's Taxonomy Upon completion of the course, the students will be able to: Mapped CO1 Apply the costing concepts and their role in decision making. K3 CO2 Apply the project management concepts and analyze their various K4 aspects in selection. Interpret costing concepts with project execution. CO3 K4 CO4 Gain knowledge of costing techniques in service sector and various K2 budgetary control techniques. Become familiar with quantitative techniques in cost management. K3 CO5

Course Articulation Matu	ix:				
COs/Pos	PO1	PO2	PO3	PO4	PO5
CO1	1	1	2	1	1
CO2	2		1	1	-
CO3	2	2	2	-	-
CO4	1	T	1	1	1
CO5	1	2	1	1	-
23MFOE14	100		1	1	1
1 - Slight 2 - Moderate 3	- Substantial				

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSME	ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*		100-001	590000	27						
CAT1	-	5	40	60	-	-	100			
CAT2	-	30	30	40	-	-	100			
Individual	-	-	40	60	-	-	100			
Assessment										
1 /Case										
Study 1/										
Seminar 1 /										
Project1										
Individual	-	30	30	40	-	-	100			
Assessment										
2 /Case										
Study 2/										
Seminar 2 /										
Project 2										
ESE	-	20	40	40	-	-	100			

23MEOE15	COMPOSITE MATERIALS										
2510110115	(Common to all Branches)										
PREREQUIS	CATEGORY	L	Т	P	С						
	NIL	OE	3	0	0	3					
Course Objectives	urse ojectivesTo summarize the characteristics of composite materials and effect of reinforcement in composite materials. To identify the various reinforcements used in composite materials. 										
UNIT – I	INTRODUCTION			9 F	Perio	ods					
Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement on overall composite performance.											
UNIT – II	REINFORCEMENT			9 F	Perio	ods					
Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isosteres conditions.											
UNIT – III	MANUFACTURING OF METAL MATRIX	COMPOSITES		<u>9 F</u>	'erio	ods					
Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing- Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering–Manufacturing of Carbon – Carbon composites: Knitting Braiding Weaving- Properties and applications											
UNIT – IV	MANUFACTURING OF POLYMER MATR COMPOSITE	IX		9 Periods							
Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.											
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES			9 F	Perio	ods					
Laminar Fail	ure Criteria-strength ratio, maximum stress cr	riteria, maximur	n s	train	ı cri	iteria,					
interacting fa Laminate stre plots; stress co	ilure criteria, hygrothermal failure. Laminate fingth-ply discount truncated maximum strain crite oncentrations.	irst play failure prion; strength de	-insi esigr	ight 1 usi	stre	ength; caplet					
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 I	Periods To	tal:	45 1	Perio	ods					
REFEREN	CES:										
1 Chawla K	K., Composite Materials, Springer, 2013.										
2 Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.											
3 Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.											
4 <i>uLektz</i> , Composite Materials and Mechanics , <i>uLektz Learning Solutions Private Limited</i> , <i>Lektz</i> 2013											
5 https://npt	5 https://nptel.ac.in/courses/112104168										

COURSE OUTCOMES:						
		Taxonomy				
Upon completion of the course, the students will be able to:						
CO1	Know the characteristics of composite materials and effect of	K2				
	reinforcement in composite materials.					
CO2	Know the various reinforcements used in composite materials.	K2				
CO3	Understand and apply the manufacturing processes of metal matrix	K3				
	composites					
CO4	Understand and apply the manufacturing processes of polymer matrix	K3				
	composites.					
CO5	Analyze the strength of composite materials.	K4				

Course Articulation Matrix: PO5 COs/Pos **PO1 PO2 PO3 PO4** CO1 wy 1 0. CO2 CO3 CO4 G CO5 23MFOE15 1 – Slight, 2 – Moderate, 3 – Substantial WZ.

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*	, í	AN BE				~ /				
CAT1	-	60	40		-	-	100			
CAT2	- (60	40	-	-	100			
Individual)	60	40	aculo	-	-	100			
Assessmen		Trans II	A SOCIE	2537						
t 1 /Case		-01		9						
Study 1/										
Seminar 1 /										
Project1										
Individual	-	-	60	40	-	-	100			
Assessmen										
t 2 /Case										
Study 2/										
Seminar 2 /										
Project 2										
ESE	-	40	40	20	-	-	100			
22 TEOE1	G SCIENCE									
----------------------------------	--	--	--	--------	-------	-------------------	-----------------	--	--	--
231EUE1	0	(Common to all B	ranches)							
PREREQUIS	SITES		CATEGORY	L	Τ	Р	С			
		NIL	OE	3	0	0	3			
Course	To make the students learn about the material consequences of clin									
Objectives	level	change due to increase in the emission of gre	eenhouse gases a	nd to	o exa	amine	e the			
Objectives	science behind mitigation and adaptation proposals.									
UNIT – I	INT	RODUCTION			9 P	Perioo	ls			
Terminology	relatin	g to atmospheric particles - Aerosols - Type	es, characteristics	, me	easui	emei	nts –			
Particle mass	spectr	ometry - Anthropogenic-sources, effects on hu	mans.							
UNIT – II	CLI	MATE MODELS			9 P	erio	ls			
General clima	ate mo	odeling- Atmospheric general circulation mo	odel - Oceanic g	ener	al c	ircula	ation			
model, sea ice	e mode	el, land model concept, paleo-climate - Weath	er prediction by r	nume	erica	l pro	cess.			
Impacts of clin	mate c	hange - Climate Sensitivity - Forcing and feed	lback.							
UNIT – III	EAR	TH CARBON CYCLE AND FORECAST			9 P	Period	ls			
Carbon cycle	-proce	ss, importance, advantages - Carbon on ea	arth - Global ca	rbor	n res	servo	irs -			
Interactions b	etwee	n human activities and carbon cycle - Geolo	gic time scales	- Fo	ssil	fuels	and			
energy - Perturbed carbon cycle.										
UNIT – IV	UNIT – IV GREENHOUSE GASES 9 Pc									
Blackbody rac	liation	- Layer model - Earth's atmospheric composi-	tion and Green h	ouse	e gas	es ef	fects			
on weather an	d clim	ate - Radioactive equilibrium - Earth's energy	balance.							
UNIT – V	GEC	ENGINEERING			9 P	erio	ls			
Solar mitigati	on -	Strategies – Carbon dioxide removal - Sola	r radiation mana	igen	nent	- Re	cent			
observed trend	ds in g	lobal warming for sea level rise, drought, glac	ier extent.							
Contact Perio	ods:	A P	12							
Lecture: 45 P	Period	s Tutorial: 0 Periods Practical: 0 P	eriods Tot	tal: 4	45 P	eriod	ls			
DEFEDE	NCES									
NEF ENE.	NCES									
1 Eli Tzinar	man	Clobal Warming Science: A Quantitative In	traduction to Cli	mat	o Ch	anaa	and			
I Lu Izipen	тип, пил е	Giobal Warming Science. A Quantilative Index, 25 Princeton University Press 1 st Edition 20	17000000000000000000000000000000000000			unge	unu			
2 John Hou	ahton	"Global warming: The Complete Briefing'	, Cambridae IIn	ivor	sity.	Pros	5 th			
Edition 2	911.011, 015	Giobai warming. The Complete Driejing	, Cambridge On	iver	Suy	17655	, 5			
3 David Arc	hor "	Global warming: Understanding the Forecas	t" Wiley 2nd Edi	tion	201	1				
4 David Sk	K Tin	a Jacqueline A Stagner "Climate Chang	e , wiley, 2 Lui 10 Science: Cau	ses		1. Forts	and			
Solutions	for Gl	obal Warming", Elsevier, 1 st Edition, 2021.	e Science. Cuu	.ses,	ĽIJ	CC15	unu			
5 Frances L	Drake,	"Global Warming: The Science of Climate	e Change", Rout	ledg	re, 1	st edi	tion,			
2000.										
6 Dickinson,	, "Cli	mate Engineering-A review of aerosol app	proaches to cha	ngin	ng th	he gl	obal			
energy ba	lance'	', Springer, 1996.								

7 Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COU	RSE OUTCOMES:	Bloom's		
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
CO1	Understand the global warming in relation to climate changes throughout	K)		
COI	the earth.	K2		
CO2	Assess the best predictions of current climate models.	K4		
CO3	Understand the importance of carbon cycle and its implication on fossil	КJ		
005	fuels.	KZ		
CO4	Know about current issues, including impact from society, environment,	КA		
04	economy as well as ecology related to greenhouse gases.	124		
CO5	Know the safety measures and precautions regarding global warming.	K5		

Course Articu	lation Matr	ix	The second state			1
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	s sultanio	2	naging a	1	2
CO2	1	1	2		1	1
CO3	1	2		I	1	2
CO4	1		1		1	2
CO5	2	1	2	1	1	2
23TEOE16	1	1		1	1	2
1 - Slight, 2 -	Moderate, 3	– Substantial	AND A	210		
		11 11	S 2 M	11		

ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
Category*	2	AL JE		B							
CAT1	20	35	35	10	-	-	100				
CAT2	15	25	25	20	15	-	100				
Individual	1	CONTRACTOR OF	No.	21-110							
Assessment		TALLEY N	25	Contration of the							
1 / Case	25	20	20	25			100				
Study 1 /	23	20	20		-	-	100				
Seminar 1 /											
Project 1											
Individual											
Assessment											
2 / Case	20	20	25	15	10		100				
Study 2 /	20	20	55	15	10	-	100				
Seminar 2 /											
Project 2											
ESE	25	20	25	20	10	-	100				

23TEOF17 INTRODUCTION TO NANO ELECTRONICS											
2511011	. /		(Co	mmon to all	Branches)						
PREREQUI	SITE	S			CATEGORY	L	Τ	Р	С		
	EN	IGI	NEERING PHYSICS		OE	3	0	0	3		
Course	Course To make the students provide strong, essential, important methods and foundations										
Objectives of quantum mechanics and apply quantum mechanics on engineering fields.											
UNIT – I	UNIT – I INTRODUCTION 9 Periods										
Particles and	Wave	es -	Operators in quantum me	chanics - The	Postulates of qu	antu	m n	necha	nics -		
The Schrodin	iger ec	quati	on values and wave packe	t Solutions - E	threnfest's Theor	em.					
UNIT – II	ELF	ECT	RONIC STRUCTURE A	AND MOTIO	N		9	Perio	ods		
Atoms- The	Hydr	ogei	n Atom - Many-Electron	Atoms – Ps	eudopotentials,	Nuc	lear	Stru	icture,		
Molecules, C	rystal	s - T	ranslational motion – Pen	etration throug	gh barriers – Part	icle	in a	box	- Two		
terminal quar	ntum d	lot d	evices - Two terminal qua	ntum wire dev	vices.						
UNIT – III	SCA	ATT	ERING THEORY	12-			9	Perio	ods		
The formulat	ion of	sca	ttering events - Scattering	cross section -	- Stationary scatt	erin	g sta	ite - 1	Partial		
wave stationa	ary sca	atter	ing events - multi-channe	el scattering -	Solution for Sch	rodi	nge	r equ	ation-		
Radial and w	ave ec	quati	on - Greens' function.								
UNIT – IV	CLA	ASS	ICAL STATISTICS		3		9	Perio	ods		
Probabilities	and 1	micr	oscopic behaviours - Ki	netic theory a	nd transport pro	oces	ses	in g	ases -		
Magnetic pro	pertie	s of	materials - The partition f	unction.	(f)						
UNIT - VQUANTUM STATISTICS9 Periods											
Statistical mechanics - Basic Concepts - Statistical models applied to metals and semiconductors -											
The thermal	prope	rties	of solids- The electrical	properties of	materials - Blac	k bo	ody	radia	tion -		
Low tempera	tures a	and	degenerate systems.		1						
Contact Peri	iods:		A U	0.0							
Lecture:45 H	Period	ls	Tutorial: 0 Periods	Practical: () Periods	Tota	al:45	5 Per	riods		
REFERE	NCES	5:		100							
1 Vladimi	17.14		Vigtahaglan A Kashala	m and Micha	al A Stuagaia	6T-++	no de	. atio	a t o		
I Viaaimi Nanool	V.IVI	ilin, iaa.	Science Nanotechnolog	p ana micha Enginegrin	el A.Siroscio,		roai , C	ambr			
Inniver	ity Dr		1 st Edition 2007	y, Engineering	g, ana Applicali	UNS	, C	imor	lage		
2 Vinod		$\frac{ess}{r}$	I Lullon, 2007.	maalaatuaniaa	. Dhugiaal Tha	0.1411		1 D	niaa		
Analysi	s", Ro	v Kl	dge, 1 st Edition, 2020.	undelectronics	. Enysicai The	ory	and	i De	vice		
3 George	<i>W. E</i>	Hans	on, "Fundamentals of I	Vanoelectroni	cs", Pearson Pi	ublis	hers	5, U1	iited		
States E	dition	, 20	07.								
4 Marc E	Baldo,	"In	troduction to Nanoelect	tronics", MIT	Open Coursew	vare	Pu	blica	tion,		
2011.											
5 Vladimi	V.Mi	tin,	"Introduction to Nanoel	ectronics", Ca	umbridge Univer	sity	Pre	ss, S	outh		
Asian E	dition	, 20	09.		-	-					
6 Peter L	. Hag	elste	ein, Stephen D. Senturia	and Terry P.	Orlando, "Intro	oduc	tory	App	olied		
Quantu	m St	tatist	t ical Mechanics" , Wiley, 2	2004.			•				
$\overline{7}$ \overline{A} \overline{F} \overline{I}	Levi	"An	nlied Quantum Mechanic	s" 2 nd Edition	Cambridge 20	12					

7 A. F. J. Levi, "Applied Quantum Mechanics", 2nd Edition, Cambridge, 2012.

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Manned
Сроп		маррси
CO1	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	K2
CO5	Know about statistical models applies to metals and semiconductor.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	2	2	1 mg	1	1	1
CO3	2	320mag	2	inguna Lange	1	1
CO4	1	1/06	Section de		1	1
CO5	1	1		1	1	1
23TEOE17	1	1	1	1	1	1
1 - Slight, 2 - 1	Moderate, 3	– Substantial				

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	30	30	20	20	-	-	100		
CAT2	30	30	20	20	-	-	100		
Individual	35	25	20	20	-	-	100		
Assessment 1 /	2	1	-	23					
Case Study 1 /		The second second	STR.	5000					
Seminar 1 /	1	CE LINE	ANCE P	TA					
Project 1	~	1000	10-	2					
Individual	30	25	20	25	-	-	100		
Assessment 2 /									
Case Study 2 /									
Seminar 2 /									
Project 2									
ESE	20	30	30	20	-	-	100		

22TEOE18 GREEN SUPPLY CHAIN MANAGEMENT											
DDEDEALI	SITE	C			(Coi	nmon to	CATECOE		Т	D	C
FREREQUI	5116	d)	NII							Г 0	
Course	То	mal	INIL zo the stur	danta laarn	and	fogue or	UE UE	J stal atrat		tool	3
Course Objectives	10 tech	man	ues require	ed to analyz	i anu ze and	design e	nvironmentally	sustaina	ble si	, tooi innly	chain
Objectives	svst	ems	aes require	cu to unuryz		uesignie	invironmentarry	sustaina		иррту	chan
UNIT – I	INT	RO	DUCTIO	N					9	Peri	ods
Intro to SCM	[– co	omp	lexity in S	SCM, Facil	lity lo	cation -	Logistics – Ain	n, activit	ies, i	mpor	tance,
progress, curi	ent tr	end	s - Integra	ting logistic	cs wit	h an orga	inization.				
UNIT – II	ESS	SEN	TIALS O	F SUPPLY	Y CH	AIN MA	NAGEMENT		9) Peri	ods
Basic concep	ts of	supp	ply chain 1	managemer	nt - Su	apply cha	in operations –	Plannin	g and	l sour	cing -
Making and	delive	ering	g - Supply	v chain coo	ordina	tion and	use of technolo	ogy - De	velop	oing s	upply
chain systems	5.					M1-					
UNIT – III	PLA	ANN	NING TH	E SUPPLY	CHA	AIN			9) Peri	ods
Types of de	cisior	ns –	- strategic	, tactical,	opera	tional -	Logistics strate	egies, in	plen	nentin	g the
strategy - Pl	annir	ng re	esources –	- types, cap	pacity	, schedul	e, controlling r	naterial t	flow,	meas	suring
and improvin	g per	forn	nance.	1	/	-					
UNIT – IV	AC	TIV	TTIES IN	THE SUP	PPLY	CHAIN	- 77		9	Peri	ods
Procurement	– cyc	le, t	ypes of pu	ırchase – Fi	ramev	vork of e	-procurement -	Inventor	y ma	nagen	nent –
EOQ, uncert	ain c	lema	and and s	safety stoc	k, sto	ock cont	rol - Material	handling	g — 1	Purpo	ose of
warehouse an	nd ow	ners	ship, layou	it, packagir	1g - T	ransport	– mode, owner	ship, veh	icle	routin	ig and
scheduling m	odels	- Tra	avelling sa	alesman pro	oblem	s - Exact	and heuristic m	ethods.			
UNIT – V	SUI	PPL	Y CHAIN	N MANAG	EME	NT STR	ATEGIES		9) Peri	ods
Five key con	nfigu	ratic	on compo	nents - Fo	our cr	iteria of	good supply	chain st	rateg	ies -	Next
generation str	rategi	es-	New roles	for end-to	o-end	supply cl	hain manageme	nt - Evo	lutio	n of s	upply
chain organiz	ation	– In	nternationa	al issues in a	SCM	- Regior	al differences in	n logistic	s.		
Contact Peri	ods:		1	1	1. 	1					
Lecture: 45	Perio	ds	Tutoria	al: 0 Period	ls	Practic	al: 0 Periods	Tota	l: 45	Perio	ods
DEFEDEN	ICES		5	CC-CZ	Chill	9001	57				
1 Charisios	Ach	,. illas	5 Dionvsi	s D Rocht	tis D	imitrios	Aidonis and D	imitris H	Tolina	75 "(Froon
Supply C	nen hain	mas Mai	nagamant ^s	" Routleda	1^{st}	Edition (2010	11111115 1	01111	<i>i</i> s, (Jicen
2 Hsiao-Fa	n Wa	na	and Suran	, Rouneug	ta "G	roon Su	only Chain Ma	nanomor	t. Pr	oduc	t I ifa
2 IIstao-Pa Cycle An	n wa	ng (• h " i	McGraw-F	uru m.Gup Hill Educati	ion 1	st Edition	2011	nugemen		ouuc	і Цуе
3 Joseph S	arkis	$\frac{n}{and}$	Vijie Do	u "Graan	<u>Sunn</u>	by Chair	, 2011. Managamant	" Routh	daa	1 st E	lition
2017.	лікіз	ипи	i Tijie Do	u, Green	Supp	iy Chuir	i munugemeni	, Noune	uge,	I Lu	unon,
4 Arunacha	lam	Raj	agopal, "G	Green Sup	ply C	Chain M	anagement: A	Practic	al A	1ppro	ach".
Replica, 2	2021.	5	U I / -	11			U				,
5 Mehmood	l Kha	n, N	Matloub H	ussain and	l Miar	ı M. Ajm	al, "Green Sup	ply Chai	n M	anage	ement
for Susta	inabl	e Bı	usiness Pr	actice", IG	I Glol	hal 1 st E		-		-	
6 S Emmett	"C.					<i>m</i> , 1 L	lition, 2016.				
	, Gre	en S	Supply Ch	ains: An A	Iction	Manifes	lition, 2016. to" , John Wiley	& Sons	Inc, 2	2010.	
7 Joseph Sc	, Gre irkis d	e n S and	Supply Ch Yijie Dou,	ains: An A , "Green S	action Supply	Manifes Chain N	lition, 2016. to" , John Wiley Ianagement: A	& Sons Concise	Inc, 2 Intr	2010. roduc i	tion",

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	К3
CO4	Analyze inventory management models and dynamics of supply chain.	K4
CO5	Identify issues in international supply chain management and outsources strategies.	К3

Course Articulation Matrix									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	Bige 10 Day	1.00	ing the second	1	3			
CO2	2	2	10		1	1			
CO3	2	7-1	2		1	1			
CO4	2	2	1	1	2	2			
CO5	1	1	2	1	1	3			
23TEOE18	2	1		1	1	2			
1 - Slight, $2 - Mod$	derate, 3 – Su	bstantial	ATT ATT	210					
				11					

ASSESSME	ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*		AL JA		G.								
CAT1	25	25	30	10	10	-	100					
CAT2	30	40	20	10	-	-	100					
Individual	30	20	25	15	10	-	100					
Assessment		TECHEN	ALL CONTENT	517								
1 / Case		12 COV	Contractor									
Study 1 /												
Seminar 1 /												
Project 1												
Individual	35	30	25	10	-	-	100					
Assessment												
2 / Case												
Study 2 /												
Seminar 2 /												
Project 2												
ESE	30	30	20	10	10	-	100					

22DCOE10	DISTRIBUTION AUTOMATION SYSTEM								
25F50E19	(Common to all B	Branches)							
PREREQUIS	SITES	CATEGORY	L	Т	Р	С			
	NIL	OE	3	0	0	3			
Course	To study about the distributed automation and ed	conomic evaluation	n sche	mes	of po	wer			
Objectives	network.								
UNIT – I	INTRODUCTION								
Introduction	to Distribution Automation (DA) - Control s	ystem interfaces-	Cont	rol	and c	lata			
requirements-	Centralized (vs) decentralized control- DA system	n-DA hardware-DA	AS so	ftwa	re.				
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS								
DA capabiliti	es - Automation system computer facilities-	Management proc	esses-	· Inf	ormat	tion			
management-	System reliability management- System	efficiency mana	ageme	ent-	Volt	age			
management-	Load management.								
UNIT – III COMMUNICATION SYSTEMS						ods			
Communicatio	on requirements - reliability- Cost effectiven	ess- Data require	ement	s- T	wo v	way			
capability- C	ommunication during outages and faults - E	ase of operation	and	mair	ntenar	nce-			
Conforming t	o the architecture of flow. Distribution line c	arrier- Ripple cor	ntrol-2	Zero	cross	sing			
technique- Te	lephone, cableTV, radio, AM broadcast, FM S	CA,VHF radio, m	nicrov	ave	satell	lite,			
fiber optics-H	ybrid communication systems used in field tests.								
UNIT – IV	ECONOMIC EVALUATION METHODS	110		9	Peri	ods			
Development	and evaluation of alternate plans- select study are	ea – Select study p	period	- Pro	ject l	oad			
growth-Devel	op alternatives- Calculate operating and maintena	nce costs-Evaluate	alterr	ative	es.				
UNIT – V	ECONOMIC COMPARISON	1		9	Peri	ods			
Economic comparison of alternate plans-Classification of expenses - capital expenditures-									
Comparison of	of revenue requirements of alternative plans-Boc	ok life and continu	ing p	lant	analy	sis-			
Year by year 1	revenue requirement analysis, Short term analysis	- End of study adju	istmei	nt-Br	eak e	ven			
analysis, sensi	tivity analysis - Computational aids.	ex							
Contact Perio	ods:	00		_					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Pe	criods Total: 45	Perio	ds					
	Sol Co								

REFERENCES

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi
	Publications, Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied
	Design", Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution
	Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE
	Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and
	Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed	K3
	automation.	
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COs/Pos	PO1	PO2	PO3	PO4
CO1	2	-	1	3
CO2	3	2	3	2
CO3	8 St 3 0 5 mil	an up - main	3	2
CO4	3	TORRA	3	1
CO5	2	X	1	2
23PSOE19	3		3	2
1 - Slight, 2 - Moderate, 3 - Subscription	ubstantial	-4 //		·

ſ	ASSESSMENT PATTERN – THEORY

0 ,								
ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
Category*		8						
CAT1	20	30	20	10	20	-	100	
CAT2	20	20	20	20	20	-	100	
Individual Assessment1 / Case study1/ Seminar 1/Project1	20	10	30	20	20	-	100	
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20	30	10	20	20	-	100	
ESE	30	20	20	20	10	-	100	

22DSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS								
231 30E20	(Common to all Branches)								
PREREQUIS	ITES CATEGORY	L	Т	Р	C				
NIL	OE	3	0	0	3				
Course	To acquire expertise on Electric supply and demand of Indian Grid	, gain	exp	osure	e on				
Objectives	energy trading in the Indian market and infer the electricity a	cts ar	nd re	gula	tory				
	authorities.			<u> </u>					
UNII – I ENERGY DEMAND									
Basic concept	s in Economics - Descriptive Analysis of Energy Demand - Decompo	sition	Anal	ysis	and				
Parametric Ap	proach - Demand Side Management - Load Management - Demand S	Side N	Ianag	geme	ent -				
Energy Efficie	ncy - Rebound Effect								
UNIT – II	ENERGY SUPPLY		9	Peri	iods				
Supply Behav	ior of a Producer - Energy Investment - Economics of Non-rene	wable	Res	ourc	es -				
Economics of	Renewable Energy Supply Setting the context - Economics of Renewa	able E	nergy	/ Sup	oply				
- Economics o	f Electricity Supply								
UNIT – III	ENERGY MARKET		9	Peri	iods				
Perfect Compo	etition as a Market Form - Why is the Energy Market not Perfectly Con	npetit	ive? ·	- Ma	rket				
Failure and M	onopoly - Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E	ra II ·	- Oil	Mar	ket:				
OPEC									
UNIT – IV	LAW ON ELECTRICITY		9	Peri	iods				
Introduction of	f the Electricity Law; Constitutional Design - Evolution of Laws on	Elect	tricity	v Sal	ient				
Features of El	ectricity Act, 2003 - Evolution of Laws on Electricity - Salient Feature	es of t	he El	ectri	city				
Act 2003									
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT		9	Peri	iods				
Regulatory C	ommissions - Appellate Tribunal - Other Institutions under the	Act	- El	ectri	city				
(Amendment)	Bill 2020/2021. A Critical Comment - Renewable Energy - Role	of C	Civil	Soci	ety;				
Comments on	Draft Renewable Energy Act, 2015								
Contact Perio	ods:								
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	riods							
REFERI	ENCES								
1 Bhattacha	yya, Subhes. C. (2011). "Energy Economics: Concepts, Issu	es, I	Mark	ets	and				
Governan	ee". Springer.London, UK								
2 Stevens, P.	(2000). "An Introduction to Energy Economics. In Stevens, P.(ed.)	The I	Econ	omic	s of				
Energy",	ol.1, Edward Elgar, Cheltenham, UK.								
3 Nausir Bha	urucha, "Guide to the Electricity Laws" , LexisNexis, 2018								
4 Mohamma	d Naseem, "Energy Laws in India" , Kluwer Law Internation	al, 31	d E	dn,	The				
Netherland	ls, 2017.								
E 41.1 IZ	Alak Kumar & Sushanta K Chateriee "Flectricity Sector in India: Policy and Regulation" OUP								

2012.
6 Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and

Practices", Cambridge University Press, 2014.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	К3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical	K4
	sustainability	

Course Articulation Matrix							
COs/Pos	PO1	PO2	PO3	PO4			
CO1	3	1210-04-02	3	3			
CO2	3	2 . 2	1	1			
CO3	3 8 90 00	Destruction and a Miles	2	2			
CO4	3	Mana Pal	V~) 1	2			
CO5	3		3	3			
23PSOE20	3		2	2			
1 – Slight, 2 – Moderat	e, 3 – Substantial	-4	1				
			110				

ASSESSMEN	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*		8						
CAT1	20	30	20	30	-	-	100	
CAT2	20	20	20	20	20	-	100	
Individual	20	30	30	20	- 8	-	100	
Assessment1		Contra Co	30	50000				
/ Case		THE R	25	1				
study1/		12 Oct	C C					
Seminar								
1/Project1								
Individual	20	30	_	20	-	40	100	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30	30	-	20	20	-	100	

22000001	MODERN AUTOMOTIVE SYSTEMS								
23P50E21	(Common to all B	ranches)							
PREREQUIS	ITES	CATEGORY	L	Т	Р	С			
	NIL	OE	3	0	0	3			
Course	To expose the students with theory and applic	ations of Automo	tive I	Elect	rical	and			
Objectives	Electronic Systems.								
UNIT – I	INTRODUCTION TO MODERN AUTOMOT	IVE ELECTRON	ICS	9	Per	iods			
Introduction to	modern automotive systems and need for electronic	cs in automobiles-	Role	of el	ectro	onics			
and microcont	trollers- Sensors and actuators- Possibilities and	challenges in au	tomo	ive	indu	stry-			
Enabling techn	ologies and industry trends.								
UNIT – II	SENSORS AND ACTUATORS			9	Per	iods			
Introduction- b	basic sensor arrangement- Types of sensors- Oxyg	gen sensor, engine	crank	shaf	t ang	gular			
position sensor	r – Engine cooling water temperature sensor- Engine	ne oil pressure sen	sor- F	uel r	neter	ring-			
vehicle speed	sensor and detonation sensor- Pressure Sensor- Li	near and angle ser	nsors-	Flov	v ser	nsor-			
Temperature and	nd humidity sensors- Gas sensor- Speed and Accele	eration sensors- Kn	ock se	ensor	- To	rque			
sensor- Yaw ra	te sensor- Tyre Pressure sensor- Actuators - Steppe	er motors – Relays.							
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AU	JTOMOBILE		9	Per	iods			
Electronic Tra	nsmission Control - Digital engine control syster	n: Open loop and	close	looj	p coi	ntrol			
systems- Engi	ne cooling and warm up control- Acceleration-	Detonation and ic	lle sp	eed	conti	rol -			
Exhaust emissi	on control engineering- Onboard diagnostics- Futu	re automotive pow	ertrain	n sys	tems	•			
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE	SYSTEMS		9	Per	riods			
Cruise Contro	l- Anti-lock Braking Control- Traction and Stab	ility control- Airb	ag co	ntrol	sys	tem-			
Suspension con	ntrol- Steering control- HVAC Control.								
UNIT – V	ELECTRONIC CONTROL UNITS (ECU)			9	Per	iods			
Introduction to	Energy Sources for ECU, Need for ECUs- Advan	ces in ECUs for au	itomo	tives	- De	esign			
complexities o	f ECUs- V-Model for Automotive ECU's- Archite	ecture of an advance	ced m	icroc	contro	oller			
(XC166 Famil	y, 32-bit Tricore) used in the design of automobile	ECUs- On chip p	eriphe	erals,	prot	ocol			
interfaces, anal	log and digital interfaces.	10							
Contact Perio	ds:	7							
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 Pe	riods						
DEFEDE	NCES								

1	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis",
	John Wiley and Sons, 2001.
2	M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE
	Press, series on Power Engineering, 2000.
3	Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power
	SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
4	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Acquire knowledge about conventional automotive control units and	K1
	devices.	
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering	K4
	applications	
CO4	Develop modern automotive control system for electrical and electronics	K6
	systems	
CO5	Understand the function of sensors and actuators	K2

COs/Pos	PO1	PO2	PO3	PO4
CO1	3.0000	a weat	1	3
CO2	3	the state of the s	3	2
CO3	3		3	2
CO4	2	-	3	1
CO5	2	-4	1	2
23PSOE21	3		2	2
– Slight, 2 – Moderate, 3	– Substantial	CON NO		-

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
Category*	3	A JA						
CAT1	20	30	20	30	-	-	100	
CAT2	20	20	20	20	20	-	100	
Individual Assessment1 / Case study1/ Seminar 1/Project1	20	30		20	_	30	100	
Individual Assessment2 / Case study2/ Seminar 2 /Project2	20	30	-	20	-	40	100	
ESE	30	30	20	20	-	-	100	

23PEOE22	E22 VIRTUAL INSTRUMENTATION									
DEDEOLUS	Common to all	Branches)	т	т	р	<u> </u>				
PREREQUIS	IIES NII			1	P					
G		UE .	3	0	0	3				
Course	To comprehend the Virtual instrumentation	ion programming	con		s to	wards				
Objectives	associated software tools	age on DAQ, signal	cond	111101	ing a	ind its				
UNIT – I	INTRODUCTION				7 P	eriods				
Introduction -	Introduction advantages Block diagram and architecture of a virtual instrument. Conventional									
Instruments ve	advantages - Diock diagram and arcintecture	les graphical progra	mmi	- CC ng in	data	flow				
	th conventional programming	ies, graphical progra		ng m	uata	. 110w,				
	CDADHICAL DDOCDAMMINC AND Laby				0 D	minda				
$\frac{\mathbf{U}}{\mathbf{U}} = \mathbf{H}$	GRAI IIICAL I ROGRAMMINING AND Laby	iew	VI	Diar	910 Joy t	unog				
Concepts of gr	applicat programming - Laby IEw Software - Con	Chusters Legal or	- 1 V	Disp	nay t	ypes -				
Digital - Analo	bg - Chart and Graphs. Loops - structures - Arrays	s – Clusters- Local al	ia gi	odai	varia	.bles –				
String - Timers	s and dialog controls.				11 D	• 1				
	MANAGING FILES & DESIGN PATTERNS		 1			eriods				
High-level and	I low-level file I/O functions available in LabVIE	W – Implementing	File	I/O f	uncti	ons to				
read and writ	e data to files – Binary Files – TDMS – sec	quential programmir	ng –	Stat	e ma	achine				
programming	- Communication between parallel loops -Rad	ce conditions – No	tifie	rs &	Que	ues –				
Producer Cons	umer design patterns									
UNIT – IV	PC BASED DATA ACQUISITION				9 P	eriods				
Introduction to	data acquisition on PC, Sampling fundamentals,	ADCs, DACs, Calib	ratic	on, Ro	esolu	tion, -				
analog inputs a	and outputs - Single-ended and differential inputs	- Digital I/O, counter	rs an	d tim	ners, I	DMA,				
Data acquisitio	on interface requirements - Issues involved in sele	ection of Data acqui	sitio	n car	ds - I	Use of				
timer-counter a	and analog outputs on the universal DAQ card.									
UNIT – V	DATA ACQUISITION AND SIGNAL COND	ITIONING			9 P	eriods				
Components o	f a DAQ system, Bus, Signal and accuracy consid	leration when choosi	ng D	AQ	hardy	ware –				
Measurement	of analog signal with Finite and continuous buffer	red acquisition- analog	og o	utput	gene	ration				
– Signal cond	itioning systems – Synchronizing measurements	in single & multip	ole d	evice	es – 1	Power				
quality analysi	s using Electrical Power Measurement tool kit.	177								
Contact Periods:										
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 I	Periods Total:	45 F	Perio	ds					
REFERENC	ES:									
1Jeffrey TriFun" (3rd)	avis, Jim Kring, "LabVIEW for Everyone: Gra ! Edition), Prentice Hall, 2006 .	iphical Programmir	ng M	lade	Easy	, and				

2 Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010

3 Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional Publishing, 2019

4 Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.

5 Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newness, 2000

COU: Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6
CO5	Familiarize and experiment with DAQ and Signal Conditioning	K3

Course Articulation Matrix									
COs/POs	PO1	PO2	PO3	PO4	PO5				
CO1	3	S. S.	3	2	1				
CO2	3	0	S1250/3	2	1				
CO3	-3	State of the second	2	2	2				
CO4	3	1	3	3	1				
CO5	3	1	3	3	2				
23PEOE22	3	1 -	- 3	2	1				
1 – Slight, 2 – Moderate, 3	– Substantial		5 10	•					

AND A

U

ASSESSMENT PATTERN – THEORY

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	30	40	15	15	-	-	100		
CAT2	15	10	25	30	20	-	100		
Individual Assessment1 / Case study1/ Seminar 1/Project1	10	10	20	30	20	10	100		
Individual Assessment2 / Case study2/ Seminar 2 /Project2	25	40	20	15	-	-	100		
ESE	30	25	15	20	5	5	100		

22DEOE22	ENERGY MANAGEMENT SYSTEMS							
Z3PEOEZ5	(Common to all Bra	nches)						
PREREQUIS	ITES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course	To Comprehend energy management schemes, I	perform energy	audi	t ar	nd e	xecute		
Objectives	economic analysis and load management in electrica	al systems.						
UNIT – I GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT 9 Periods								
Energy Conser	vation Act 2001 and policies – Eight National Missio	ons - Basics of E	nerg	y an	d its	forms		
(Thermal and E	Electrical) - Energy Management and Audit - Energy	Managers and A	udite	ors -	Тур	es and		
Methodology	Audit Report - Material and energy balance dia	gramsEnerg	y M	Ionit	torin	g and		
Targeting.								
UNIT – II	STUDY OF BOILERS, FURNACES AND COG	ENERATION			9 P	eriods		
Boiler Systems	s - Types - Performance Evaluation of boilers - E	Energy Conserva	tion	Op	portu	inity -		
Steam Distribu	ttion - Efficient Steam Utilisation - Furnaces:type	s and classificat	ion	- Pe	erfor	mance		
evaluation of	a typical fuel fired furnace. Cogeneration: Need	- Principle - T	echr	nical	opt	ions -		
classification -	Technical parameters and factors influencing coge	eneration choice	- P	rime	Mo	vers -		
Trigeneration.	Biglinin () and the Billinin	Ne.						
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEM	S			9 P	eriods		
Electricity Bil	ling – Electricity load management - Maximum	Demand Contro	ol -	Pov	ver	Factor		
improvement a	nd its benefits - pf controllers - capacitors - Energy	efficient transfor	mers	s and	l Ind	uction		
motors - rewin	ding and other factors influencing energy efficiency	 Standards and I 	abeli	ing p	orogi	amme		
of distribution	transformers and IM - Analysis of distribution lo	sses - demand s	ide	man	agen	nent -		
harmonics - filt	ters - VFD and its selection.	B2						
UNIT – IV	STUDY OF ELECTRICAL UTILITIES				9 P	eriods		
Compressor ty	pes - Performance - Air system components - Eff	icient operation	of c	comp	press	ed air		
systems- Com	pressor capacity assessment - HVAC: psychrometri	cs and air-condi	tioni	ng p	proce	esses -		
Types of refri	geration system - Compressor types and applica	tions - Perform	ance	asse	essm	ent of		
refrigeration pl	ants - Lighting Systems: Energy efficient lighting co	ontrols - design o	of int	erio	r lig	nting -		
Case study.	A	12.						
UNIT - V	PERFORMANCE ASSESSMENT FOR EQUIP	MENT		ĻĻ	9 P	eriods		
Performing Fir	ancial analysis: Fixed and variable costs – Payback	k period – ROI -	me	thod	s - 1	factors		
affecting analy	sis. Energy Performance Assessment: Heat exchar	igers - Fans and	Blo	wers	s - F	umps.		
Energy Conservation in buildings and ECBC.								
Contact Perio	ds:							
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Period	ls Total: 45 Pe	riod	S				
REFERE	NCES:							

1	Murphy W.R. and G.Mckay Butter worth, "Energy Management", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition,
	River Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management",
	Second edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second
	Edition, Nirali Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the feature of energy audit methodology and documentation of	K3
	report.	
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

Course Articulation Matrix							
COs/POs	PO1	PO2	PO3	PO4	PO5		
CO1	3	2	2	1	1		
CO2	3	2	2	1	1		
CO3	3	2	2	1	1		
CO4	3	2	S (18)// 2	1	1		
CO5	3	2	2	1	1		
23PEOE23	3	2	2	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	30	30	20	10	-	100				
CAT2	10	30	30	20	10	-	100				
Individual Assessment1/ Case study1/ Seminar 1/Project1		30	30	20	20	_	100				
Individual Assessment2/ Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100				
ESE	10	30	30	20	10	-	100				

22050524	ADVANCED ENERGY STORA	GE TECHNOL	OG'	Y								
23PEOE24	(Common to all Br	anches)										
PREREQUIS	ITES	CATEGORY	L	Т	Р	С						
	NIL	NIL OE 3 0										
Course Objectives	To explore the fundamentals, technologies and applications of energy storage											
UNIT – I	NERGY STORAGE: HISTORICAL PERSPECTIVE, 9 Periods											
INTRODUCTION AND CHANGES												
Storage Needs - Variations in Energy Demand- Variations in Energy Supply- Interruptions in Energy												
Supply- Trans	mission Congestion - Demand for Portable Energ	y-Demand and so	cale	requi	remei	nts -						
Environmental	and sustainability issues-conventional energy storage	ge methods: batter	y-ty	pes.								
UNIT – II	TECHNICAL METHODS OF STORAGE				9 Per	iods						
Introduction: E	Energy and Energy Transformations, Potential energy	rgy (pumped hydr	ro, c	ompi	ressed	air,						
springs)- Kine	tic energy (mechanical flywheels)- Thermal energy	ergy without pha	ise c	hang	e pas	sive						
(adobe) and ad	ctive (water)-Thermal energy with phase change ((ice, molten salts,	, stea	am)-	Chen	nical						
energy (hydro	gen, methane, gasoline, coal, oil)- Electrochem	nical energy (bat	terie	s, fu	iel ce	ells)-						
Electrostatic en	nergy (capacitors), Electromagnetic energy (superco	onducting magnet	s)- I	Differ	ent T	ypes						
of Energy Stor	age Systems.	5										
UNIT – III	PERFORMANCE FACTORS OF ENERGY ST	CORAGE SYSTE	EMS		9 Per	iods						
Energy capture	e rate and efficiency- Discharge rate and efficiency	y- Dispatch abilit	y an	d loa	d flov	wing						
characteristics,	scale flexibility, durability - Cycle lifetime, mass	and safety – Risk	s of	fire, o	explos	sion,						
toxicity- Ease	of materials, recycling and recovery- Environmental	l consideration an	d rec	cyclin	g, M	erits						
and demerits of	f different types of Storage.	11										
UNIT – IV	APPLICATION CONSIDERATION	11			9 Per	iods						
Comparing Sto	orage Technologies- Technology options- Performar	nce factors and me	etrics	s- Eff	icienc	y of						
Energy System	s- Energy Recovery - Battery Storage System: Intro	duction with focu	s on	Lead	Acid	and						
Lithium- Chen	nistry of Battery Operation, Power storage calculat	tions, Reversible	react	ions,	Char	ging						
patterns, Batter	ry Management systems, System Performance, Are.	as of Application	of E	nerg	y Stor	age:						
Waste heat rec	overy, Solar energy storage, Green house heating, l	Power plant applie	catio	ns, D	rying	and						
heating for pro	cess industries, energy storage in automotive application	ations in hybrid ar	nd ele	ectric	vehic	eles.						
UNIT – V	HYDROGEN FUEL CELLS AND FLOW BAT	TERIES			9 Per	iods						
Hydrogen Eco	nomy and Generation Techniques, Storage of Hy	drogen, Energy	gene	ratio	n - S	uper						
capacitors: pro	perties, power calculations - Operation and Design	n methods - Hybr	rid E	nerg	y Stor	age:						
Managing peal	Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor											
"Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation)												
Bacitor + Fue	l Cell or Flow Battery operation-Applications: St	orage for Hybrid	Ele	ctric	Vehi	cles,						
Regenerative P	ower, capturing methods.											
Contact Perio	Contact Periods:											
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Perio	ods Total: 45 Pe	eriod	S								

REFERENCES :

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy
	Storage and Conversion", John Wiley and Sons, 2012.
3	Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
4	Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical
	Society, New Jersy, 2010.

COUI Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2
	A Brannin Description and Britishing Land	

Course Articulation Mat	rix	State of the	Dal VM		
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	1	3	3	3
CO2	3	1	3	3	3
CO3	3	1	3	3	3
CO4	3	1	3	3	3
CO5	3		3	3	3
23PEOE24	3		3	3	3
1 – Slight, 2 – Moderate, 3	3 – Substantial			•	1

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	30	30	20	10	-	100				
CAT2	10	30	30	20	10	-	100				
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100				
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100				
ESE	10	30	30	20	10	-	100				

DESIGN OF DIGITAL SYSTEMS											
ZJAEU	JE25				(Commor	n to	all Branches)				
PREREQ	UISITE	ES					CATEGORY	L	Τ	Р	С
			NIL				OE	3	0	0	3
Course	•	To ga	ain knowle	edge in the	e design and	1 VI	HDL programmin	g of s	ynchro	onous	and
Objectives		async	hronous se	equential c	ircuits, PLD'	's an	d the basic conce	epts of	testing	g in V	LSI
		circui	ts								
UNIT–I	SYNC	CHRO	NOUS SI	EQUENTI	AL CIRCU	ΤΙ	DESIGN			9 Per	riods
Analysis assignmen realization	of Cloo t, Desig	cked gn of S	Synchrono Synchronou	ous Sequer 1s Sequent	ntial Circuit ial circuits, I	s - Desig	Modeling, state gn of iterative circ	table uits- A	reduc SM cl	tion, nart –A	state ASM
UNIT–II	ASYN	CHR	ONOUS S	SEQUENT	TAL CIRC	UIT	DESIGN			9 Per	riods
Analysis o	of Asyn	chrono	ous Sequer	ntial Circui	its - Races in	n AS	SC – Primitive Fl	ow Tal	ole - F	Flow T	able
Reduction	Techni	aues.	State Assis	gnment Pro	oblem and th	e Tr	ansition Table –	Design	of AS	SC - S	tatic
and Dynan	nic Haz	ards –	Essential	9 Hazards– I	Data Synchro	nize	rs.	0			
UNIT–III	SYST	EM D	DESIGN U	SING PLI	DS	PR				9 Per	riods
Basic cond	cepts –	Progra	amming To	echnologie	s - Program	nabl	e Logic Element	(PLE)	– Pros	gramm	able
Array Log	ic (PLA	A)-Prog	grammable	Array Log	gic (PAL) –D	esig	n of combinationa	and s	equent	tial cir	cuits
using PLD	s– Com	plex I	PLDs (CPL	LDs).					1		
UNIT– IV	INT	RODU	UCTION 7	FO VHDL		Ā	s 11 ²			9 Per	riods
Design flo	w -Soft	ware t	ools – VH	DL: Data (Objects-Data	type	s – Operators –En	tities a	nd Arc	hitectu	ıres
– Compon	ents an	nd Cor	nfiguration	s – Signal	Assignment	- (Concurrent and S	equenti	al stat	ement	s —
Behavioral	l, Dataf	low ar	nd Structur	al modelin	g– Transport	and	Inertial delays –I	Delta de	elays-A	Attribu	ites -
Generics-I	Package	es and	Libraries.	8							
UNIT–V	LOGI	C CI	RCUIT TH	ESTING A	ND TESTA	BLF	E DESIGN			9 Per	riods
Digital lo circuit test Study: Tra	gic circ ing-Des ffic Lig	cuit te sign fo tht Cor	sting - Fa or Testabili ntroller.	ult models ty - Built-i	- Combinat n Self-test, B	iona oard	l logic circuit tes l and System Leve	sting - el Boun	Seque dary S	ential 1 Scan - (logic Case
Contact Pe	eriods:			Con .	441 - Sel	2	537-				
Lecture: 4	5 Perio	ds	Tutorial	: 0 Periods	Practica	1:0	Periods Total:	45 Peri	ods		
					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
REF	ERENC	CES:									

1	Donald G.Givone, "Digital principles and Design", Tata Mc Graw Hill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and
	Design", Prentice Hall International, Inc., New Jersey, 1995.
3	VolneiA. Pedroni, "Circuit Design with VHDL", PHILearning, 2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage 2 nd Edition 2012.
6	NripendraN.Biswas, "Logic Design Theory" PrenticeHallofIndia, 2001.

COURS	SEOUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, students will be able to/have:	Mapped
CO1	To design synchronous sequential circuits based on specifications.	K3
CO2	To design asynchronous sequential circuits based on specifications	K3
CO3	Ability to illustrate digital design implementation using PLDs.	K2
CO4	To develop algorithm and VHDL code for design of digital circuits.	K3
CO5	Understand the different testing methods for combinational and sequential circuits.	K2

Course Articulation Matrix

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	2	-	-	1			
CO2	3	6	2	-	-	1			
CO3	3	Contraction of	2	1RIM-	-	1			
CO4	3		2	The second	-	1			
CO5	3	10 m	2		-	1			
23AEOE25	3		2	1	-	1			
– Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY

ASSESSMENT PATTERN – THEORY												
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*				11 1								
CAT1	40	40	20	-	-	-	100					
CAT2	40	40	20	- A.	-	-	100					
Individual	- 34	50	50		-	-	100					
Assessment 1	(1 de									
/Case Study 1/		100 - 3	262-06	BILLINO								
Seminar 1 /		100-200	S Store	D.								
Project1												
Individual	-	50	50	-	-	-	100					
Assessment 2												
/Case Study 2/												
Seminar 2 /												
Project 2												
ESE	20	45	35	-	-	-	100					

22 4 50	BASICS OF NANO ELEC	FRONICS									
ZJAEU	(Common to all Brand	ches)									
PRERI	EQUISITES	CATEGORY	L	Т	Р	C					
	3	0	0	3							
Cour	se • The students will be able to acquire knowled	lge about nano	dev	ice fa	abrica	ition					
Object	ective technology, nano structures, nano technology for memory devices and applications o										
	nano electronics in data transmission.										
UNIT –	I TECHNOLOGY AND ANALYSIS			91	Perioo	ds					
Fundam Materia Techniq	nentals : Dielectric, Ferroelectric and Optical properties - Film l removing techniques - Etching and Chemical Mecha pues.	n Deposition Me nical Polishing	thod: - S	s – Li Scanni	thogra ng P	aphy 'robe					
UNIT –	II CARBON NANO STRUCTURES			91	Perio	ds					
Principl	es and concepts of Carbon Nano tubes - Fabrication - E	Electrical, Mechan	nical	and	Vibra	ation					
Properti	es - Applications of Carbon Nano tubes.	8									
UNIT –	III LOGIC DEVICES	24		91	Perioo	ds					
Silicon	MOSFET's: Novel materials and alternative concepts -	Single electron	de	vices	for 1	logic					
applicat	ions - Super conductor digital electronics - Carbon Nano tube	s for data processi	ing.								
UNIT –	- IV MEMORY DEVICES AND MASS STORAGE DEVI	ICES		91	Perio	ls					
Flash m	nemories - Capacitor based Random Access Memories - M	agnetic Random	Acc	ess M	lemor	ies -					
Informa	tion storage based on phase change materials - Resistive Ran	dom Access Men	norie	es - Ho	ologra	phic					
Data sto	prage.										
UNIT –	- V DATA TRANSMISSION AND INTERFACING DIS	PLAYS	<u>.</u>	91	Perio						
Photon1	c Networks - RF and Microwave Communication System	- Liquid Crystal	Disj	plays	- Org	;an1c					
Light er	nitting diodes.	10									
Contaci	L Periods: 45 Deviada — Tytevials O Deviada — Dvestigals O Dev	riada Tatalı	45 1	Domio	Ja						
Lecture	: 45 Periods Tutorial: 0 Periods Practical: 0 Per	rious iotai:	45]	Perio	15						
F	REFERENCES:)									
1	Rainer Waser, "Nano Electronics and Information Techno	logy, Advanced E	Elect	ronic	mater	ials					
	and novel devices", 3rd Edition, Wiley VCH, 2012.										
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2002	7.									
3	Charles Poole, "Introduction to Nano Technology", Wiley In	terscience, 2003									
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A.	Stroscio, " Intro	oduc	tion	to N	ano					
	Electronics Science, Nanotechnology, Engineering and A	pplications", Ca	mbri	idge U	Jniver	rsity					
	Press, 2011.										
5	C.Wasshuber Simon, "Simulation of Nano Structures	Computational S	Singl	e-Eleo	ctroni	<i>cs"</i> ,					
	Springer, 2001.										
6	Mark Reed and Takhee Lee, "Molecular Nano Electroni	cs, American So	cient	ific F	Publis	her,					
	California", 2003.										

COURS	OURSE OUTCOMES:				
		Taxonomy			
Upon co	Upon completion of the course, students will be able to/have:				
CO1	Explain principles of nano device fabrication technology.	K2			
CO2	Describe the concept of Nano tube and Nano structure.	K2			
CO3	Explain the function and application of various nano devices	K3			
CO4	Reproduce the concepts of advanced memory technologies.	K2			
CO5	Emphasize the need for data transmission and display systems.	K2			

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	2	-	-	1		
CO2	3	-	2	-	-	1		
CO3	3	G	2	-	-	1		
CO4	3	and and	2	BURG	-	1		
CO5	3	C T	1000 02		-	1		
22AEOE26	3	Constant of the second	2		-	1		

ASSESSMENT PA	ATTERN – THE	ORY	- Lal	71			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	25	25	11 -	-	-	100
CAT2	50	25	25	11 -	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	25	25		-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50	25	25	- Co	-	-	100
ESE	50	25	25	-	-	-	100

22 A EOE27	ADVANCED PROC	ESSOR							
ZJAEUEZ/	(Common to all Bra	inches)							
PREREQUIS	SITES	CATEGORY	L	Т	Р	С			
	NIL	OE	3	0	0	3			
Course	• The students will be able to acquire knowledge	e about the high per	rforn	nanc	e RI	SC,			
Objective	CISC and special purpose processors.								
UNIT – I	UNIT – I MICROPROCESSOR ARCHITECTURE 9 Periods								
Instruction s	et – Data formats – Instruction formats – Addres	ssing modes – Mei	nory	hie	rarc	hy –			
register file -	- Cache - Virtual memory and paging - Segment	ation – Pipelining	– Tł	ne in	stru	ction			
pipeline – p	ipeline hazards - Instruction level parallelism -	reduced instruction	set	- (Comp	puter			
principles – I	RISCversus CISC – RISC properties – RISC evaluati	on.							
UNIT – II	HIGH PERFORMANCE CISC ARCHITECTU	RE – PENTIUM		9) Pei	riods			
The software	model – functional description – CPU pin description	ions – Addressing n	node	s – I	Proce	essor			
flags – Instru	ction set - Bus operations - Super scalar architectur	e – Pipe lining – Bi	anch	n pre	dicti	on –			
Theinstructio	on and caches – Floating point unit- Programming the	e Pentium processor	•						
UNIT – III	HIGH PERFORMANCE CISC ARCHITECTU	IRE – PENTIUM		9) Pei	riods			
	INTERFACE								
Protected me	ode operation - Segmentation - paging - Protect	ion – multitasking	– E	xcep	tion	and			
interrupts - In	nput /Output – Virtual 8086 model – Interrupt proces	sing.							
UNIT – IV	HIGH PERFORMANCE RISC ARCHITECTU	RE: ARM		9) Pei	riods			
ARM archite	ecture – ARM assembly language program – ARM	I organization and	impl	eme	ntati	on –			
ARMinstruct	ion set - Thumb instruction set.	1							
UNIT – V	SPECIAL PURPOSE PROCESSORS			9) Pei	riods			
Altera Cyclo	one Processor - Audio codec - Video codec des	ign – Platforms –	Gen	eral	pur	pose			
processor –	Digital signal processor – Embedded processor	- Media Processon		Vide	eo si	ignal			
Processor – C	Custom Hardware – Co-Processor.	2.R							
Contact Peri	ods:								
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0	Periods Total	: 45	Peri	ods				
L									
BEEEB	FNCFS.								

REFERENCES:

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System –On –Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI,
	2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, " Video codec design ", John Wiley & sons Ltd, U.K, 2002.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon co	Mapped			
CO1	Describe the fundamentals of various processor architecture.	K2		
CO2	Interpret and understand the high performance features in CISC architecture.	K2		
CO3	Describe the concepts of Exception and interrupt processing.	K2		
CO4	Develop programming skill for ARM processor.	K3		
CO5	Explain various special purpose processor	K2		

Course Articulation Matrix

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	-	-	1
CO2	3		2	-	-	1
CO3	3	TRAC	2		-	1
CO4	3	A MAINER	2		-	1
CO5	3	(D) = TU	2	-	-	1
22AEOE27	3		2	-	-	1
Slight, 2 – Moderat	te, 3 – Substar	ntial	No. of Concession, Name	77	•	•

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*		1 3		11 4						
CAT1	40	40	20	-	-	-	100			
CAT2	40	40	20	-/3	-	-	100			
Individual	- 3	50	50	人役	-	-	100			
Assessment 1	6		100							
/Case Study 1/		AUTOR L	2152	31-110						
Seminar 1 /		E ST	5 3000	ET?						
Project1										
Individual	-	50	50	-	-	-	100			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE	30	40	30	-	-	-	100			

HDL PROGRAMMING LANGUAGES									
23VLOE28	(Common to all Branches)								
PREREQUISITES CATEGORY L NIL OE 3									
	NIL	OE	3	0	0	3			
Course To code and simulate any digital function in Verilog HDL and understand									
Objective between synthesizable and non-synthesizable codes.									
UNIT – I	VERILOG INTRODUCTION AND MODE	LING		9	Per	riods			
Introduction t	o Verilog HDL, Language Constructs and	Conventions, Ga	te Le	evel 1	Mode	ling,			
Modeling at Da	ataflow Level, Behavioral Modeling, Switch Lev	vel Modeling, Syst	tem T	asks, I	Func	tions			
and Compiler I	Directives.								
UNIT – II	SEQUENTIAL MODELING AND TESTIN	G		9) Pe	riods			
Sequential M	odels - Feedback Model, Capacitive Mod	el, Implicit Mod	lel, I	Basic	Me	mory			
Components,	Functional Register, Static Machine Coding,	Sequential Synth	nesis.	Test	Ben	ich -			
Combinational	Circuits Testing, Sequential Circuit Testir	ng, Test Bench	Techr	niques	, D	esign			
Verification, A	ssertion Verification.	115 50							
UNIT – III	SYSTEM VERILOG			9	Per	riods			
Introduction, S	System Verilog declaration spaces, System Ver	rilog Literal Value	es and	d Bui	lt-in	Data			
Types, System	Verilog User-Defined and Enumerated Types,	system Verilog A	rrays,	Struc	ctures	s and			
Unions, system	n verilog Procedural Blocks, Tasks and Function	s.							
UNIT – IV	SYSTEM VERILOG MODELING	112		9) Pe	riods			
System Verilo	g Procedural Statements, Modeling Finite Sta	ate Machines with	n Sys	tem V	Veril	og,			
System Verilog	g Design Hierarchy.	11							
UNIT – V	INTERFACES AND DESIGN MODEL	11		9	Per	riods			
System Verilo	g Interfaces, A Complete Design Modeled v	with System Veri	log, l	Behav	ioral	and			
Transaction Level Modeling.									
Contact Periods:									
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									
REFERENCES:									

2	Stuart Sutherland, Simon Davidmann, Peter Flake, Foreword by Phil Moorby, "System							
	Verilog For Design Second Edition A Guide to Using System Verilog for Hardware Design							
	and Modelling", Springer 2006.							
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.							
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2 nd Edition, 2005.							
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004							
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation							
	of Projects on FPGAs and ASICs Using Verilog", Springer, 2007.							
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language							
	Features", Springer 2006.							
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to							
	Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003							

Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COU	RSE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
CO1	Explain the verilog coding and simulate any digital function using	K2			
	Verilog HDL				
CO2	Develop sequential modeling based Verilog HDL code and develop the	K3			
	test bench for the modeling				
CO3	Explain the system verilog modeling	K2			
CO4	Differentiate the synthesizable and non-synthesizable code	K3			
CO5	Apply good coding techniques on system verilog interfaces and	K3			
	complete design model				

Course Articulation Matrix								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	a will be	2	-	2		
CO2	3	3 10	REACH	2	-	2		
CO3	3	3		2	-	2		
CO4	3	3	-	2	-	2		
CO5	3	3	- 1	2	-	2		
23VLOE28	3	3		2	-	2		
1 - Slight, $2 - Mod$	lerate, 3 – Sub	stantial		× 1				
	1	AB		11				

ASSESSMI	ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
Category*	5	(B) (INT		10	9 8							
CAT1	40	40	20		- S	-	100					
CAT2	40	40	20	1	- 1	-	100					
Individual	-	50	50			-	100					
Assessmen		10000	10 - 5100	2 Contraction								
t 1 /Case												
Study 1/												
Seminar 1												
/ Project1												
Individual	-	50	50	-	-	-	100					
Assessmen												
t 2 /Case												
Study 2/												
Seminar 2												
/ Project 2												
ESE	40	40	20	-	-	-	100					

	CMOS VLSI DESIGN										
23VLOE29	(Common to all I	Branches)									
PREREQUIS	ITES	CATEGORY	L	Т	P	С					
	NIL	OE	3	0	0	3					
Course	To gain knowledge on CMOS Circuits with its	characterization a	nd to	desi	gn C	MOS					
Objective	logic and sub-system with low power										
UNIT – I	INTRODUCTION TO MOS CIRCUITS	5		9	Pe	riods					
MOS Transistor Theory -Introduction MOS Device Design Equations -MOS Transistor as a											
Switches - Pas	Switches - Pass Transistor - CMOS Transmission Gate -Complementary CMOS Inverter -										
Static Load M	OS Inverters - Inverters with NMOS loads	s - Differential In	ivert	er -	Tri	State					
Inverter - BiCl	MOS Inverter.										
UNIT – II	CIRCUIT CHARACTERIZATION AND ESTIMATION	D PERFORMA	NCE	E 9	Pe	riods					
Delay Estimat	ion, Logical Effort and Transistor Sizing, Po	ower Dissipation,	Sizi	ng F	Routi	ing					
Conductors, C	harge Sharing, Design Margin and Reliabilit	ty.									
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	N		9	Pe	riods					
CMOS Logic	Gate Design, Physical Design of CMOS Ga	te, Designing wit	th Tr	ansr	nissi	ion					
Gates, CMOS	Gates, CMOS Logic Structures, Clocking Strategies, I/O Structures.										
UNIT – IV	UNIT – IVCMOS SUBSYSTEM DESIGN9 Periods										
DataPath Ope	erations-Addition/Subtraction, Parity Gene	rators, Compara	tors,	Ze	ro/C	Dne					
Detectors, Bin	ary Counters, ALUs, Multipliers, Shifters, N	lemory Elements	s, Co	ntro	l-FS	M,					
Control Logic	Implementation.	11									
UNIT – V	LOWPOWERCMOS VLSIDESIGN			9	Pe	riods					
Introduction to	Low Power Design, Power Dissipation in	FET Devices, Po	wer	Diss	ipati	ion					
in CMOS, Lov	w-Power Design through Voltage Scaling -	- VTCMOS Circ	uits,	MT	CM	OS					
Circuits, Arch	itectural Level Approach – Pipelining and	Parallel Processi	ng A	ppro	oach	es,					
Low Power Ba	sics CMOS Gate and Adder Design.										
Contact Perio	ds:	000									
Lecture: 45 P	eriods Tutorial: 0 Periods Practical:	: 0 Periods Tot	t al: 4	5 P	erio	ds					
REFERENCI	ES:										
1 Sung Mo	Kang, Yusuf Lablebici, "CMOS Digital	l Integrated Ci	rcuit	s:Ar	nalys	sis &					
Design", 7	Tata Mc-Graw Hill, 2011.										
2 N.Weste a	nd K.Eshranghian, "Principles of CMOS	VLSI Design",	Ad	diso	n W	'esley,					
1998.											
<i>3 Neil H. E.</i>	Weste, David Harris, Ayan Banerjee, "CM	IOS VLSI Desig	n: A	Cir	rcuit	's and					
Systems Pe	erspective", Pearson Education 2013.					~					
4 Kiat-Seng	Yeo, Kaushik Roy, "Low-Voltage, Low-Po	wer VLSI Subsy	sten	ıs",	Mc(Graw-					
Hill Profes	sional, 2004.	D 1 1 1 1		,	•	D					
5 Gary K.Ye	ap, "Practical Low Power Digital VLSI	Design ", Kluwei	r Ace	aden	nic I	Press,					
2002.		D • • • -		_							
6 Jan M .Ral	paey, "Digital Integrated Circuits: A Design	n Perspective", F	'ears	on E	duc	ation,					
2003.											

COU	RSE OUTCOMES:	Bloom's		
		Taxonomy		
Upon	Upon completion of the course, the students will be able to:			
CO1	Explain the MOS circuits and Transmission gates	K2		
CO2	Illustrate the CMOS Circuits with its characterization	K2		
CO3	Design CMOS logic circuits	K3		
CO4	Design CMOS sub-system	K3		
CO5	Discuss low power CMOS VLSI Design	K2		

Course Articulation Matrix								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1 1	0.000	2	-	3		
CO2	2		a D	2	-	3		
CO3	2	ge and game	A THE OWNER	Sun 2	-	3		
CO4	3		in Jay	2	-	3		
CO5	3	1		2	-	3		
23VLOE29	3	1	-	2	-	3		
1 - Slight, $2 - Mc$	oderate, 3 – Si	ubstantial	100					
	11	0 0						

ASSESSME	ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*		8										
CAT1	40	40	20		- 1	-	100					
CAT2	40	40	20	-76	- A	-	100					
Individual	- 2	50	50	10	6) -	-	100					
Assessmen	9	COLUMN TO A	1	- AND THE	1							
t 1 /Case		TO LON	26		9							
Study 1/		1000	No ROLDA	39								
Seminar 1				26								
/ Project1												
Individual	-	50	50	-	-	-	100					
Assessmen												
t 2 /Case												
Study 2/												
Seminar 2												
/ Project 2												
ESE	40	40	20	-	-	-	100					

	HIGH LEVEL SYNTHESIS											
23 V LUE30			(Co	ommon to all Bra	inches)							
PREREQUIS	SITES				CATEGORY	L	Т	P	С			
		NII	_		OE	3	0	0	3			
Course	Toprovi	ida studants	with foundati	one in High lovel ev	nthasis varification	and	CAI		ole			
Objective	10 provi	ide students	with foundation	ons in rightievel sy	nulesis, vernication	and	CAI	J 10	518			
UNIT – I	T - IHIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS9 Periods											
Overview HL	S flow,	Scheduling	g Techniques	, Resource sharin	g and Binding Te	echn	iques	s, Da	ata-			
path and Cont	roller Ge	neration T	echniques.									
UNIT – II HIGH LEVEL SYNTHESIS								riod	S			
Introduction to HDL, HDL to DFG, operation scheduling: constrained and unconstrained												
scheduling, ASAP, ALAP, List scheduling, Force directed Scheduling, operator binding, Static												
Timing Analysis: Delay models, setup time, hold time, cycle time, critical paths, Topological mvs.												
Logical timing analysis, False paths, Arrival time (AT), Required arrival Time (RAT), Slacks.												
UNIT – IIIHIGH-LEVEL SYNTHESIS VERIFICATION9) Pe	riod	.S			
Simulation ba	ased veri	fication -	Formal Verif	fication of digital	systems- BDD ba	ased	appi	roach	ies,			
functional equ	uivalence	, finite stat	e automata, α	o-automata, FSM v	verification.							
UNIT – IV	CAD T	OOLS FO	R SYNTHE	SIS	37	9) Pe	riod	S			
CAD tools fo	or synthes	sis, optimiz	zation, simula	ation and verificat	tion of design at	varic	ous le	evels	as			
well as for sp	pecial rea	lizations a	nd structures	s such as micropre	ogrammes, PLAs,	gate	e arr	ays	etc.			
Technology m	napping f	or FPGAs.	Low power i	issues in high leve	l synthesis and log	gic sy	ynthe	esis.				
$\mathbf{UNIT} - \mathbf{V}$	ADVA	NCED TO	PICS		1	9) Pe	riod	S			
Relative Sche	duling, I	O scheduli	ng modes - c	ycle fixed schedul	ing modes, super-	fixe	d sch	edul	ing			
modes, free-f	floating s	scheduling	mode, Pipe	lining, Handshak	ing, System Des	ign,	Hig	h-Le	vel			
Synthesis for I	FPGA.	a	C)		15							
Contact Perio	ods:	143	1 The		ATA I							
Lecture: 45 P	Periods	Tutoria	l: 0 Periods	Practical: 0 Per	riods Total: 45	Peri	ods					
			North Law									
REFEREN	NCES :	1	5-25	Stands Party	3							
1 Philippe (Coussy a	nd Adam	Morawiec,	"High-level Synth	hesis from Algor	rithn	to	Dig	ital			

Circuit", Springer, 2008.

2 Sherwani, N., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 2005.

3 D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.

4 Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.

5 Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)

6 David. C. Ku and G. De Micheli, "High-level Synthesis of ASICs Under Timing and Synchronization Constraints", Kluwer Academic Publishers, 1992.

 K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999, Wiley.

8 Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design and Analysis", Springer, 2006.

COU	RSE OUTCOMES:	Bloom's		
		Taxonomy		
Upon	Upon completion of the course, the students will be able to:			
CO1	Understand the fundamentals of High level synthesis	K2		
CO2	Synthesis the HDL for operation scheduling	K2		
CO3	Simulate and verify any digital systems	K2		
CO4	Apply CAD tools for synthesis	K2		
CO5	Have knowledge on various scheduling modes	K2		

COURSE ARTICULATION MATRIX :

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	2	-	2	2	-			
CO2	2	2	mo	2	2	-			
CO3	2	2	- NOD	2	2	-			
CO4	2	2		2	2	-			
CO5	2	2	Ser al	2	2	-			
23VLOE30	2	2	-	2	2	-			

ASSESSME	ASSESSMENT PATTERN – THEORY												
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total						
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%						
Category*		1/ 4/6		11 -									
CAT1	50	50		1 - 1	-	-	100						
CAT2	50	50	-		-	-	100						
Individual	- 8	50	50	- 3	-	-	100						
Assessment	3	24		A8									
1 /Case	(5								
Study 1/		C. C	22/22	ALUO									
Seminar 1 /		1 Contra	15 - 510-	2017									
Project1													
Individual	-	50	50	-	-	-	100						
Assessment													
2 /Case													
Study 2/													
Seminar 2 /													
Project 2													
ESE	50	50	-	-	-	-	100						

23CSOF	ARTIFICIAL INTELLIGENCE								
23C50E3	(Common to all Branches)								
PREREQ	OUISITES CATEGORY	r I	L	Т	Р	С			
	NIL OE		3	0	0	3			
Course	Identify and apply AI techniques in the design of systems that	it act in	telli	gently	y, ma	ıking			
Objective	automatic decisions and learn from experience.								
UNIT – I	SEARCH STRATEGIES			ç) Per	riods			
Uninform	ed Strategies - BFS, DFS, Djisktra, Informed Strategies - A* search	h, Heur	istic	funct	tions,	, Hill			
Climbing,	Adversarial Search – Min-max algorithm, Alpha-beta Pruning								
UNIT – I	UNIT - IIPLANNING AND REASONING9 Periods								
State Spa	ce search, Planning Graphs, Partial order planning, Uncertain	Reasoni	ng	– Pro	obabi	listic			
Reasoning	g, Bayesian Networks, Dempster Shafer Theory, Fuzzy logic								
UNIT – I	UNIT - IIIPROBABILISTIC REASONING9 Periods								
Probabilis	tic Reasoning over Time - Hidden Markov Models, Kalman F	ilters, l	Dyn	amic	Baye	esian			
Networks.	. Knowledge Representations – Ontological Engineering, Semantic	Networ	rks a	and d	escrip	ption			
logics.									
UNIT – IV DECISION MAKING 9 Periods									
Utility Th	heory, Utility Functions, Decision Networks – Sequential Decis	ion Pro	oble	ms –	Part	tially			
Observable MDPs – Game Theory.									
UNII – V REINFORCEMENT LEARNING 9 Period									
Learning	Policy Search Deep Painforcement Learning	erations	s m	Kem	lorce	ment			
	- Toney Search – Deep Kennoreenient Learning.								
Contact F	Periods: 45 Pariods Tutarial: A Pariods Practical: A Pariods Tatal: 45	Poriod	G						
DEI	FEDENCES .	1 01100	1.5						
	r ERENCES . ak Khomani "A First Course in Artificial Intelligence" Tata Mc Ci	raw Hili	l Ed	ucatio	n 20	13			
1 Deep	O "Intelligent Planning: A decomposition and Abstraction has	an IIII	roa	ch"	Snrin	15 aer			
2 1 ang 2006	Q, Intelligent I unning. A decomposition and Abstraction bus		100	<i>"</i> , "	sprin	ger,			
3 Russe	ell and Norvig "Artificial Intelligence, A Modern Approach" 3rd	edition	Per	irson	Pren	ntice			
Hall	2010.	eannong	1 00		1 / 0//				
4 Elain	e Rich. Kevin Knight, Shivashankar B. Nair, "Artificial Intelligen	ce". 3 rd	^l edi	ition.	Tata	Мс			
Graw	, Hill, 2009.	, -		,					
	·								
COUR	SE OUTCOMES:			Bloo	m's				
			, r	Гахоі	ıomy	r			
Upon co	ompletion of the course, the students will be able to:			Map	ped				
CO1	Use search techniques to solve AI problems			K	2				
CO2	Reason facts by constructing plans and understand uncertainty efficient	ently.		K	3				
CO3	Examine data using statistical codes and solve complex AI problems			K	6				

K4

K6

CO4

CO5

Apply techniques to make apt decisions.

Use deep reinforcement learning to solve complex AI problems

COURSE ARTICULATION MATRIX									
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	2	-	3	3			
CO2	3	-	2	-	3	3			
CO3	3	-	3	-	3	3			
CO4	3	-	3	-	3	3			
CO5	3	-	3	-	3	3			
23CSOE31	3	-	3	-	3	3			
1 - Slight, $2 - $ Moderate,	3 – Substantia	al							

ASSESSMENT H	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	- @	20	40	20	20	-	100				
CAT2	- "(0	10	20	40	10	20	100				
Individual	- 0	(Distant)	Contract of		50	50	100				
Assessment 1/											
Case study 1/	2			77							
Seminar 1/	1										
Project 1			$\sim \Lambda$	- 11°							
Individual	-	112		- 11	50	50	100				
Assessment 2/	24		SI.	11							
Case study 2/	li li	A ST		11							
Seminar 2/		$\infty =$									
Project 2	A	Sec.		3							
ESE	30	30	40	199	-	-	100				

23CSOF32	SOE32 COMPUTER NETWORK MANAGEMENT (Common to all Branches)									
200000202										
PREREQUI	SITES	CATEGORY	L	Т	Р	С				
NIL		OE	3	0	0	3				
Course	After the completion of the course, the	students will be a	able t	o und	erstand	d the				
Objectives	concept of layering in networks, functions of protocols of each layer of TCP/IP									
	protocol suite, concepts related to network	addressing and ro	uting	and b	uild si	mple				
	LANs, perform basic configurations for re-	outers and switche	s, and	imple	ement	IPv4				
	and IPv6 addressing schemes using Cisco	Packet Tracer.								
UNIT – I	INTRODUCTION AND APPLICATIO	N LAYER		9	Perio	ds				
Building netw	work – Network Edge and Core – Layere	ed Architecture –	OSI 1	Model	– Int	ernet				
Architecture	(TCP/IP) Networking Devices: Hubs, Brid	lges, Switches, Ro	uters,	and C	Gatewa	ays –				
Performance	Metrics - Ethernet Networking - Introd	uction to Sockets	– A	pplica	tion I	Layer				
protocols – H	TTP – FTP Email Protocols – DNS.									
UNIT – II	TRANSPORT LAYER AND ROUTING	Grand all		9	Perio	ds				
Transport La	yer functions –User Datagram Protocol –	Transmission Co	ntrol	Protoc	col – 1	Flow				
Control – Ret	ransmission Strategies – Congestion Contro	ol - Routing Princi	ples -	- Dista	nce V	ector				
Routing – L	ink State Routing - RIP - OSPF - BG	P – Introduction	to Qi	iality	of Se	rvice				
(QoS).Case S	tudy: Configuring RIP, OSPF BGP using P	acket tracer								
UNIT – III	NETWORK LAYER			9	Perio	ds				
Network Lay	er: Switching concepts - Internet Protocol -	 IPV4 Packet For 	mat –	IP A	ddress	ing –				
Subnetting –	Classless Inter Domain Routing (CIDR) -	Variable Length St	ubnet	Mask	(VLS	M) –				
DHCP – AR	P – Network Address Translation (NAT) -	– ICMP – Concep	t of S	SDN.C	Case S	tudy:				
Configuring V	VLAN, DHCP, NAT using Packet tracer									
UNIT – IV	INTERNETWORK MANAGEMENT			9	Perio	ds				
Introduction t	to the Cisco IOS - Router User Interface -	CLI - Router and	Switc	h Adr	ninistr	ative				
Functions - R	outer Interfaces - Viewing, Saving, and Era	sing Configuration	ns - Sv	vitchi	ng Ser	vices				
- Configuring	s Switches - Managing Configuration Regi	sters - Backing U	p and	Resto	oring I	OS -				
Backing Up	and Restoring the Configuration - Using	Discovery Protoc	col (C	CDP) -	- Cheo	cking				
Network Con	nectivity	EV .		-						
UNIT – V	TRAFFIC MANAGEMENT AND WA	N PROTOCOLS		9	Perio	ds				
Managing Tr	affic with Access Lists: Introduction to	Access Lists - Sta	andaro	d Acc	ess Li	sts -				
Extended Acc	cess Lists - Named Access Lists - Monitoring	ng Access Lists - V	Wide .	Area N	Vetwor	rking				
Protocols: Int	roduction to Wide Area Networks - Cablin	ng the Wide Area	Netw	ork - I	High-I	Level				
Data-Link Co	ontrol (HDLC) Protocol - Point-to-Point Pro	otocol (PPP) - Fran	ne Re	lay: Fi	rame F	Relay				
Implementation	on and Monitoring - Integrated Services Di	gital Network (ISI	DN) -	Dial-o	on-Der	nand				
Routing (DDI	R): Configuring DDR.									
Contact Peri	ods:									
Lecture: 45 l	Periods Tutorial: 0 Periods Practica	l: 0 Periods Tot	al: 45	Perio	ods					

REFERENCES:

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh
	Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education, 2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNATM: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	K3
CO4	Build simple LANs, perform basic configurations for routers and switches	K6
CO5	Illustrate various WAN protocols	K2
COUI	RSE ARTICULATION MATRIX	

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	- 21	3	- 10	2	1		
CO2	3		3	11 -	2	2		
CO3	3	2	3	- 10	3	2		
CO4	3	8	3	- 11	3	3		
CO5	3	U -	3	J-	3	3		
23CSOE32	3	The	3	1.54	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial								
		(CS)	(C))				

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*	20	20	20	20			100			
CATI	30	30	20	20	-	-	100			
CAT2	-	30	20	30	10	10	100			
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20		100			
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20	20	20	20	20	100			
ESE	20	40	40	-	-	-	100			

23CSOE33	BLOCKCHAIN TECHNOLOGIES (Common to all Branches)									
PREREQUISITES CATEGORY L T F										
NI	0	0	3							
Course Objectives	bjectives The objective of the course is to explore basics of block chain technology and its application in various domain.									
UNIT – I	INTRODUCTION OF CRYPT BLOCKCHAIN	FOGRAPHY A	ND	9	Peri	ods				
History of Blo Limitations of Block chain in	ockchain - Types of blockchain- CAP the Blockchain – Decentalization using bloc practical use - Legal and Governance Use C	neorem and blockch kchain – Blockchair Cases	ain 1 im	– be plen	enefit: nentat	s and tions-				
UNIT – II	BITCOIN AND CRYPTOCURRENCY			9	Peri	ods				
Introduction to Developments, (EVM), Merkl Blocks, Impact	Bitcoin, The Bitcoin Network, The Bitcoin Wallets, Decentralization and H e Tree, Double-Spend Problem, Blockchar of Blockchain Technology on Cryptocurre	e Bitcoin Mining ard Forks, Ethereun in and Digital Curre ncy	Pro n Vi ency,	rtua Tra	s, M l Ma ansact	ining chine tional				
UNIT – III	ETHEREUM			9	Peri	ods				
Introduction to Transactions, F	o Ethereum, Consensus Mechanisms, M Receiving Ethers, Smart Contracts	letamask Setup, Et	here	um	Acco	ounts,				
UNIT – IV	HYPERLEDGER AND SOLIDITY PRO	OGRAMMING		9	Peri	ods				
Introduction to Hyperledger, Distributed Ledger Technology & its Challenges, Hyperledger & Distributed Ledger Technology, Hyperledger Fabric, Hyperledger Composer. Solidity – Programming with solidity										
UNIT – V	BLOCKCHAIN APPLICATIONS			9	Peri	ods				
Ten Steps to build your Blockchain application – Application: Internet of Things, Medical Record Management System, Domain Name Service and Future of Blockchain, Alt Coins										
Contact Perio Lecture: 45 Pe	ds: eriods Tutorial: 0 Periods Practical	: 0 Periods Total:	45	Peri	ods					

REFERENCES:

- 1 Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
- 2 Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions", McGraw Hill Education ,2018.
- 3 Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016.
- 4 Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
- 5 Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018

6 NPTEL Course : Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity	K3
	for given scenario.	
CO3	Comprehend the working of Hyperledger in an real time application	K2
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	K3
CO5	Develop applications on Blockchain	K3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	- Aller	3	2	-	3
CO2	2	3	3	3	2	3
CO3	3	LINE LINE	3	2	-	3
CO4	3	3	3	3	2	3
CO5	3	3	3	3	2	3
23CSOE33	3	3	3	3	2	3
- Slight, 2 – Moderat	te, 3 – Substan	itial		10	l.	•

S.W.

Ø

11

٦

ASSESSMENT PATTERN – THEORY

		TT T			T 1 (1	a					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
Category*	B	Sec.	10	3							
CAT1	20	40	40	283	-	-	100				
CAT2	20	30	50		-	-	100				
Individual	-	30	70	1000	-	-	100				
Assessment 1		LES-LON	- 000-15-1	STA							
/Case Study 1/		-0-									
Seminar 1 /											
Project1											
Individual	-	40	60	-	-	-	100				
Assessment 2											
/Case Study 2/											
Seminar 2 /											
Project 2											
ESE	10	60	30	-	-	-	100				
ENGLISH FOR RESEARCH PAPER WRITING											
--	---	--------------------	-----------------	-------------	-------	---------	--	--	--	--	--
(Common to all Branches)											
PREREQUIS	ITES	CATEGORY	L	Τ	Р	С					
	0	0	0								
Course The objective of the course is to make the learners understand the format and intricacie											
Objectives	Objectives involved in writing a research paper.										
UNIT – I	PLANNING AND PREPARATION			6 F	Perio	ds					
Need for publi	shing articles, Choosing the journal, Identifying a	n model journal pa	aper, (Creatio	on of	files					
for each sectio	n, Expectations of Referees, Online Resources.										
UNIT – II	SENTENCES AND PARAGRAPHS			6 F	Perio	ds					
Basic word in	English, Word order in English and Vernacular,	placing nouns, V	erbs,	Adjec	tives	s, and					
Adverb suitable	y in a sentence, Using Short Sentences, Discours	e Markers and Pu	inctua	tions-	Stru	icture					
of a Paragraph	, Breaking up lengthy Paragraphs.										
UNIT – III	ACCURACY, BREVITY AND CLARITY ((ABC) OF WRIT	TING	6 F	Perio	ds					
Accuracy, Br	evity and Clarity in Writing, Reducing the li	nking words, A	voidii	ng rec	lund	ancy,					
Appropriate u	se of Relative and Reflexive Pronouns, Monolo	gophobia, verify	ing th	e jou	mal	style,					
Logical Conne	ections between others author's findings and yours	5.									
UNIT – IV	HIGHLIGHTING FINDINGS, I	HEDGING	ANI) 6 F	Perio	ds					
	PARAPHRASING	11									
Making your	findings stand out, Using bullet points headings,	, Tables and Gra	phs	Availi	ng	non-					
experts opinio	ns, Hedging, Toning Down Verbs, Adjectives, N	Not over hedging	, Lim	itation	s of	your					
research.		1									
UNIT – V	SECTIONS OF A PAPER	11		6 F	Perio	ds					
Titles, Abstra	cts, Introduction, Review of Literature, Method	ds, Results, Disc	ussio	n, Coi	nclus	sions,					
References.	W W										
Contact Perio	ds:	100									
Lecture: 30 H	Periods Tutorial: 0 Periods Practical: 0 Pe	eriods Total:	30 Pe	riods							
DEFEDI	INCES .										
1 Goldbort R	"Writing for Science" Yale University Press (avail	able on GoogleBoo	$\frac{1}{2}$)06							
$\frac{1}{2}$ Day R H	ow to Write and Publish a Scientific Paper Cambrid	oe University Pres	$\frac{1}{200}$	5							
3 Highman N	"Handbook of Writing for the Mathematical Science	ces", SIAM. Highm	an's t	ook. 1	998.						
4 Adrian W	allwork," English for Writing Research Pape	ers", Springer N	lew Y	ork L	Dordi	recht					
Heidelberg London, 2011.											
Heidelber											
Heidelber	2011.										
COURSE OU	TCOMES :			Blo	om's	5					
COURSE OU	TCOMES :			Blo Taxo	om's	5 1y					

Practice the appropriate word order, sentence structure and paragraph

Exercise the elements involved in writing journal paper.

K4

K3

K2

K3

CO2

CO3

CO4

CO5

writing.

Practice unambiguous writing.

Avoid wordiness in writing.

COURSE ARTICULATION MATRIX :											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	3	1	1	1	1					
CO2	3	3	1	1	1	1					
CO3	3	3	1	1	1	1					
CO4	3	3	1	1	1	1					
CO5	3	3	1	1	1	1					
23PEACZ1	3	3	1	1	1	1					
1 – Slight, 2 – Moderate, 3 – Substantial											

ASSESSMEN	T PATTERN –	THEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*	0	and I	22	Chi and			
CAT1	40	40	20	10-21	-	-	100
CAT2	40	40	20		-	-	100
Individual		50	50	-1-	-	-	100
Assessment 1/	5		-	- 77			
Case Study 1/			6				
Seminar 1/				6 H -			
Project 1				2 11			
Individual	- %	50	50	11	-	-	100
Assessment 2/		1 1					
Case Study 2/		8					
Seminar 2/	Å			h			
Project 2	89	al ne		199			
ESE	30	30	40		-	-	100

23PEACZ2	DISASTER MANAGEMENT										
DEDEOUIS		CATECOPY	т	т	D	C					
PREREQUIS	INIL AC 2										
Course	To become familier in law concents and	AC		U	U	U					
Objectives	• To become familiar in key concepts and	consequences ab	out na	izarus	, uisa	ster					
Objectives	The largest the sections store in directory large										
	• To know the various steps in disaster planning.										
	10 create awareness on disaster preparedn	ess and managem	ent.		D ·	-					
UNIT - I	INTRODUCTION	TT 1 1	D '	<u> </u>	Perio	ds					
Disaster: Defin	ition, Factors and Significance; Difference bet	ween Hazard and	Disast	er; Na	itural	and					
Manmade Disa	sters: Difference, Nature, Types and Magnitud	le. Areas proneto,	Earth	quake	s Flo	ods,					
Droughts, Land	Islides, Avalanches, Cyclone and Coastal Haza	rds with special re	eteren	ce to 'l	suna	m1.					
UNIT – II	REPERCUSSIONS OF DISASTERS AND	HAZARDS		6	Perio	ds					
Economic Dan	hage, Loss of Human and Animal Life, Destru	ction of Ecosyste	m. Na	tural I	Disast	ers:					
Earthquakes, V	Volcanisms, Cyclones, Tsunamis, Floods, Dr	oughts and Fami	ines, I	Landsl	ides	and					
Avalanches, M	lan-made disaster: Nuclear Reactor Meltdown	i, Industrial Accie	dents,	Oil S	licks	and					
Spills, Outbrea	ks of Disease and Epidemics, War and Conflict	ts.									
UNIT – III	DISASTER PLANNING	2		6	Perio	ds					
Disaster Planni	ing-Disaster Response Personnel roles and dut	ies, Community N	Mitigat	tionGo	bals, I	Pre-					
Disaster Mitig	ation Plan, Personnel Training, Comprehen	sive Emergency	Mana	gemei	nt, E	arly					
Warning Syster	ms.										
UNIT – IV	DISASTER PREPAREDNESS AND MAN	AGEMENT		6	Perio	ds					
Preparedness:	Monitoring of Phenomena Triggering a Disa	aster or Hazard;	Evalu	ation	of R	isk:					
Application of	Remote Sensing, Data from Meteorological	and other Agend	cies, N	/ledia	Repo	orts:					
Governmental	and Community Preparedness.										
UNIT – V	RISK ASSESSMENT	7AA		6	Perio	ds					
Disaster Risk:	Concept and Elements, Disaster Risk Reduction	on, Global and N	ationa	l Disa	ster F	Risk					
Situation. Tech	iniques of Risk Assessment, Global Co-Operation	tion in Risk Asse	ssmen	t and `	Warn	ing,					
People's Partic	ipation in Risk Assessment, Strategies for Surv	vival.									
Contact Perio	ds:	2)									
Lecture:30 Pe	eriods Tutorial: 0 Periods Practical: 0 l	Periods To	tal: 30	Perio	ods						
REFEREN	CES:										
1 R. Nishith,	Singh AK, "Disaster Management In India:	Perspectives, Iss	ues Ai	nd Str	ategi	es",					
New Royal	book Company, 2007.										
2 Sahni, Para	deepEt.Al. (Eds.), "Disaster Mitigation Experi	ences And Reflec	tions"	, Pren	tice I	Hall					
Of India, N	ew Delhi, 2010				0 5						
5 Goel S. L,	"Disaster Administration And Management T Put 1 td New Delhi 2008	ext And Case St	uates	, Dee	p &D	eep					
A Jaghir Si	Publication Pvt. Ltd., New Delhi, 2008.										

4 Jagbir Singh, **"Disaster Management: Future Challenges And Opportunities"**, I.K. International Publishing House Pvt. Ltd., New Delhi, 2007.

5 Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015

6 Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon completion of the course, the students will be able to:		Mapped
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

Course Articulation Matrix

COs/POs	PO1	PO2	PO3	PO4	PO5						
CO1	2	1	1	2	2						
CO2	1	2	1	1	1						
CO3	a an		1	2	2						
CO4	10	English Lycub	E D	2	2						
CO5	2.0	A STORE		2	2						
23PEACZ2	1			2	2						
1 – Slight, 2 – Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial										

11

150

ASSESSMENT PATTERN – THEORY

				DO 11			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		L B		11			
CAT1	50	50	-	-	-	-	100
CAT2	-	AL IN	100	一曲	-	-	100
Individual	50	50	- 22		-	-	100
Assessment		CONTRACTOR	100	Pariso /			
1/Case		THE OFFICE	26	Contraction of the second			
Study		100	IL AND				
1/Seminar							
1/Project 1							
Individual	-	-	100	-	-	-	100
Assessment							
2/Case							
Study							
2/Seminar							
2/Project 2							
ESE	25	25	50	-	-	-	100

VALUE EDUCATION								
231 EACLS	(Common to all	branches)						
PREREQUISITES CATEGORY L								
	NIL	AC	2	0	0	0		
Value of education and self- development								
Objectives	• Requirements of good values in students							
Objectives	• Importance of character							
UNIT – I	ETHICS AND SELF-DEVELOPMENT			6	Peri	ods		
Social values an	d individual attitudes. Work ethics, Indian v	ision of humanis	m. M	loral a	and n	ion-		
moralvaluation.	Standards and principles. Value judgements.							
UNIT – II	PERSONALITY AND BEHAVIOR DEVE	LOPMENT		6	Peri	ods		
Soul and Scient	ific attitude. Positive Thinking. Integrity an	d discipline. Pur	octual	ity, L	ove	and		
Kindness. Avoid	fault Thinking. Free from anger, Dignity of	f labour. Univers	al bro	otherh	ood	and		
religious tolerand	ze.	0						
UNIT – III	VALUES IN HUMAN LIFE	2		6	Peri	ods		
Importance of	cultivation of values, Sense of duty. D	evotion, Self-rel	iance	. Coi	nfide	nce,		
Concentration.	Truthfulness, Cleanliness. Honesty, Humanity	y. Power of fait	h, N	ationa	l Un	ity.		
Patriotism. Love	for nature, Discipline.	71						
UNIT – IV	VALUES IN SOCIETY	1		6	Peri	ods		
True friendship	Happiness Vs suffering, love for truth.	Aware of self	-destr	uctive	hał	oits.		
Association and	Cooperation. Doing best for saving nature.	11						
UNIT – V	POSITIVE VALUES	11		6	Peri	ods		
Character and Co	ompetence -Holy books vs Blind faith. Self-m	anagement and G	ood l	nealth.	Scie	ence		
of reincarnation.	Equality, Nonviolence, Humility, Role of Wor	nen. All religions	and s	same i	nessa	age.		
Mind your Mind	Self-control. Honesty, Studying effectively.							
Contact Periods :	22							
Lecture: 30 Peri	ods Tutorial: 0 Periods Practical: 0 I	Periods Tota	al: 30	Perio	ds			
		-						
REFERENC	ES:	0.92						

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford
	University Press,New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi,2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COUR	COURSE OUTCOMES :			
		Taxonomy		
Upon completion of the course, the students will be able to:		Mapped		
CO1	Know the values and work ethics.	K3		
CO2	Enhance personality and 150ehavior development.	K3		
CO3	Apply the values in human life.	K3		
CO4	Gain Knowledge of values in society.	K3		
CO5	Learn the importance of positive values in human life.	K3		

Course Articulation Matrix

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6					
C01	-	-	3	-	-	1					
CO2	-	NYCENYM	3	-	-	1					
CO3	A COMPANY	2 0 3	3	- 100	-	1					
CO4	100-00	ลิกด์ส์ เมติม	3	1 - 7	-	1					
CO5	198	NULTRA	3	ø)	-	1					
23PEACZ3	1		3	-	-	1					
1 – Slight, 2 – Moderate,	– Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	20	50	30	-	-	-	100
CAT2	20	50	30		6.0 -	-	100
Individual	20	50	30		- S	-	100
Assessment 1		Contraction of the		Plant	2		
/Case Study		CONTRACTORY.	2362-7	s All all	9		
1/ Seminar 1		18-24	46 .000	R.			
/ Project1			-				
Individual	20	50	30	-	-	-	100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE	20	50	30	-	-	-	100

CONSTITUTION OF INDIA										
25FEACZ4		(Common te	o all branches)							
PREREQUIS	SITES		CATEGORY	L	Т	Р	С			
		NIL	AC	2	0 0 0					
Course	• To	address the importance of constitutional	rights and duties							
Objectives	• To	familiarize about Indian governance and	local administration	•						
	• To know about the functions of election commission.									
UNIT – I	INDI	AN CONSTITUTION			6]	Period	ls			
History of M	aking o	of the Indian Constitution: History	Drafting Committ	ee,	(Com	positi	on &			
Working) - Ph	ilosoph	y of the Indian Constitution: Preamble	e Salient Features.							
UNIT – IICONSTITUTIONAL RIGHTS & DUTIES6 Periods							ls			
Contours of C	Constitu	tional Rights & Duties: Fundamenta	al Rights, Right	to E	qualit	y, Rig	ght to			
Freedom, Rig	ht agai	nst Exploitation, Right to Freedom	of Religion, Cultu	ıral	and 1	Educat	ional			
Rights, Right	to Co	nstitutional Remedies, Directive Pri	nciples of State	Poli	cy, F	undam	iental			
Duties.		y Barris Democranus av	19415							
UNIT – III	UNIT – III ORGANS OF GOVERNANCE 6 Periods									
Organs of Go	overnan	ce: Parliament, Composition, Qualifi	ications and Disqu	ualif	icatio	ns, Po	owers			
and Functions	, Execu	tive, President, Governor, Council of	Ministers, Judicia	ry, A	Appoi	ntmen	it and			
Transfer of Ju	dges, Q	ualifications, Powers and Functions.								
UNIT – IV	LOCA	AL ADMINISTRATION			6	Period	ls			
Local Admin	istration	n: District's Administration head: 1	Role and Importa	ince	, Mu	nicipa	lities:			
Introduction,	Mayor	and role of Elected Representativ	ve, CEO of Mu	nici	pal C	Corpora	ation.			
Panchayat raj	: Introc	luction, PRI: Zila Panchayat. Electe	ed officials and the	neir	roles,	CEO	Zila			
Panchayat: Po	osition	and role. Block level: Organization	al Hierarchy (Dif	ffere	nt de	partm	ents),			
Village level:	Role of	Elected and Appointed officials, Imp	ortance of grass ro	ot d	emoc	racy.				
UNIT – V	ELEC	CTION COMMISSION			6	Period	ls			
Election Com	mission	: Election Commission: Role and Fun	ctioning. Chief El	ectio	on Co	mmiss	ioner			
and Election	Commi	ssioners. State Election Commission	a: Role and Funct	ioni	ng. Ir	nstitute	e and			
Bodies for the	welfar	e of SC/ST/OBC and women.	STA .							
Contact Perio	ods:	Sol C	2							
Lecture: 30 P	eriods	Tutorial: 0 Periods Practical:	0 Periods Total	: 30	Perio	ods				

REFERENCES:

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that	K2
	informed the conceptualization of social reforms leading to revolution in	
	India.	
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

Course Articulation Matrix									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	10/2	-	P	1	1	1			
CO2	- 76-	Stern Damb	oncost stores	1	1	2			
CO3	- 6	101-50	B R. S.	1	2	1			
CO4	- 7		The second secon	1	1	1			
CO5	- 6	-	1	1	1	1			
23PEACZ4	-));		1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial									
ASSESSMENT PA	TTERN – TH	EORY		11					

	//
ASSES	SSMENT PATTERN – THEORY

T = =4 /	Domomhoring	Understanding	Applying	Analyzing	Evolucting	Creating	Total
l est /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		X 14		3			
CAT1	20	50	30	189	-	-	100
CAT2	20	50	30	2	ii -	-	100
Individual	20	50	30	PI-II-	-	-	100
Assessment 1		105 de	6 - 5100	Ì			
/Case Study			Y				
1/ Seminar 1							
/ Project1							
Individual	20	50	30	-	-	-	100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE	20	50	30	-	-	-	100

	75	PEDAGOGY STUDIES									
ZSPEAC	.23	(Common te	(Common to all branches)								
PREREQUI	SITES		CATEGORY	L	L T P C						
		NIL	AC	2	0	0	0				
Course	• To	understand of various theories	of learning, preva	prevailing pedagogic			ical				
Objectives	pra	ctices and design of curriculum in er	ngineering studies.								
	• Ap	plication of knowledge in modificat	ion of curriculum,	its as	ssessn	nent	and				
	introduction of innovation in teaching methodology.										
UNIT – I	INTRO	DUCTION			6 P	eriod	ls				
Introduction	and Metl	nodology: Aims and rationale, Polic	y background, Cond	ceptu	ial fra	mew	/ork				
and terminol	ogy Theo	ories of learning, Curriculum, Teach	er education. Conc	eptu	al fra	new	ork,				
Research que	stions. O	verview of methodology and Search	ing.								
UNIT – II PEDAGOGICAL PRACTICES 6 Periods						ls					
Thematic overview: Pedagogical practices are being used by teachers in formal and informal						mal					
classrooms	in devel	loping countries. Curriculum, Tea	acher education.	Evid	ence	on	the				
effectiveness	of pedag	gogical practices Methodology for the	e in depth stage: qua	ality	asses	smer	nt of				
UNIT – III	PEDAC	GOGICAL APPROACHES			6 P	eriod	ls				
How can tead	cher educ	cation (curriculum and practicum) an	d the school curricu	ılum	and g	guida	ince				
materials bes	t support	effective pedagogy? Theory of chan	ge. Strength and na	ture	of the	bod	y of				
evidence for	effective	e pedagogical practices. Pedagogic	theory and pedage	ogica	al app	roac	hes.				
Teacher's att	itudes an	d beliefs and Pedagogic strategies.	2								
UNIT – IV	PROF	ESSIONAL DEVELOPMENT	11		6 P	eriod	ls				
Professional	develop	nent: alignment with classroom pr	ractices and follow	-up	suppo	ort. I	Peer				
support Supp	ort from	the head teacher and the community	7. Curriculum and a	ssess	sment	Barr	iers				
to learning: li	imited rea	sources and large class sizes.	3								
UNIT – V	CURR	ICULUM AND ASSESSMENT	299		6 P	eriod	ls				
Research gap	ps and fu	uture directions Research design C	ontexts Pedagogy	Геас	her e	duca	tion				
Curriculum a	nd assess	sment Dissemination and research im	ipact.								
Contact Peri	iods:	LO LOL SOL	ST ?!								
Lecture: 30	Periods	Tutorial: 0 Periods Practical	I: 0 Periods To	otal:	30 P	eriod	ls				
DEFEDEN	CES.										

REFERENCES:

1	Ackers J, Hardman F, "Classroom interaction in Kenyan primary schools", Compare, 31
	(2): 245-261, 2001.
2	Alexander RJ, "Culture and pedagogy: International comparisons in primary education",
	Oxford and Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, "Improving teaching and learning of
	basic maths and reading in Africa: Does teacher preparation count?" International
	Journal Educational Development, 33 (3): 272–282, 2013.
4	Agrawal M, "Curricular reform in schools: The importance of evaluation", Journal of
	Curriculum Studies, 36 (3): 361-379, 2004

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Explain the concept of curriculum, formal and informal education systems	K3
	and teacher education.	
CO2	Explain the present pedagogical practices and the changes occurring in	K3
	pedagogical approaches	
CO3	Understand the relation between teacher and community, support from	K3
	various levels of teachers to students and limitation in resources and size	
	of the class.	
CO4	Perform research in design a problem in pedagogy and curriculum	K3
	development.	

Course Articulation Matrix									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	- 96	SULCON-	1	8015 1	2	1			
CO2	- 6	Actor	Tron		1	2			
CO3	1	12/2/20	AST S		2	1			
CO4	- 1		1		2	1			
23PEACZ5	- 1		1. Gal	N	2	1			
1 - Slight, $2 - Mod$	lerate, 3 – Sub	stantial	Sec. A		1				
		1							
		and the	11/200	54 AND -					

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
Category*									
CAT1	20	50	30	- 7	3. 1910 -	-	100		
CAT2	20	50	30	20	65) -	-	100		
Individual	20	50	30		1/ -	-	100		
Assessmen		THE CALLEY		S STA	8				
t 1 /Case		20	CONTROL OF	Ì					
Study 1/				2					
Seminar 1									
/ Project1									
Individual	20	50	30	-	-	-	100		
Assessmen									
t 2 /Case									
Study 2/									
Seminar 2									
/ Project 2									
ESE	20	50	30	-	-	-	100		

ODEA CZC								
EACZ6 (Common to all branches)								
PREREQUISITES CATEGORY L T P	С							
NIL AC 2 0 0	0							
• To create awareness on the benefits of yoga and meditation.								
• To understand the significance of Asana and Pranayama.								
UNIT - IPHYSICAL STRUCTURE AND ITS FUNCTIONS6 Per	eriods							
Yoga - Physical structure, Importance of physical exercise, Rules and regulation of simplified								
physical exercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapala	pathy,							
maharasana, body massage, acupressure, body relaxation.								
UNIT – II YOGA TERMINOLOGIES 6 Po	eriods							
Yamas - Ahimsa, satya, astheya, bramhacharya, aparigraha								
Niyamas- Saucha, santosha, tapas, svadhyaya, Ishvara pranidhana.								
UNIT – III ASANA 6 P	eriods							
Asana - Rules & Regulations – Types & Benefits								
UNIT – IV PRANAYAMA 6 P	eriods							
Regularization of breathing techniques and its effects-Types of pranayama								
UNIT – V MIND 6 P	eriods							
Bio magnetism& mind - imprinting & magnifying - eight essential factors of living beings, M	Aental							
frequency and ten stages of mind, benefits of meditation, such as perspicacity, magnan	imity,							
receptivity, adaptability, creativity.								
Contact Periods:								
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods								
A W								
REFERENCES :								
1 Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I", Nagi	our.							

- 2 Swami Vivekananda, **"Rajayoga or conquering the Internal Nature"**, Advaita Ashrama (Publication Department), Kolkata.
- 3 Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn Press, New Delhi, 2016.
- 4 K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007.

COUF	Bloom's	
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Practice physical exercises and maintain good health.	К3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	К3
CO4	Practice breathing techniques in a precise manner.	К3
CO5	Attain emotional stability and higher level of consciousness.	K2

Course Articulation Matrix										
COs/POs	PO1	PO2	PO3	PO4	PO5					
C01	-	-	-	-	2					
CO2	-	-	-	-	3					
CO3	-	-	-	-	2					
CO4	-	-	-	-	1					
CO5	-	-	-	-	1					
23PEACZ6	-	-	-	-	2					
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*		- GM	E.w.							
CAT1	40	30	30	119115	-	-	100			
CAT2	30	40	30	a vy	-	-	100			
Individual	40	40	20		-	-	100			
Assessment1/		1								
Case study1/			14	F //						
Seminar			× 7							
1/Project1										
Individual	30	30	40	-	-	-	100			
Assessment2/		1 0		11						
Case study2/										
Seminar 2										
/Project2		A Ba	- 10							
ESE	30	30	40		-	-	100			
			a comercia	DLUID DJ7						

		PERSONALITY DEVELOPM	ENT THROUG	H L	IFE				
23PEACZ7	7	ENLIGHTENME	NT SKILLS						
PREREQUIS	SIT	ES:	CATEGORY	L	Т	Р	С		
		NIL	AC	2 0 0 0					
Course	•	To familiar with Techniques to achieve the	highest goal in life	e.					
Objectives	•	To become a person with stable mind, pleas	ing personality an	d de	term	ninat	ion.		
UNIT – I					6 P	erio	ds		
Neetisatakam	-Ho	listic development of personality-Verses- 19	9,20,21,22 (wisdo	m)-'	Vers	es29	,31,32		
(pride & heroi	ism)-Verses- 26,28,6.							
UNIT – II					6 P	erio	ds		
Verses- 52,53	,59	(dont's)-Verses- 71,73,75,78 (do's) Appro	bach to day to day	/ wo	rk a	nd d	luties		
Shrimad Bhag	gwa	dGeeta - Chapter 2-Verses 41, 47,48,	0						
UNIT – III		Constant Part	v~)		6 P	erio	ds		
Shrimad Bha	gwa	dGeeta -Chapter 3-Verses 13, 21, 27, 35,	Chapter 6-Verses	5 5,1	3,1′	7, 23	3, 35,-		
Chapter 18-V	erse	s 45, 46, 48.	7						
UNIT – IV			1		6 P	erio	ds		
Statements of	bas	ic knowledgeShrimad BhagwadGeeta: -Cha	pter2-Verses 56, 6	52, 6	8 -C	hapt	er 12 -		
Verses 13, 14,	, 15	, 16,17, 18-Personality of Role model.	1						
UNIT – V					6 P	erio	ds		
Shrimad Bhag	gwa	d Geeta: Chapter2-Verses 17, Chapter 3-Ve	orses 36,37,42, Ch	apte	r 4-	Vers	ses 18,		
38,39-Chapter	r18	– Verses 37,38,63.	2段						
Contact Perio	ods								
Lecture: 30 F	Peri	ods Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 30) Per	riods	5			
	Contraction of the second								
		LO: runananda Advaita Ashram "Suimad Dh	agavad Cita"	A du	aita	Act	rama		
Kolkata,2	2016	fupunanaa Aavana Ashrum Srimaa Bh 5	uguvuu Gud , .	Auve	ша	ASI	ir ama,		

2 P.Gopinath, Rashtriya Sanskrit Sansthanam "**Bhartrihari's Three Satakam**" (Niti-sringarvairagya), New Delhi, 1986.

3 Swami Mukundananda, Jagadguru Kripaluji Yog "Bhagavad Gita: The Song Of God", USA,2019

4 *A.C. Bhaktivedanta Swami Prabhupada "Bhagavad-Gita As It Is", Bhaktivedanta Book Trust Publications,2001*

COUR	Bloom's		
		Taxonomy	
Upon o	Upon completion of the course, the students will be able to:		
CO1	Apply the Holistic development in life	K4	
CO2	Effective Planning of day to day work and duties	K4	
CO3	Identify mankind to peace and prosperity	K4	
CO4	Develop versatile personality.	K4	
CO5	Awakening wisdom in life	K4	

Course Articulation Matrix

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	-	1	-	-	-		
CO2	-	-	mond.	-	-	-		
CO3	- 200	all	0 1 2	0	-	-		
CO4	- 77	8940 <u>-</u> 0.0 m	Sa MILIO	1906-34	-	-		
CO5	- 0	Valen	Jun Le		-	-		
23PEACZ7		1		-	-	-		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY

Test /	Remembering	Understandin	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		9.4					
CAT1	20	50	30	-	-	-	100
CAT2	20	50	30		-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	50	30	CERT.		-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100
ESE	20	50	30	-	-	-	100

	SANSKRIT FOR TECHN	ICAL KNOWLE	DGE]					
23PEACZ8	(Common to all	Branches)							
PREREQUI	SITES:	CATEGORY	L	Т	Р	С			
	2	0	0	0					
Course	• To get a working knowledge in illustrio	ous Sanskrit, the so	cientif	fic la	ngua	age in			
Objectives	the world.								
	• Learning of Sanskrit to improve brain fu	unctioning.							
	• Enhancing the memory power.								
	• Learning of Sanskrit to develop the lo	gic in mathemati	cs, sc	ienc	e &	other			
	subjects.								
UNIT – I	BASICS OF SANSKRIT			6]	Perio	ods			
Alphabets in	Sanskrit, Past/Present/Future Tense.								
UNIT – II	SENTENCES AND ROOTS			6	Perio	ods			
Simple Sente	nces - Order, Introduction of roots								
UNIT – III	SANSKRIT LITERATURE	5.24		6]	Perio	ods			
Technical inf	ormation about Sanskrit Literature		•						
UNIT – IV	TECHNICAL CONCEPTS -1	2		6]	Perio	ods			
Technical con	ncepts of Engineering-Electrical, Mechanical								
UNIT – V	TECHNICAL CONCEPTS -2	8 16		6]	Perio	ods			
Technical con	ncepts of Engineering-Architecture, Mathema	tics	•						
Contact Periods:									
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods									
REFERENCES:									

REFERENCES:

1	Dr. Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.								
2	Prathama Deeksha Vempati Kutumbshastri, "Teach Yourself Sanskrit", Rashtriya Sanskrit								
	Sansthanam, New Delhi, Publication, 2009.								
3	Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New								
	Delhi,2006.								

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Recognize ancient literature and their basics	K3
CO2	Formulate the sentences with order and understand the roots of	К2
	Sanskrit	112
CO3	Acquire familiarity of the major traditions of literatures written in	K3
	Sanskrit	KJ
CO4	Distinguish the Technical concepts of Electrical & Mechanical	K)
	Engineering	112
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

Course Articulation Matrix										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	-	-	-	1	2	1				
CO2	-	-	-	1	2	-				
CO3	-	-	-	1	1	1				
CO4	-	-	-	2	1	1				
CO5	-	-	-	1	2	1				
23PEACZ8	-	-	-	1	2	1				
1 - Slight, 2 - Mod	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	50	30			-	100		
CAT2	20	50	30		-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	50	30		-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30		-	-	100		
ESE	20	50	30	PACUD	-	-	100		
		Con the second	5 and	ET.					