

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore – 641 013

2023

REGULATIONS CURRICULAM & SYLLABI

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

M.E. VLSI DESIGN – FULL TIME

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

To achieve academic excellence through innovative teaching and learning practices.

> To enhance employability and entrepreneurship.

- > To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION AND MISSION OF THE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

VISION

The vision of ECE department is to become pioneer in higher learning and research and to produce creative solution to societal needs.

MISSION

- 1. To provide excellence in education, research and public service.
- 2. To provide quality education and to make the students entrepreneur and employable.
- 3. Continuous up gradation of techniques for reaching heights of excellence in a Global Perspective.

CHOICE BASED CREDIT SYSTEM

BRANCH: M.E. VLSI DESIGN- FULL TIME

PROGRAMME EDUCATIONAL OBJECTIVES:

- **PEO 1:** Acquire in depth knowledge in the field of VLSI design to meet the current challenges using advanced technology.
- **PEO 2:** Apply the acquired research skills using modern CAD tools in the field of VLSI Design through reflective, independent, innovative and continuous learning ideas.
- **PEO 3:** Apply the learnt engineering ideas for social issues by maintaining professional values and ethical attitude.

PROGRAM OUTCOMES

- PO1: To acquire an in-depth knowledge in the field of VLSI Design including wider and global perspective with an ability to evaluate and analyse the existing methods for enhancement.
- PO2: To design, analyse and develop complex VLSI circuits using appropriate analytical methods and modern tools towards industry standards with an understanding of its limitations.
- PO3: To acquire professional code and conduct, ethics of research and scholarship by considering the research outcomes to the community for sustainable development goals.
- PO4: An ability to independently carryout research/investigation and development work to solve practical problems.
- PO5: An ability to write and present a substantial technical report / document.
- PO6: Students should be able to demonstrate a degree of mastery in VLSI Design through engineering ideas for social issues and industrial

problems.

CHOICE BASED CREDIT SYSTEM CURRICULUM FOR CANDIDATES ADMITTED DURING 2023 ONWARDS

FIRST SEMESTER

SI. No.	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks		ek S				
NO.				Marks	Marks	Marks	L	Т	Р	С		
		ТН	EORY				-					
123VLFCZ1Research Methodology and IPR(Common to all branches)FC40601003003												
2	23VLFC02	Advanced Applied Mathematics (Common to Applied Electronics and VLSI Design)	FC	40	60	100	3	1	0	4		
3	23VLPC01	Advanced Digital System Design(Common to Applied Electronics and VLSI Design)	РС	40	60	100	3	0	0	3		
4	23VLPC02	Digital IC Design(Common to Applied Electronics and VLSI Design)	РС	40	60	100	3	0	0	3		
5	23VLPC03	Device Modeling	РС	40	60	100	3	0	0	3		
6	23VLPEXX	Professional Elective – I	PE	40	60	100	3	0	0	3		
7	23VLACXX	Audit Course-I	AC	40	60	100	2	0	0	0		
	PRACTICAL											
8	823VLPC04Digital IC and System Design LaboratoryPC6040100042											
		Total		340	460	800	20	1	4	21		

SECOND SEMESTER

SI.	Course Code	se Code Course Name C	Category	CA	End Sem	Total	Hours/Week/ Credits					
No.				Marks	Marks	Marks	L	Т	Р	С		
123VLPC05Analog IC Design (Common to Applied Electronics and VLSI Design)PC40601003003												
2	23VLPC06	System on Chip Design	РС	40	60	100	3	0	0	3		
3	23VLPEXX	Professional Elective - II	PE	40	60	100	3	0	0	3		
4	23VLPEXX	Professional Elective - III	PE	40	60	100	3	0	0	3		
5	23VLACXX	Audit Course-II	AC	40	60	100	2	0	0	0		
		THEORY WITH	PRACTICAL (COMPONE	NT							
6	23VLPC07	Scripting Languages and Verification	РС	50	50	100	3	0	2	4		
		Р	RACTICAL									
7	23VLPC08	Analog and Mixed Signal Laboratory	РС	60	40	100	0	0	4	2		
8	23VLEE01	Mini Project	EEC	60	40	100	0	0	4	2		
		Total		370	430	800	17	0	10	20		

THIRD SEMESTER

Sl. No	Course	Course Name	Category	CA	End Sem	Total	Hours/Week/ Credits				
	Code			Marks	Marks	Marks	L	Т	Р	C	
			THEORY								
1	23VLPEXX	Professional Elective - IV	PE	40	60	100	3	0	0	3	
2	23VLOEXX	Open Elective	OE	40	60	100	3	0	0	3	
			PRACTICA	L							
3	23VLEE02	Internship/Industrial Training	EEC	100	-	100	-	-	**	2	
4	23VLEE03	Project - I	EEC	60	40	100	0	0	24	12	
	Total			240	160	400	6	0	24	20	

** 4 Weeks Internship/Industrial Training

FOURTH SEMESTER

Sl.No	Course	Course Name	Category	CA	End Sem	Total	Н	ours/ Cre	Weel dits	٢/
	Code		1993	Marks	Marks	Marks	L	Т	Р	C
			PRAC	ΓICAL						
1	23VLEE04	Project - II	EEC	60	40	100	0	0	48	24
		Total	1.70	60	40	100	0	0	48	24
			Q -	11						

Total Credits: 85

PROFESSIONAL ELECTIVE (PE)

Sl.No.	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks		Hou We Cre	ek/	
					Marks		L	Т	Р	С
	I	PROFESSION	AL ELECT	IVE I	T					
1	23VLPE01	VLSI DESIGN AUTOMATION	PE	40	60	100	3	0	0	3
2	23VLPE02	VLSI INTERCONNECTS AND ITS DESIGN TECHNIQUES	PE	40	60	100	3	0	0	3
3	23VLPE03	ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
4	23VLPE04	MIXED SIGNAL CIRCUITS	PE	40	60	100	3	0	0	3
5	23VLPE05	QUANTUM CIRCUIT DESIGN	PE	40	60	100	3	0	0	3
		PROFESSION	AL ELECTI	VE II						
6	23VLPE06	LOW POWER IC DESIGN (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
7	23VLPE07	VLSI ARCHITECTURE FOR IMAGE AND VIDEO PROCESSING	PE	40	60	100	3	0	0	3
8	23VLPE08	SIGNAL INTEGRITY FOR HIGH SPEED DESIGN	PE	40	60	100	3	0	0	3
9	23VLPE09	POWER MANAGEMENT AND CLOCK DISTRIBUTION	PE	40	60	100	3	0	0	3
10	23VLPE10	QUANTUM DOT CELLULAR AUTOMATA NANOTECHNOLOGY	PE	40	60	100	3	0	0	3
		PROFESSION	AL ELECTI	VE III						
11	23VLPE11	EMBEDDED SYSTEMS DESIGN AND IOT	PE	40	60	100	3	0	0	3
12	23VLPE12	TESTING AND TESTABILITY	PE	40	60	100	3	0	0	3
13	23VLPE13	HARDWARE SECURITY	PE	40	60	100	3	0	0	3
14	23VLPE14	RECONFIGURABLE ARCHITECTURE FOR VLSI	PE	40	60	100	3	0	0	3
15	23VLPE15	VLSI RF CIRCUIT DESIGN	PE	40	60	100	3	0	0	3

	PROFESSIONAL ELECTIVE IV									
Sl.No.	Course	Course Title	Category	CA Marks	End Sem	Total	Но	ours/	'We	ek
51.10.	Code		category	CA Marks	Marks	Marks	L	Т	Р	С
16	23VLPE16	VLSI SIGNAL PROCESSING (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
17	23VLPE17	DESIGN OF SEMICONDUCTOR MEMORIES	PE	40	60	100	3	0	0	3
18	23VLPE18	VLSI FOR WIRELESS COMMUNICATION	PE	40	60	100	3	0	0	3
19	23VLPE19	ASIC DESIGN (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
20	23VLPE20	VLSI FOR IOT SYSTEMS	PE	40	60	100	3	0	0	3

LIST OF OPEN ELECTIVES

SI.				СА	End	Total	Н	ours/	Wee	k
No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23SEOE01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SEOE02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EEOE05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23EDOE10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23EDOE12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MF0E13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MF0E14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3

SI.	Course	Course Title	Catagory	СА	End	Total	H	ours/	Wee	k
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
22	23PEOE22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3

AUDIT COURSES

SI. No	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks	Но	urs/ Cre		ek/
•	Coue				Marks		L	Т	Р	С
1	23VLACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23VLACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23VLACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23VLACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23VLACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23VLACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23VLACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0
8	23VLACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

(Common to all branches)

SUMMARY OF CREDIT DISTRIBUTION

	Course		Credits per	Semester		Total	Total
S.NO.	Category	I	II	III	IV	Credits	Credits in %
1	FC	7				7	8.23
2	РС	11	12			23	27.05
3	PE	3	6	3		12	14.11
4	OE			3		3	3.52
5	AC	0	0				
6	EEC		2	14	24	40	47.05
Т	otal	21	20	20	24	85	100

CATEGORY WISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

SI.	Course	Course Title	Cate	CA Marks	End Sem	Total	Но		/ W edit	eek/ s
No.	Code		gory		Marks	Marks	L	Т	Р	С
1	23VLFCZ1	Research Methodology and IPR(Common to all branches)	FC	40	60	100	3	0	0	3
2	23VLFC02	Advanced Applied Mathematics(Common to Applied Electronics & VLSI Design)	FC	40	60	100	3	1	0	4
	•	Total		80	120	200	6	1	0	7

PROFESSIONAL CORE (PC)

Sl.	Course Code	Course Title	Cate	CA Marks	End Sem	Total Marks	Но		s/ We edits	-
No.	Coue	1 8	n la		Marks	Mains	L	Т	Р	С
1	23VLPC01	Advanced Digital System Design(Common to Applied Electronics & VLSI Design)	PC	40	60	100	3	0	0	3
2	23VLPC02	Digital IC Design(Common to Applied Electronics & VLSI Design)	РС	40	60	100	3	0	0	3
3	23VLPC03	Device Modeling	РС	40	60	100	3	0	0	3
4	23VLPC04	Digital IC and System Design Laboratory(Common to Applied Electronics & VLSI Design)	РС	60	40	100	0	0	4	2
5	23VLPC05	Analog IC Design (Common to Applied Electronics & VLSI Design)	РС	40	60	100	3	0	0	3
6	23VLPC06	System on Chip Design	РС	40	60	100	3	0	0	3
7	23VLPC07	Scripting Languages and Verification	РС	50	50	100	3	0	2	4
8	23VLPC08	Analog and Mixed Signal Laboratory	РС	60	40	100	0	0	4	2
		Total		370	430	800	18	0	10	23

PROFESSIONAL ELECTIVE (PE)

SI.	Course Code	rse Code Course Title	Category	СА	End Sem	Total	H	Hours/Week/ Credits			
No.				Marks	Marks	Marks	L	Т	Р	С	
1	23VLPEXX	Professional Elective – I	PE	40	60	100	3	0	0	3	
2	23VLPEXX	Professional Elective - II	PE	40	60	100	3	0	0	3	
3	23VLPEXX	Professional Elective - III	PE	40	60	100	3	0	0	3	
4	23VLPEXX	Professional Elective - IV	PE	40	60	100	3	0	0	3	
Total				160	240	400	12	0	0	12	

OPEN ELECTIVE (OE)

SI. No	Course Code	Course Title	Category CA Marks	End Sem	Total Marks	Но		s/W edit	eek/ s	
no	Goue			Marks	Marks	Marks	L	Т	Р	С
1	23VLOEXX	Open Elective	OE	40	60	100	3	0	0	3
Total			and the second	40	60	100	3	0	0	3

AUDIT COURSE (AC)

SI. No	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks	Но		s/ W edit	eek/ s
				1-141115	Marks		L	Т	Р	С
1	23VLACXX	Audit Course-I	AC	40	60	100	2	0	0	0
2	23VLACXX	Audit Course-II	AC	40	60	100	2	0	0	0
	Total				120	200	4	0	0	0

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

Sl.	Course	Course Title	Category	СА	End Sem	Total	Hours/ Week/ Credits				
No. Code	Code			Marks	Marks	Marks	L	Т	Р	С	
1	23VLEE01	Mini Project	EEC	60	40	100	0	0	4	2	
2	23VLEE02	Internship/Industrial Training	EEC	100	-	100	-	-	**	2	
3	23VLEE03	Project - I	EEC	60	40	100	0	0	24	12	
4	23VLEE04	Project - II	EEC	60	40	100	0	0	48	24	
	Total				120	400	0	0	76	40	

** 4 Weeks Internship/Industrial Training

23VLFCZ1	RESEARCH METHODOLOGY AND IPR	SEMESTER I
23VLFC21	(Common to all branches)	SEMIES I EK I

PREREQUISITES:	CATEGORY	L	Т	Р	С
NIL	FC	3	0	0	3

Objectivesproblem solving, data interpretation and report writi • To know the importance of IPR and patent rights.UNIT - IINTRODUCTIONDefinition and objectives of Research – Types of research, Various Steps in Resear tools for analysis, Developing a research question-Choice of a problem, Lite synthesizing, critical analysis, reading materials, reviewing, rethinking, critical Research Purposes, Ethics in research – APA Ethics code.UNIT - IIQUANTITATIVE METHODS FOR PROBLEM SOLVING	9 Periods arch process, Mathematical erature review, Surveying,
UNIT - IINTRODUCTIONDefinition and objectives of Research – Types of research, Various Steps in Researcetools for analysis, Developing a research question-Choice of a problem, Litesynthesizing, critical analysis, reading materials, reviewing, rethinking, criticalResearch Purposes, Ethics in research – APA Ethics code.	arch process, Mathematical erature review, Surveying,
Definition and objectives of Research – Types of research, Various Steps in Research tools for analysis, Developing a research question-Choice of a problem, Lite synthesizing, critical analysis, reading materials, reviewing, rethinking, critical Research Purposes, Ethics in research – APA Ethics code.	arch process, Mathematical erature review, Surveying,
tools for analysis, Developing a research question-Choice of a problem, Lite synthesizing, critical analysis, reading materials, reviewing, rethinking, critical Research Purposes, Ethics in research – APA Ethics code.	erature review, Surveying,
synthesizing, critical analysis, reading materials, reviewing, rethinking, critical Research Purposes, Ethics in research – APA Ethics code.	10
Research Purposes, Ethics in research – APA Ethics code.	avaluation interpretation
	evaluation, interpretation,
UNIT – II OUANTITATIVE METHODS FOR PROBLEM SOLVING	
	9 Periods
Statistical Modeling and Analysis, Time Series Analysis Probability Distrib	outions, Fundamentals of
Statistical Analysis and Inference, Multivariate methods, Concepts of Cor	relation and Regression,
Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis	, Applications of Spectral
Analysis.	
UNIT - III DATA DESCRIPTION AND REPORT WRITING	9 Periods
Tabular and graphical description of data: Tables and graphs of frequency data of	one variable, Tables and
graphs that show the relationship between two variables , Relation between frequ	lency distributions and
other graphs, preparing data for analysis.	
Structure and Components of Research Report, Types of Report, Layout of Resear	ch Report, Mechanism of
writing a research report, referencing in academic writing.	
UNIT – IV INTELLECTUAL PROPERTY	9 Periods
Nature of Intellectual Property: Patents, Designs, Trade and Copyright. P	Process of Patenting and
Development: technological research, innovation, patenting, development.	
International Scenario: International cooperation on Intellectual Property. Proce	dure for grants of patents,
Patenting under PCT.	
UNIT – V PATENT RIGHTS	9 Periods
Patent Rights: Scope of Patent Rights. Licensing and transfer of technology	v. Patent information and
databases. Geographical Indications.	
Contact Periods:	
Contact Perious:	

Stuart Melville and Wayne Goddard, "Research methodology: an introduction", Juta Academic, 2nd edition, 2014. Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, CengageLearning, 2013 RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2019 Dr. C. R. Kothari and GauravGarg, "Research Methodology: Methods and Trends", New age international publishers, 4th Edition, 2018

COURSE O	UTCOMES:	Bloom's Taxonomy
Upon comp	pletion of the course, the students will be able to:	Mapped
C01	Formulate research question for conducting research.	К3
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K2
C04	Develop a structured content to write technical report.	K3
C05	Summarize the importance of IPR and protect their research work through	K2
	intellectual property.	

COURSE ARTICULATION MATRIX

	••••								
COs/POs	P01	P02	P03	P04	P05	P06			
C01	2	1	3	3	1	3			
CO2	2	3	1	3	3	3			
CO3	2	3	3	3	3	3			
CO4	2	3	1	3	3	3			
C05	-	-	2	-	1	3			
23VLFCZ1	2	3	3	3	3	3			
1 – Slight, 2 – Moderate	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	PATTERN- TH	EORY	X	(
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		A	1 3	1			
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	- · · ·	-	-	100%
Individual							
Assessment		50%	30%	20%		-	
1 /Case	-						100%
Study 1/					_		100%
Seminar 1 /							
Project1							
Individual							
Assessment							
2 /Case		F00/	200/	200/			100%
Study 2/	-	50%	30%	20%	-	-	100%
Seminar 2 /							
Project 2							
ESE	30%	30%	20%	20%	-	-	100%

23VLFC02

ADVANCED APPLIED MATHEMATICS

(Common to Applied Electronics and VLSI Design)

SEMESTER I

PREREQUISITES :	CATEGORY	L	Т	Р	С
NIL	FC	3	1	0	4

Course Objective	• To acquire knowledge with the foundation of ve	ctor snaces inner product				
	• To acquire knowledge with the foundation of vector spaces, inner product space, linear transformation, graph theory and linear programming problems					
	mostly used in various applications in engineering and science.					
UNIT – I	VECTOR SPACE 9+3 Periods					
	lbspaces – Linear combinations - Linear Span – L					
independence – Bas	•	inear acpendence Emean				
-		0 · 2 Derioda				
UNIT – II	INNER PRODUCT SPACE	9+3 Periods				
Inner Products Space	e: Norms-Orthonormal basis, Gram Schmidt orthogona	lization Process- Orthogonal				
complement and Leas	t square Approximations for linear system of equations. Hi	lbert spaces: Riesz Bases.				
UNIT – III	LINEAR TRANSFORMATIONS	9+3 Periods				
Linear Transformation	n – Null space, Range space - dimension theorem - Matrix	and representation of Linear				
Transformation – Eig	gen values Eigen vectors of linear transformation – Dia	agonalization by orthogonal				
transformation.	and the second second					
UNIT – IV	GRAPH THEORY	9+3 Periods				
Graphs and simple g	raphs,Incidence and Adjacency Matrices, Sub graphs-Ve	rtex degrees and graphical				
sequences, walks, tra	ils, paths, cycles - Trees: Characterizations of trees, Cay	ley's formula, Shortest path				
algorithms and proble	ems.					
UNIT – V	LINEARPROGRAMMING PROBLEM	9+3 Periods				
Formulation – Graphic	cal solution – Simplex method –Big-M method- Transporta	tion and Assignment Models.				
Contact Periods:	935					
Lecture: 45Periods	Tutorial: 15 Periods Practical: 0 Periods Total: 6	0Periods				

REFERENCES

1	Bronson,R.,"Matrix Operation", Schaum 'soutlineseries,McGrawHill, Newyork, 2011.
2	T. Veerarajan, "Discrete Mathematics", McGraw Hill Education (India) Pvt. Ltd., 2019.
3	Taha H.A., "Operations Research: An introduction", Ninth Edition, Pearson Education, Asia, New
	Delhi, 2012.
4	Andrews, L.C. and Philips. R. L., "Mathematical Techniques for engineering and scientists",
	PrenticeHallof India,2006.
5	O'Neil P.V., "Advanced Engineering Mathematics", Cengage learning India private limited, (Thomson
	Asia pvt ltd, Singapore) 2007.

COURSE	Bloom's Taxonomy	
Upon cor	npletion of the course, the students will be able to:	Mapped
C01	Obtain the knowledge of vector spaces and matrices	КЗ
CO2	Explain the fallouts of inner product space for linear system of equations	К3
CO3	Understand the concept of linear transformation	КЗ
CO4	Understand the basic concept of graph theory and algorithm to solve network problems	КЗ
C05	Develop the knowledge of finding solutions of Linear Programming problems	КЗ

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	2	1	-	1	-	-			
CO2	2	1	-	1	-	-			
CO3	2	1	-	1	-	-			
CO4	2	1	-	1	-	-			
CO5	2	1	-	1	-	-			
23VLFC02	2	1 Inches	1000	1	-	-			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMEN	T PATTERN- TH			2			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*			halfe Gen				
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual	20%	50%	30%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	20%	50%	30%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	20%	50%	30%	-	-	-	100%

Nor I

ADVANCED DIGITAL SYSTEM DESIGN

(Common to Applied Electronics and VLSI Design)

SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PC	3	0	0	3

Course Objective	• To understand the design and modeling of digital circuities	ts. design and analyse					
,	of synchronous and asynchronous sequential Circuits and architectures of						
	programmable devices and communication controllers.						
UNIT – I	SYSTEM DESIGN USING VERILOG HDL	9 Periods					
Overview of Digital	Design with Verilog HDL - Hierarchical Modeling Concepts - Ba	sic Concepts - Modules					
and Ports - Languas	ge Constructs and Conventions - Gate Level Modeling - Dataflow	v Modeling - Behavioral					
Modeling - Switch	Level Modeling - System Tasks - Functions and Compiler Direction	ectives - Realization of					
combinational circu	its using Verilog.						
UNIT – II	MODELING AND DESIGN 9 Perio						
Sequential Models	- Feedback Model, Capacitive Model, Implicit Model, Basic	Memory Components,					
Functional Register,	Static Machine Coding, Sequential Synthesis. Design of memories	s - ROM, single and dual					
port RAM - synchron	nous and asynchronous read - arithmetic circuit design - serial/pa	rallel adder, subtractor,					
floating point adder	/subtractor multiplier - sequential multiplier, array multiplier, si	gned multiplier – ALU –					
Hardwired Control	Design – Micro programmed Control Design.						
UNIT – III	SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods					
Analysis of clocked	l synchronous sequential circuits and modeling - State diag	ram, state table, state					
assignment and red	luction - Design of synchronous sequential circuits - Design of	Iterative circuits - ASM					
chart and realization	n using ASM - Realization of synchronous sequential circuits using	g Verilog.					
UNIT – IV	ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods					
	onous sequential circuit – flow table reduction – Races - state assi	anment-transition table					
Analysis of asynchro	shous sequencial encare now able reduction naces state assi	giment-transition table					
	ansition table- Design of asynchronous sequential circuit - Static	•					
and problems in tra		, dynamic and essential					
and problems in tra	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali	, dynamic and essential					
and problems in tra Hazards – Data sync	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali	, dynamic and essential					
and problems in tra Hazards – Data sync sequential circuits u UNIT – V	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali sing Verilog.	, dynamic and essential zation of asynchronous 9 Periods					
and problems in tra Hazards – Data sync sequential circuits u UNIT – V Programming logic	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali sing Verilog. PROGRAMMABLE DEVICES AND CONTROLLER	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization					
and problems in tra Hazards – Data sync sequential circuits u UNIT – V Programming logic o of finite state mach	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali sing Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization					
and problems in tra Hazards – Data synd sequential circuits u UNIT – V Programming logic of finite state mach	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali sing Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using ine using PLD – FPGA –Memory controller – Processor control	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization					
and problems in tra Hazards – Data sync sequential circuits u UNIT – V Programming logic of finite state mach controllers: UART-I ²	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali- ising Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using ine using PLD – FPGA –Memory controller – Processor control C – VGA Controllers – USB.	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization unit – Communication					
and problems in tra Hazards – Data synd sequential circuits u UNIT – V Programming logic o of finite state mach controllers: UART-I ² Contact Periods:	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali- ising Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using ine using PLD – FPGA –Memory controller – Processor control C – VGA Controllers – USB.	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization unit – Communication					
and problems in tra Hazards – Data synd sequential circuits u UNIT – V Programming logic of finite state mach controllers: UART-I Contact Periods: Lecture:45 Periods REFERENCES :	ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali- ising Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using ine using PLD – FPGA –Memory controller – Processor control C – VGA Controllers – USB.	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization unit – Communication					
and problems in tra Hazards – Data synd sequential circuits u UNIT – V Programming logic of finite state mach controllers: UART-I2 Contact Periods: Lecture:45 Periods REFERENCES : 1 Charles H. Rot	Ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali- ising Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using ine using PLD – FPGA –Memory controller – Processor control C – VGA Controllers – USB. Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization unit – Communication					
and problems in tra Hazards – Data synd sequential circuits u UNIT – V Programming logic o of finite state mach controllers: UART-I2 Contact Periods: Lecture:45 Periods REFERENCES : 1 Charles H. Rot 2 Nripendra N B	Ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali- ising Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using ine using PLD – FPGA –Memory controller – Processor control C – VGA Controllers – USB. Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio <i>h Jr, "Fundamentals of Logic Design", Thomson Learning, 7th edite</i>	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization unit – Communication					
and problems in traHazards – Data syndsequential circuits uUNIT – VProgramming logic dof finite state machcontrollers: UART-IAContact Periods:Lecture:45 PeriodsREFERENCES :1Charles H. Rot2Nripendra N B3Parag K. Lala,	Ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali- ising Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using ine using PLD – FPGA –Memory controller – Processor control CC – VGA Controllers – USB. Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio <i>h Jr, "Fundamentals of Logic Design", Thomson Learning, 7th edite</i> <i>Biswas, "Logic Design Theory", Prentice Hall of India, 2010.</i>	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization unit – Communication iods					
and problems in tra Hazards – Data synd sequential circuits u UNIT – V Programming logic o of finite state mach controllers: UART-I2 Contact Periods: Lecture:45 Periods REFERENCES : 1 Charles H. Rot 2 Nripendra N E 3 Parag K. Lala, 4 Morris Mano M	Ansition table- Design of asynchronous sequential circuit - Static chronizers – Mixed operating mode asynchronous circuits - Reali- ising Verilog. PROGRAMMABLE DEVICES AND CONTROLLER device families – Designing a synchronous sequential circuit using ine using PLD – FPGA –Memory controller – Processor control C – VGA Controllers – USB. Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio <i>h Jr, "Fundamentals of Logic Design", Thomson Learning, 7th edite</i> <i>Biswas, "Logic Design Theory", Prentice Hall of India, 2010.</i> <i>"Digital system Design using PLD", B S Publications, 2003.</i>	, dynamic and essential zation of asynchronous 9 Periods g PLA/PAL – Realization unit – Communication iods fon, 2014. Pearson Education, 2015.					

6 Samir Palnitkar, **"Verilog HDL – A Guide to Digital Design and Synthesis"**, Pearson, 2003.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the design of digital circuits in various abstraction level using Verilog HDL programming.	K2
CO2	Gain knowledge on sequential modeling and design of digital systems.	K2
CO3	Design and analyse of synchronous sequential Circuits	K4
CO4	Design and analyse of asynchronous sequential Circuits	K4
C05	Understand the architectures of programmable devices and communication controllers	K4

Course Articulation	n Matrix					
COs/POs	P01	P02	P03	P04	PO5	P06
C01	3	3	-	1	-	2
CO2	3	3	-	1	-	2
CO3	3	3	A States	2	-	2
CO4	3	3		2	-	2
C05	3	3		1	-	2
23VLPC01	3	3		1	-	2
1 – Slight, 2 – Moder	ate, 3 – Substai	ntial		•	· ·	
		1 8	11			
		20-m	12			

1	PATTERN- THEO	201	100000	8			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	30%	20%	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	30%	20%	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	30%	30%	20%	20%	-	-	100%

23VLPC02 DIGITAL IC DESIGN		SEMESTER I
	(Common to Applied Electronics and VLSI Design)	SEMIES I EK I

PREREQUISITES		CATEGORY	L	Т	Р	С			
NIL		РС	3	0	0	3			
Course Objective • To learn VLSI design methodology, MOS transistor principles, combinational and sequential logic circuit design with FET devices, arithmetic building blocks and memory architectures									
UNIT - I	OVERVIEW OF VLSI DESIGN METHODOLOGY				9 Pe	eriods			
Semicustom approa	s - Architectural design - Logical design-Physica aches, layout design rules: Need for design rules - - Design rule backgrounder-Layer assignments-SOI	- Layer represe rules.	ntatio		MOS n	well /			
UNIT – II	MOS TRANSISTOR PRINCIPLES AND ADVANCED FET DEVICES					eriods			
CMOS Inverter - Sta FinFETs – VI Charac	Characteristic under Static and Dynamic Conditi- atic Characteristic, Dynamic Characteristic, Power, cteristics – SuperFin Technology.				param	neters.			
UNIT – III	COMBINATIONAL LOGIC CIRCUITS				9 PE	eriods			
0	a – Complementary CMOS, Ratioed Logic, Pass-Trasic Principles, Speed and Power Dissipation of Dyn Gates.	0				0			
UNIT – IV	SEQUENTIAL LOGIC CIRCUITS				9 Pe	eriods			
	sequential circuits, Static Latches and Registers, Dy , Pulse and sense amplifier based Registers, Non-Bis			•	rs, Cloc	k tree			
UNIT – V	ARITHMETIC BUILDING BLOCKS AND MEMORY	ARCHITECTU	RES		9 Pe	eriods			
	Architectures for Adders, Multipliers, Shifters, Spee FinFET design: SRAM, DRAM, ROM.	d and Area Tra	deoffs,	Array	v Subsy	rstems			
Lecture: 45 Periods	s Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Peri	ods						

REFERENCE :

1	Jan M Rabaey, AnanthaChandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective",
	2 nd Edition, Prentice Hall of India, 2016.
2	Niel H.E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design- A circuits and SystemsPerspective",
	3 rd Edition, Pearson education, 2015.
3	Niraj K. Jha l Deming Chen , "Nanoelectronic Circuit Design", Springers, 2021.
4	Wayne Wolf, "Modern VLSI Design", PHI Learning Private Limited, New Delhi, 2011.
5	Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits" , McGraw Hill, 3 rd Edition, 2016.

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon cor	npletion of the course, the students will be able to:	Mapped
C01	Explain design methodology and layout design rules	К2
CO2	Discuss the MOS transistor principles	K2
CO3	Design CMOS combinational logic circuits with FET devices	K4
C04	Design CMOS sequential logic circuits with FET devices	КЗ
C05	Design the architectures for arithmetic building blocks and memory	КЗ

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	2	-	1	-	1
CO2	3	2	-	1	-	1
CO3	3	2	-	1	-	2
CO4	3	2	-	1	-	2
C05	3	2	-	1	-	2
23VLPC02	3	2	-	1	-	2
1 – Slight, 2 – Modera	te, 3 – Substant	ial	÷		-	÷

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	40%	40%	20%	-	-	-	100%			
CAT2	40%	40%	20%	-	-	-	100%			
Individual	-	50%	30%	20%	-	-	100%			
Assessment 1		13.23								
/Case Study 1/		0.650	and the second							
Seminar 1 /										
Project1										
Individual	-	50%	30%	20%	-	-	100%			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE	30%	30%	20%	20%	-	-	100%			

23VLPC03	DEVICE MODELING			SEMESTER I			
PRE REQUISITES		CATEGORY	L	Т	Р	С	
NIL		РС	3	0	0	3	

Course Objective	• To gain knowledge about the basic concepts of MOSFET and it	ts characteristics
	and noise modeling.	
UNIT – I	MOSFET DEVICE PHYSICS	9 Periods
Band theory of soli	ds, carrier transport mechanism, MOS capacitor - surface potentia	al accumulation,
depletion, inversion,	electrostatic potential and charge distribution, threshold voltage, j	oolysilicon work
function, interface sta	ates and oxide traps, drain current model, sub- threshold characteristics	
UNIT – II	MOSFET MODELING	9 Periods
Basic modeling, SPIC	CE Level-1, 2 and 3 models, Short channel effects, Advanced MOSFI	ET modeling, RF
modeling of MOS tran	nsistors, Equivalent circuit representation of MOS transistor, High frequ	ency behavior of
MOS transistor and A	C small signal modeling.	
UNIT – III	NOISE MODELING	9 Periods
Noise sources in MO	SFET, Flicker noise modeling, Thermal noise modeling, model for ac	curate distortion
analysis, nonlineariti	es in CMOS devices and modeling, calculation of distortion in analog CM	OS circuit.
UNIT – IV	BSIM MOSFET MODELING	9 Periods
Gate dielectric model	l, Enhanced model for effective DC and AC channel length and width, T	hreshold voltage
model, Channel char	ge model, Mobility model, Source/drain resistance model, I-V mode	l, gate tunneling
current model, subst	trate current models, Capacitance models, High speed model, RF mod	lel, Noise model,
Junction diode model	s, Layout-dependent parasitics model.	
UNIT – V	FinFET and GAA FET MODEL	9 Periods
Fin Field Effect Tran	sistor : I-V characteristics of FinFET, device capacitances, parasitic effe	ects of extension
regions, performance	of simple combinational gates and amplifiers, novel circuits using FinFl	ETs and Gate-All-
Around FET(GAA FET	Г) device.	
Contact Periods:	X	
Lecture: 45 Periods	Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

REFERENCES:

1	Trond Ytterdal, Yuhua Cheng, Tor A. Fjeldly and Wayne Wolf, "Device Modeling for Analog and RF CMOS
	Circuit Design", John Wiley & Sons Ltd., 2003.
2	B. G. Streetman and S. Banarjee, "Solid State Electronic Devices", Prentice-Hall of India Pvt. Ltd, New
	Delhi, India, 2005.
3	A. B. Bhattacharya, "Compact MOSFET Models for VLSI Design", John Wiley & Sons Inc.,
	2009.
4	P. Colinge, "FinFETs and Other Multi-Gate Transistors", Springer, 2009.

COURSE OUTCOMES:

COURSE (DUTCOMES:	Bloom's		
Upon com	pon completion of the course, the students will be able to:			
C01	Explain the concept of MOSFET and its characteristics.	K2		
CO2	Understand MOSFET modeling and analyze its characteristics.	K3		
CO3	Discuss on Noise modeling in MOSFET and CMOS devices.	K3		
CO4	Understand BSIM MOSFET models.	К3		

CO5Explain the characteristics of Fin FET and GAA FET modeling.K	2
--	---

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	3	2	-	2	-	1		
CO2	3	3	-	2	-	2		
CO3	3	3	-	1	-	2		
CO4	3	3	-	1	-	2		
CO5	3	3	-	2	-	2		
23VLPC03	3	3	-	2	-	2		
1 – Slight, 2 – Moder	ate, 3 – Substant	ial						

ASSESSMEN	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
Category*											
CAT1	40%	40%	20%	-	-	-	100%				
CAT2	40%	40%	20%	-	-	-	100%				
Individual	-	50%	50%	- 725	-	-	100%				
Assessment		2	Constant of								
1 /Case			X	(
Study 1/		1	100	1							
Seminar 1 /		1		1							
Project1		Å	8	24							
Individual	-	50%	50%	-	-	-	100%				
Assessment		100		100							
2 /Case											
Study 2/											
Seminar 2 /											
Project 2											
ESE	30%	40%	30%	-	-	-	100%				

23VLPC04	DIGITAL IC AND SYSTEM DESIGN LABORATORY	SEMESTER I
----------	---	------------

PREREQUISITES		CATEGORY	L	Τ	Р	С
NIL		РС	0	0	4	2
Course Objective	• To design and analyze the digital CM implementation of design on FPGAs and		famili	iarizo	e with	the

LIST OF EXPERIMENTS:

Digital IC Laboratory:

- 1. Performance analysis of CMOS inverter
 - i. Plot VTC curve and plot $dV_{\text{out}}\,vs.\,dV_{\text{in}}.$ Determine transition voltage and gain.
 - Calculate V_{IL}, V_{IH}, NM_H, NM_L.
- ii. Plot VTC with varying $V_{\mbox{\tiny DD}}$ and varying device ratio.
 - \circ \qquad Perform transient analysis with no load and with load and determine $t_{pHL}, t_{pLH}, 20\%$ to- $80\%~t_r$ and 80% -to- $20\%~t_f$.
 - Perform AC analysis with fanout 0 and fanout 1.

Design the following using MOS/FinFET devices and analyse the performance:

- 2. Combinational and sequential logic circuit(s)
- 3. SRAM and DRAM

Layout and analysis:

- 4. Layout for any architecture and find the RC delay.
- 5. Design the high performance circuit using Transmission gates. Design, simulation and implementation on FPGAs:
- 6. Combinational and Sequential logic circuits based on Mealy and Moore's Machine Modelling.
- 7. Arithmetic circuits like serial/parallel adder/subtractor and multiplier with and without pipelining
- 8. ALU architecture with suitable data path and control path circuits.
- 9. LCD Interfacing / Keypad Interfacing
- 10. MIPS 32-bit RISC processor
- 11. Reconfigurable filter ASIC Design:
- Perform digital design on combinational and sequential logic circuits from RTL to GDS

Contact Periods:

Lecture: 0 Periods

Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

REFERENCE :

1	Jan M Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Desig	gn Perspective",
	2 nd Edition, Prentice Hall of India, 2016.	
2	Niel H.E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design- A circuits and Systematic States and Stat	ems
	Perspective", 3 rd Edition, Pearson education, 2015.	
3	Altera Corporation- "Standard Cell ASIC to FPGA Design Methodology and Guideling	e s" , April 2009.
4	Charles Roth Jr.H., "Fundamentals of Logic Design", Australia cengage learning, 7th ed	dition, 2014.
5.	Charles Roth Jr.H., "Fundamentals of Logic Design", Australia cengage learning, 7th ed	dition, 2014.
6.	Samir Palnitkar, "Verilog HDL-A guide to Digital Design and synthesis" 2 nd edition	Pearson
0.	Education in South Asia 2013.	curson,
COI	IRSE OUTCOMES:	Bloom's
000		Taxonomy
Upo	n completion of the course, the students will be able to:	Mapped
C01	Design and analyze the digital circuits	K4
C02	Hands on experience on VLSI based experiments using simulation and synthesis	КЗ
	tools	
CO3	Work on the layout of the digital circuits	КЗ
C04	Implement the design on FPGAs	КЗ
1		

CO5 Explore on ASIC design flow	К3
---------------------------------	----

Course Articulation M	latrix					
COs/POs	P01	P02	P03	P04	PO5	P06
C01	3	2		3	2	2
CO2	3	3	-	3	1	2
CO3	3	2	-	3	2	2
CO4	3	2	-	3	2	2
C05	3	2	-	3	2	2
23VLPC04	3	2	-	3	2	2
1 – Slight, 2 – Moderate	e, 3 – Substanti	al	•		·	·

23VLPC05

ANALOG IC DESIGN (Common to Applied Electronics and VLSI Design)

SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

Course	• To develop the skills to design analog VLSI circuits for a given sp	ecification.
Objective		
UNIT – I	MOS DEVICE PHYSICS	9 Periods
General Conside	rations, MOS I/V Characteristics, Second Order effects, MOS Device r	nodels- Long channel
versus short cha	nnel devices. Single Stage Amplifiers – General considerations, Com	mon Source Stage: CS
stage with resist	ive load, CS stage with diode connected load, CS stage with curren	t source load, Source
Follower stage, (Common Gate Stage, Cascode Stage.	
UNIT – II	MOS AMPLIFIERS AND CURRENT MIRRORS	9 Periods
Differential Amp	lifiers –single Ended and Differential Operation, Basic Differential Pa	ir, Common
mode response,	Differential Pair with MOS loads, Gilbert Cell. Basic Current Mirror	rs, Cascode Current
Mirrors, Active C	urrent Mirrors.	
UNIT – III	FREQUENCY AND NOISE CHARACTERISTICS OF MOS	9 Periods
	AMPLIFIERS	
Frequency Resp	onse of Amplifiers: Miller's effect, Common Source Stage, Source Foll	owers, Common Gate
	StageNoise: Types of Noise, Representation of Noise in circuits, I	
amplifiers, Noise	in cascade stage, Noise in current mirrors, Noise power trade-off, No	oise bandwidth.
UNIT – IV	CMOS OPERATIONAL AMPLIFIERS	9 Periods
Properties of fe	eedback circuits – Effect of feedback on noise -Operational A	mplifiers – General
		1
Considerations,	One Stage Op Amps- design procedure, Two Stage Op Amps, Com	-
	One Stage Op Amps- design procedure, Two Stage Op Amps, Com itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Com	mon-Mode Feedback,
Input Range lim		mon-Mode Feedback, ncept of Stability and
Input Range lim Frequency Comp	itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Con	non-Mode Feedback, ncept of Stability and LL - Problem of Lock
Input Range lim Frequency Comp	itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Con pensation in Op. Amps- Basic PLL Topology- Dynamics of Simple Pl	non-Mode Feedback, ncept of Stability and LL - Problem of Lock
Input Range lim Frequency Comp Acquisition- Cha UNIT – V Ideal A/D and D	itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Con pensation in Op. Amps- Basic PLL Topology- Dynamics of Simple Pl rge Pump- Basic Charge-Pump PLL. D/A AND A/D CONVERTERS D/A converters, Quantization noise, Signed codes, Performance limi	mon-Mode Feedback, ncept of Stability and LL - Problem of Lock 9 Periods tations. Nyquist Rate
Input Range lim Frequency Comp Acquisition- Cha UNIT – V Ideal A/D and D D/A converters:	itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Con- bensation in Op. Amps- Basic PLL Topology- Dynamics of Simple Pl rge Pump- Basic Charge-Pump PLL. D/A AND A/D CONVERTERS //A converters, Quantization noise, Signed codes, Performance limi Decoder based Binary scaled, Current mode and hybrid D /A conv	mon-Mode Feedback, ncept of Stability and LL - Problem of Lock 9 Periods tations. Nyquist Rate erters – Nyquist A/D
Input Range lim Frequency Comp Acquisition- Cha UNIT – V Ideal A/D and D D/A converters: Converters: Inte	itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Con- pensation in Op. Amps- Basic PLL Topology- Dynamics of Simple Pl- rge Pump- Basic Charge-Pump PLL. D/A AND A/D CONVERTERS //A converters, Quantization noise, Signed codes, Performance limi Decoder based Binary scaled, Current mode and hybrid D /A conv grating type, Successive approximation type, Algorithmic type, Inte	mon-Mode Feedback, ncept of Stability and LL - Problem of Lock 9 Periods tations. Nyquist Rate erters – Nyquist A/D
Input Range lim Frequency Comp Acquisition- Cha UNIT – V Ideal A/D and D D/A converters: Converters: Inte	itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Con- bensation in Op. Amps- Basic PLL Topology- Dynamics of Simple Pl rge Pump- Basic Charge-Pump PLL. D/A AND A/D CONVERTERS //A converters, Quantization noise, Signed codes, Performance limi Decoder based Binary scaled, Current mode and hybrid D /A conv	mon-Mode Feedback, ncept of Stability and LL - Problem of Lock 9 Periods tations. Nyquist Rate erters – Nyquist A/D
Input Range lim Frequency Comp Acquisition- Cha UNIT – V Ideal A/D and D D/A converters: Converters: Inte	itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Con- bensation in Op. Amps- Basic PLL Topology- Dynamics of Simple Pl rge Pump- Basic Charge-Pump PLL. D/A AND A/D CONVERTERS //A converters, Quantization noise, Signed codes, Performance limi Decoder based Binary scaled, Current mode and hybrid D /A conv grating type, Successive approximation type, Algorithmic type, Inte A/D converters, High performance A/D converters.	mon-Mode Feedback, ncept of Stability and LL - Problem of Lock 9 Periods tations. Nyquist Rate erters – Nyquist A/D

REFERENCES:

1	Behzad Razavi, "Design of Analog CMOS Integrated circuits", McGraw Hill Education, 2 nd edition,
	2016.
2	David Johns, Ken Martin, "Analog Integrated circuit design", Wiley, 2 nd edition, 2013.
3	Paul R. Gray, Paul J.Hurst, Stephen H.Lewis, and Robert G. Meyer, "Analysis and Design of Analog
	Integrated circuits", Wiley, 5th edition, 2009.
4	R. Jacob Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley, 3 rd edition, 2010.

	E OUTCOMES:	Bloom's
Upon co	mpletion of the course, the students will be able to:	Taxonomy Mapped
0.0.1		
C01	Explain and analyze the MOS device models for different configurations.	K3
CO2	Design various MOS amplifiers and Current mirror circuits,	K4
CO3	Discuss and analyze the effects of frequency on MOS amplifier characteristics	К3
C04	Discuss the effects of feedback and noise in CMOS Operation amplifiers and	K2
	explain the operation of PLL	
C05	Reproduce and explain the operation of various Nyquist rate data converters	K2

COs/POs	P01	P02	PO3	P04	P05	P06
C01	3	2	-	1	-	1
CO2	3	2	-	1	-	1
CO3	3	1	-	1	-	1
CO4	3	2	-	1	-	1
CO5	3	2	-	1	-	1
23VLPC05	3	2	-	1	-	1
1 – Slight, 2 – Mode	erate, 3 – Subst	antial		•		

ASSESSMENT PA	TTERN – THEOR	Y Ze	and the second				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	30%	20%	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	30%	20%	-	-	100%
ESE	30%	30%	20%	20%	-	-	100%

23VLPC06	SYSTEM ON CHIP DESIGN	SYSTEM ON CHIP DESIGN			SEMESTER II				
PREREQUISITES		CATEGORY	L	Т	Р	С			
DIGITAL ELECT	RONICS	РС	3	0	0	3			

Course	• To design power optimized combinational and sequential logic	c networks and acquire								
Objective	knowledge on FPGA based design and Floor planning methods.	1								
UNIT – I	LOGIC GATES	9 Periods								
Introduction -	Combinational logic functions - Static complementary gates - Switch	logic - Alternative gate								
circuits - Low power gates - Delay through resistive interconnect - Delay through inductive interconnect.										
UNIT – II										
Introduction - Standard cell - Based layout - Simulation - Combinational network delay - Logic and										
interconnect o	interconnect design - Power optimization - Switch logic networks - Combinational logic testing.									
UNIT – III SEQUENTIAL MAC 9 Period										
Introduction -	Latches and Flip-Flops - Sequential systems and Clocking disciplir	nes - Sequential system								
design - Powe	r optimization - Design validation - Sequential testing.									
UNIT – IV	SUBSYSTEM DESIGN	9 Periods								
Introduction	- Subsystem design principles - Combinational shifters - Adders, A	LUs, Multipliers. High-								
Density Memo	ory. Field Programmable Gate Arrays – Role of FPGA, Types of FPGA,	FPGA vs Custom VLSI,								
FPGA based sy	vstem design - Programmable Logic Arrays.									
UNIT – V	FLOOR-PLANNING	9 Periods								
Introduction	– Floor planning methods – Block Placement and Channel Defi	nition, Global Routing,								
Switchbox Ro	uting, Power Distribution, Clock Distributions, Floor-planning tips,	Design Validation – Off								
Chip Connecti	ons – Packages, I/O Architecture, PAD Design.									
Contact Perio	ods:									
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	riods								
REFERENCES										

REFERENCES:

	1 0. 3847 1. 1
1	Wayne Wolf, " Modern VLSI Design – System – on – Chip Design", Prentice Hall, 3rd Edition 2008.
2	Wayne Wolf, "Modern VLSI Design – IP based Design", Prentice Hall, 4th Edition, 2015.
3	Joseph Yiu, "System-on-Chip Design with Arm Cortex-M Processors", ARM Education Media, 2019.
4	Youn-Long Steve Lin, "Essential Issues in SOC Design: Designing complex systems-on-chip", Springer,
	2006.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Learn the fundamental factors of System On Chip.	K2
CO2	Impart knowledge on optimization of power in combinational logic machines	КЗ
CO3	Impart knowledge on optimization of power in sequential logic machines	КЗ
CO4	Design subsystem design, FPGA and PLA network.	K4
CO5	To acquire knowledge on floor planning methods for system design	КЗ

Course Articulation Matrix									
COs/POs PO1 PO2 PO3 PO4 PO5 PO									
C01	2	3	-	2	1	-			

C02	2	2	-	2	1	-		
CO3	2	1	-	3	1	-		
CO4	2	3	-	3	1	-		
C05	2	3	-	3	1	-		
23VLPC06	2	3	-	3	1	-		
1 – Slight, 2 – Moderate, 3 – Substantial								

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	30%	20%	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	30%	20%	-	-	100%
Assessment		a martin	1. Some				
2 /Case		1973 - S					
Study 2/		1					
Seminar 2 /			- A (
Project 2		1.30					
ESE	30%	30%	20%	20%	-	-	100%

SCRIPTING LANGUAGES AND VERIFICATION

SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	2	4

Course	• To introduce the basics of various scripting languages such as	PERL, TCL, SYSTEM					
Objective	VERILOG and verification techniques, Universal Verification Met	hodology (UVM) test					
	bench environment and write scripts for automation.						
UNIT – I	PERL BASICS	9 Periods					
History and C	oncepts of PERL - Scalar Data - Arrays and List Data - Control structu	res - Hashes - Basics					
I/O - Regular	· Expressions - Functions - Miscellaneous control structures - Form	ats-Advanced PERL-					
Directory acc	ess - File and Directory manipulation - Process Management - Packages	and Modules.					
UNIT – II	TCL BASICS	9 Periods					
An Overview of TCL and Tk -Tcl Language syntax - Variables - Expressions -Lists - Control flow -							
procedures -	Errors and exceptions - String manipulations-Advanced TCL-Accessing	files- Basics of Tk.					
UNIT – III	SYSTEM VERILOG	9 Periods					
Introduction	to System Verilog – Literal values-data Types – Arrays - Data Dec	larations-attributes-					
operators – e	xpressions - procedural statements and control flow. Processes in Sy	rstem Verilog – Task					
and functions	- assertions.						
UNIT – IV	VERIFICATION TECHNIQUES	9 Periods					
Introduction	to Verification - Testing Vs Verification - Verification Techno	logies - Functional					
Verification-	Code coverage -Functional coverage.						
Test bench -	Linear Test bench - Linear Random Test bench - Self-checking Test	bench - Regression -					
RTL Formal V	erification.						
UNIT – V	UNIVERSAL VERIFICATION METHODOLOGY	9 Periods					
Introduction	to UVM - Verification components - Transaction level modeling -	Developing reusable					
verification co	omponents - Using Verification components and functional coverage -R	egister classes.					
		-					
Contact Perio							
Lecture: 45 H	Periods Tutorial: 0 Periods Practical: 30 Periods Total: 75 F	riods					

LIST OF EXPERIMENTS: Practical: 30 Periods

- 1. Test Bench generation using HDL based Simulators
- 2. Test Pattern generation
- 3. Scan Chain insertion
- 4. Test Bench generation for Combinational and Sequential circuits using PERL script
- 5. Compilation and Simulation of design modules and test bench modules using TCL script
- 6. Verification of DUT by developing a system Verilog test bench

REFERENCES:

1 Larry Wall, Tom Christiansen, John Orwant, "**Programming PERL**", Oreilly Publications, Fourth Edition, 2012.

2 *Christian B Spear, "SystemVerilog for Verification: A guide to learning the Test bench language*

	features", Springer publications, Third Edition, 2012.
3	John K. Ousterhout, Ken Jones, "Tcl and the Tk Toolkit", Pearson Education, Second Edition, 2010.
4	Ray Salmei, "The UVM Primer:A Step-by-Step Introduction to the Universal Verification
	Methodology", First Edition, Boston Light Press, 2013.
5	Vanessa R. Copper, "Getting started with UVM: A Beginner's Guide", Verilab Publishing, First Edition,
	2013.
6	B.Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2nd edition, 2011.
7	David A. Johns and Ken Martin, "Analog Integrated Circuit Design", Wiley India, 2nd edition, 2013

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Develop PERL scripts for VLSI design automation	К2
CO2	Develop TCL scripts for VLSI design automation	К2
CO3	Develop SYSTEM VERILOG scripts for VLSI design automation	К2
C04	Understand the verification methodology of VLSI circuits.	К2
C05	Design UVM test bench.	КЗ

COs/POs	P01	P02	PO3	P04	P05	P06
C01	3	1	2	2	2	-
CO2	3	-	2	-	-	-
CO3	3	The Barrens	2	-	-	-
CO4	3	3	1 1	-	2	-
C05	3	3	1	-	2	-
23VLPC07	3	3	2	2	2	-
1 – Slight, 2 – Moderate, 3	– Substantial					

ASSESSMEN	T PATTERN – T	HEORY	8 - 1	1			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		2		7			
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessme							
nt 1 /Case							
Study 1/							
Seminar 1							
/ Project1							
Individual	-	50%	50%	-	-	-	100%
Assessme							
nt 2 /Case							
Study 2/							
Seminar 2							
/ Project 2							
ESE	30%	40%	30%	-	-	-	100%

23VLPC08	ANALOG AND MIXED SIGNAL LABORATORY				SEMESTER II			
PREREQUISITE	PREREQUISITES CATEGORY I					С		
NIL		РС	0	0	4	2		

Course Objective	• To design and analyze the analog circuits, mixed signal circuits and hardware-software co-design
LIST OF EXP	ERIMENTS:
ANALOG IC L	ABORATORY:
Design and cl	naracterization of the following analog circuits
• Comm	on source amplifier with Resistive/diode/current source load & Common gate
ampli	fier:
0	Transfer Characteristics (Vin vs Vout)
0	Frequency Response (Vin vs Frequency)
0	Layout analysis
• Differ	ential amplifier & differential to single-ended circuit :
0	Transfer Characteristics (Vin vs Vout)
0	Frequency Response (Vin vs Frequency)
Basic/	cascode current mirror
 Voltag 	e mode buffer :
0	Transfer Characteristics (Vin vs Vout)
0	Frequency Response (Vin vs Frequency)
 Design 	n of operational amplifier
Mixed Signal	1.8.45000755478524764481*
0	A/D&D/ACircuits
0	Sample and Hold
0 Uardwara coff	PLL wareco-design
• MAC u	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	enhancement/sharpening
-	etection
CORDI	NG 920 8004927
Software/Too	ls Required: HDL simulation software, HDL synthesis and implementation tool,
Analog/mixed	signal design simulator
Contact Perio	
Lecture: 0 Pe	riods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

REFERENCE :

1	Behzad Razavi, " Design of Analog CMOS Integrated circuits ", McGraw Hill Education, 2 nd edition, 2016.
2	Luciano Lavagno, Igor L. Markov, Grant Martin, Louis K. Scheffer "Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology: Circuit Design, and Process Technology", CRC Press; 2nd edition, 2016
3	Paul R. Gray and Robert G. Meyer, " Analysis and Design of Analog Integrated circuits ", Wiley, 5th edition, 2009.
4	Giovanni De Micheli , Rolf Ernst Morgon," Reading in Hardware/Software Co-Design " Kaufmann

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Design analog circuit using CMOS for a given design specification	K4
C02	Study the mixed signal circuits	K4
CO3	Acquire practical knowledge on hardware-software co-design	КЗ
CO4	Use EDA tools for analog design	КЗ
C05	Measure and analyze various parameters in the design	K4

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	3	-1.	2	1	2			
CO2	3	3	121.02	1	1	2			
C03	3	3	-1	2	1	2			
CO4	3	3	1	2	1	2			
C05	3	3	1	2	1	2			
23VLPC08	3	3	1	2	1	2			
1 – Slight, 2 – Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial								

23VLEE01	MINI PROJECT	SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	EEC	0	0	4	2

COURSEOBJECTIVE:

• To identify, analyze, formulate and handle programming projects with a comprehensive and systematic approach. In particular acquire practical knowledge within the chosen area of technology for technical project development.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COURSE OUTCOMES:				
Upon co	ompletion of the course, the students will be able to:	Mapped		
C01	An exposure to take up real time problems and challenges.	K6		
CO2	Hands-on experience on the technical topics	K4		
CO3	Confidence to work on projects independently.	K4		
C04	Better presentation and communication skills	K5		
CO5	An understanding of technical dissertation presentation and writing.	K5		

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	3	3	2	3	1	2	
CO2	3	3	2	3	2	3	
CO3	1	3	2	3	3	3	
CO4	1	3	2	3	3	3	
C05	1	3	2	3	3	3	
23VLEE01	3	3	2	3	3	3	
1 – Slight, 2 – Moder	ate, 3 – Substa	antial					

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	-	2

COURSEOBJECTIVE:

• To expose the students to work on real time challenges independently in industry and present their technical dissertation and writing.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 160 Periods Total: 160 Periods

COURSE	COURSE OUTCOMES:			
Upon co	mpletion of the course, the students will have:	Mapped		
C01	An exposure to the processes of VLSI or other related industries	К6		
CO2	An ability to take up real time challenges.	K4		
CO3	Confidence to work on the project independently.	K4		
CO4	Team work experience	КЗ		
C05	An understanding of technical dissertation presentation and writing.	K5		

Course Articulation Matrix							
COs/POs	P01	PO2	P03	P04	PO5	P06	
CO1	3	3	2	3	1	2	
CO2	1	3	2	3	3	3	
CO3	3	3	2	3	2	3	
CO4	2	2	3	3	1	2	
C05	3	3	2	3	2	3	
23VLEE02	3	3	2	3	2	3	
1 – Slight, 2 – Modera	ate, 3 – Substa	ntial					

23VLEE03	PROJECT - I	SEMESTER III
----------	-------------	--------------

PRE REQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	24	12

COURSE OBJECTIVE:

• To expose the students to work on real time challenges independently and to present the technical dissertation and writing.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 360 Periods Total: 360 Periods

COURSE OUTCOMES:		Bloom's Taxonomy		
Upon con	pletion of the course, the students will have:	Mapped		
C01	An exposure to take up real time problems and challenges.	К6		
CO2	Hands-on experience on the technical topics	K4		
CO3	Confidence to work on projects independently.	K4		
CO4	Better presentation and communication skills	K5		
C05	An understanding of technical dissertation presentation and writing.	K5		

CALLER F

Course Articulation Matrix						
COs/POs	P01	P02	P03	P04	P05	PO6
C01	3	3	2	3	1	2
C02	1	3	2	3	3	3
CO3	3	3	2	3	2	3
CO4	1	1	1	1	3	3
C05	3	3	2	3	2	3
23VLEE03	3	3	2	3	2	3
1 – Slight, 2 – Moderate, 3 – Substantial						

23VLEE04 PROJECT - II	SEMESTER IV
-----------------------	-------------

PREREQUISITES	CATEGORY	L	Т	Р	C
---------------	----------	---	---	---	---

NIL	EEC	0	0	48	24
-----	-----	---	---	----	----

COURSE OBJECTIVE:

• To expose the students to work on real time challenges independently to provide solution and present the technical dissertation and writing

Lecture: 0 Periods Tutorial: 0 Periods Practical: 720 Periods Total: 720 Periods

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will have:	Mapped
C01	An exposure to take up real time problems and challenges and provide solution	K6
CO2	Hands-on experience on the technical topics	K4
CO3	Confidence to work on projects independently.	K4
C04	Better presentation and communication skills	К5
C05	An understanding of technical dissertation presentation and writing.	К5

Course Articulatio	on Matrix	13				
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3	2	3	1	2
CO2	1	3	2	3	3	3
CO3	3	3	2	3	2	3
CO4	1	1	1	1	3	3
C05	3	3	2	3	2	3
23VLEE04	3	3	2	3	2	3
1 – Slight, 2 – Mode	rate, 3 – Subs	tantial				

23VLPE01	

SEMESTER I

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

Course	• To gain knowledge in VLSI Design methodologies, CAD	tools, design trade off in
Objective	partitioning, placement and floor planning in VLSI Des	-
-	different global routing Algorithm.	0
UNIT – I	VLSI DESIGN METHODOLOGIES	9 Periods
Introduction - V	LSI Design Cycle - New trends in VLSI design Cycle- Physical	Design – New trends in
physical design of	cycle – Design styles - VLSI Design Automation Tools - Algorit	thmic graph theory and
computational co	mplexity - Tractable and intractable problems.	
UNIT – II	PARTITIONING AND PLACEMENT	9 Periods
Partitioning – Pr	roblem formulation – Group migration Algorithms – KL,FM A	lgorithms, Placement –
Simulation based	algorithm – Simulated annealing, Force directed algorithm, Part	tition based algorithms –
Breuer's Algorith	nm, Terminal propagation Algorithm, Floor planning – Slicing	floor plan, Constrained
Based Floor plan	ning – Pin assignment.	
UNIT – III	ROUTING	9 Periods
Routing - Grid ro	uting – Maze routing Algorithms, Global routing – Shortest path l	based Algorithm, Steiner
free based Algor	ithm, Detailed routing - Left edge Algorithm, Greedy channel	Routing – Over the cell
routing, clock rou	ıting.	
UNIT – IV	SIMULATION	9 Periods
Simulation – Gate	e level modeling and Simulation – Switch level modeling and s	imulation – Switch level
modeling and sir	nulation - Combinational Logic Synthesis – Binary decision dia	grams – Two level logic
Synthesis.		
UNIT – V	MODELING AND SYNTHESIS	9 Periods
High level syntl	nesis – Hardware models – Internal representation – Allo	cation assignment and
scheduling – Higł	n level transformation.	
Contact Periods	:	
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods

REFERENCES:

1	N.A Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 2007.
2	S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2008.
3	S. K. Lim, "Practical Problems in VLSI Physical Design Automation", Springer, 2008.
4	A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, "VLSI Physical Design: From Graph Partitioning to Timing
	Closure", Springer 2011.
5	C. J. Alpert, D. P. Mehta, S. S. Sapatnekar, "Handbook of Algorithms for Physical Design Automation",
	Auerbach Publications, 2008.
6	Sait.S.M. and Youssef.H., "VLSI Physical Design Automation", World Scientific, 2004.
7	Micheli.G.D., "Synthesis and Optimization of Digital Circuits", Tata McGraw Hill, 2003.

COURSE OUTCOMES:

Upon completion of the course, the students will have

		Mapped
C01	Understand VLSI Design methodologies & CAD tools	К2
CO2	Analyze the design trade off in various partitioning, placement and floor planning in	K4
	VLSI Design Automation	
CO3	Analyze the different global routing Algorithms	K4
C04	Demonstrate simulation in Gate level modeling, Switch level modeling and	К3
	examine logical synthesis	
C05	Understand modeling and synthesis	K2

Course Articulation	n Matrix					
COs/POs	P01	PO2	P03	P04	P05	P06
C01	3	3	-	1	-	1
CO2	3	3	-	1	-	1
CO3	3	3	-	1	-	1
CO4	3	3	-	1	-	1
C05	3	3	-	1	-	1
23VLPE01	3	3	-	1	-	1
1 – Slight, 2 – Moder	ate, 3 – Substan	tial	and a second difference	•		•
		1992				

ASSESSMENT P	ATTERN – THEO	RY	Sacra Car				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1	-	50%	25%	25%	-	-	100%
/Case Study 1/ Seminar 1 / Project1							
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	25%	25%	-	-	100%
ESE	30%	40%	20%	10%	-	-	100%

23VLPE02	VLSI INTERCONNECTS AND ITS DESIG	SN TECHNIQUES		9	SEME	STER I
PREREQUISITES		CATEGORY	Т	т	D	C
FREREQUISITES		CATEGORI	L	1	Г	L
NIL		PE	3	0	0	3

٦

т

Г

Т

Course	To gain knowledge on VLSI Interconnects, Transmission line param	neters of VLSI
Objective	interconnects, understand the cross talk analysis and novel solution	ons in
	interconnects	
UNIT – I	PRELIMINARYCONCEPTS OF VLSI INTERCONNECTS	9 Period
Interconnects for	VLSI applications-Copper interconnections –Method of images- Method of n	noments- Eve
and Odd capacita	nces- Transmission line equations- Miller's theorem- Resistive interconne	ects as Ladde
network Propagat	ion modes in Micro strip interconnects- Slow wave propagations - Propagatio	on delay.
UNIT – II	PARASITICRESISTANCES, CAPACITANCE AND INDUCTANCES	9 Period
Parasitic resistand	ces, capacitances and inductances- Approximate formulas for inductances- G	reen's function
method: using m	ethod of images and Fourier integral approach- Network Analog metho	od- Inductanc
extraction using fa	ast Henry- Copper interconnections for Resistance modeling.	
UNIT – III	INTERCONNECTION DELAYS	9 Period
Transmission line	emiconductor Micro strip line- Transmission line analysis for single level int e analysis for parallel multilevel interconnections- Analysis of crossing int nection models for Micro strip line- modeling of lossy parallel and crossing	erconnections
Transmission line Parallel interconn		erconnections interconnects
Transmission line Parallel interconn High frequency los	e analysis for parallel multilevel interconnections- Analysis of crossing int nection models for Micro strip line- modeling of lossy parallel and crossing	erconnections interconnects
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS nce approximation- Coupled multi conductor MIS Micro strip line model for	erconnections interconnects onnects. 9 Period for single leve
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan interconnects- Fre	e analysis for parallel multilevel interconnections- Analysis of crossing intraction models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active intercon CROSS TALK ANALYSIS The approximation- Coupled multi conductor MIS Micro strip line model for equency domain level for single level interconnects- Transmission line level interconnects- Transmission level interconnects- Transmission level interconn	erconnections interconnects onnects. 9 Period for single leve
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan interconnects- Fr parallel multi leve	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS nce approximation- Coupled multi conductor MIS Micro strip line model f equency domain level for single level interconnects- Transmission line le el interconnections.	erconnections interconnects onnects. 9 Period for single leve evel analysis o
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan interconnects- Fr parallel multi leve UNIT – V	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS nee approximation- Coupled multi conductor MIS Micro strip line model f equency domain level for single level interconnects- Transmission line le l interconnections. NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS	erconnections interconnects onnects. 9 Period for single leve
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan interconnects- Fr parallel multi leve UNIT – V	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS nce approximation- Coupled multi conductor MIS Micro strip line model f equency domain level for single level interconnects- Transmission line le el interconnections.	erconnections interconnects onnects. 9 Period for single leve evel analysis o
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan interconnects- Fr parallel multi leve UNIT – V	e analysis for parallel multilevel interconnections- Analysis of crossing intraction models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interconce approximation- Coupled multi conductor MIS Micro strip line model for equency domain level for single level interconnects- Transmission line le interconnections. NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS ects – Carbon Nano tubes, Graphenes, Copper wires.	erconnections interconnects onnects. 9 Period for single leve evel analysis c
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan interconnects- Fr parallel multi leve UNIT – V Optical interconne	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active intercon CROSS TALK ANALYSIS ace approximation- Coupled multi conductor MIS Micro strip line model for equency domain level for single level interconnects- Transmission line le interconnections. NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS ects – Carbon Nano tubes, Graphenes, Copper wires.	erconnections interconnects onnects. 9 Period for single leve evel analysis c
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan interconnects- Fr parallel multi leve UNIT – V Optical interconne Contact Periods: Lecture: 45 Perio	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS nee approximation- Coupled multi conductor MIS Micro strip line model f equency domain level for single level interconnects- Transmission line le d interconnections. NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS ects – Carbon Nano tubes, Graphenes, Copper wires.	erconnections interconnects onnects. 9 Period for single leve evel analysis c
Transmission line Parallel interconn High frequency los UNIT – IV Lumped capacitan interconnects- Fro parallel multi leve UNIT – V Optical interconne Contact Periods: Lecture: 45 Perio REFERENCE	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS nce approximation- Coupled multi conductor MIS Micro strip line model for equency domain level for single level interconnects- Transmission line le d interconnections. NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS ects – Carbon Nano tubes, Graphenes, Copper wires. ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods S:	erconnections interconnects onnects. 9 Period for single leve evel analysis o 9 Period
Transmission line Parallel interconn High frequency loss UNIT – IV Lumped capacitant interconnects- Frequencts- Frequency parallel multi leve UNIT – V Optical interconne Contact Periods: Lecture: 45 Period REFERENCES 1 H B Bakog	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS nee approximation- Coupled multi conductor MIS Micro strip line model f equency domain level for single level interconnects- Transmission line le d interconnections. NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS ects – Carbon Nano tubes, Graphenes, Copper wires.	erconnections interconnects onnects. 9 Period for single leve evel analysis o 9 Period
Transmission line Parallel interconn High frequency loss UNIT – IV Lumped capacitan interconnects- Frequency parallel multi leve UNIT – V Optical interconne Contact Periods: Lecture: 45 Period REFERENCE: 1 H B Bakog company.	e analysis for parallel multilevel interconnections- Analysis of crossing int aection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS Ince approximation- Coupled multi conductor MIS Micro strip line model for equency domain level for single level interconnects- Transmission line le d interconnections. NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS ects – Carbon Nano tubes, Graphenes, Copper wires. Mods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods S: Lu, Circuits, "Interconnections and packaging for VLSI", Addison Wesley put	erconnections interconnects onnects. 9 Period for single leve evel analysis o 9 Period
Transmission line Parallel interconn High frequency loss UNIT – IV Lumped capacitan interconnects- Frequency parallel multi leve UNIT – V Optical interconne Contact Periods: Lecture: 45 Period REFERENCE: 1 H B Bakog company.	e analysis for parallel multilevel interconnections- Analysis of crossing int lection models for Micro strip line- modeling of lossy parallel and crossing sses in Micro strip line- Expressions for interconnection delays- Active interco CROSS TALK ANALYSIS Ince approximation- Coupled multi conductor MIS Micro strip line model for equency domain level for single level interconnects- Transmission line le interconnections. NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS exts – Carbon Nano tubes, Graphenes, Copper wires. Ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods S: <i>Lu, Circuits, "Interconnections and packaging for VLSI", Addison Wesley put</i> <i>D Meindl, "Interconnect technology and design for Gigascale integration"</i>	erconnections interconnects onnects. 9 Period for single leve evel analysis o 9 Period

3 Nurmi J, Tenhumen H, Isoaho J, Jantsch A, **"Interconnect Centric design for advanced SOC and NOC"**, Springer.

4 C K Cheng, J Lillis, S Lin, N Chang, "Interconnect analysis and synthesis", Wiley inter-science.

5 Askok K Goel, "High speed VLSI interconnections", Wiley inter science, second edition, 2007.

6 Askok K Goel, "High speed VLSI interconnections", Wiley interscience, second edition, 2007.

COURSE C	OUTCOMES:	Bloom's
	Taxonomy	
Upon com	Mapped	
C01	Gain Basic knowledge on VLSI Interconnects	К2
CO2	Examine Transmission line parameters of VLSI interconnects	КЗ
CO3	Examine interconnection delays	КЗ
CO4	Explain cross talk analysis in Interconnects	K2
CO5	Understand the novel solutions in Interconnects	К2

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05	P06	
C01	2	2	-	1	-	1	
C02	2	2	-	1	-	1	
CO3	2	2	-	1	-	1	
CO4	2	2	-	1	-	1	
C05	2	2	-	1	-	1	
23VLPE02	2	2	-	1	-	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS (Common to Applied Electronics and VLSI Design)

SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PE	3	0	0	3

	• To explain, analyse and construct various analog integrated circuits	•
Objective		
UNIT – I	CIRCUIT CONFIGURATION FOR BIPOLAR IC	9 Periods
Bipolar Current	Mirrors-General Properties-Simple Current Mirror with beta helper-Simpl	e current mirror
with degenerat	ion-Cascode Current Mirror-Wilson Current mirror-Bipolar Widlar Curren	t Source-Bipolar
Peaking Current	nt Source-Supply Insensitive Biasing- Band-Gap-Referenced Bias Circ	uits in Bipolar
Technology. Ou	tput Stages: Transfer Characteristics, Power Output and Efficiency of Emit	ter Follower and
Class B Push-Pu	ll stage.	
UNIT – II	CIRCUIT CONFIGURATION FOR MOS IC	9 Periods
MOS Current M	lirrors-General Properties-Simple Current Mirror with beta helper-Simple	e current mirror
with degenerat	tion-Cascode Current Mirror-Wilson Current mirror-MOS Widlar Curro	ent Source-MOS
Peaking Curren	t Source- Band-Gap-Referenced Bias Circuits in CMOS Technology. Output	Stages: Transfer
Characteristics	of Source Follower-CMOS Class AB Output Stage	
UNIT – III	TWO STAGE OPERATIONAL AMPLIFIERS	9 Periods
Basic Two-Stag	e MOS Operational Amplifiers: Common-Mode Rejection Ratio-Power-S	Supply Rejection
Ratio-Effect of	Overdrive Voltages-Layout Considerations - Two-Stage MOS Operational	Amplifiers with
Cascodes - MOS	Telescopic-Cascode Operational Amplifiers - MOS Folded-Cascode Operational	onal Amplifiers -
MOS Active-Cas	scode Operational Amplifiers - Bipolar Operational Amplifiers- Frequer	ncy Response of
Operational am	plifiers.	
UNIT – IV	PHASE LOCKED LOOPS	9 Periods
Simple PLL: Pha	ase detector- Basic PLL Topology-Dynamics of Simple PLL - Charge-Pump H	PLLs: Problem of
Lock Acquisitio	n-Charge Pump-Basic Charge-Pump PLL – Non-ideal Effects in PLLs - Jitter	in PLLs - Delay-
Locked Loops -	Applications of PLL.	
LUCKEU LUOPS -		
	NONLINEAR ANALOG CIRCUITS	9 Periods
UNIT – V	NONLINEAR ANALOG CIRCUITS er: Emitter Coupled pair as Multiplier-Gilbert Cell as Multiplier-Complete A	
UNIT – V Analog Multipli		nalog Multiplier-
UNIT – V Analog Multipli Gilbert Multipli	er: Emitter Coupled pair as Multiplier-Gilbert Cell as Multiplier-Complete A	nalog Multiplier- pise Models of IC
UNIT – V Analog Multipli Gilbert Multipli Components-Ci	er: Emitter Coupled pair as Multiplier-Gilbert Cell as Multiplier-Complete A er Cell as Balanced Modulator and Phase Shifter. Noise: Sources of Noise-No	nalog Multiplier- pise Models of IC dback on Noise
UNIT – V Analog Multipli Gilbert Multipli Components-Ci Performance-No	er: Emitter Coupled pair as Multiplier-Gilbert Cell as Multiplier-Complete A er Cell as Balanced Modulator and Phase Shifter. Noise: Sources of Noise-No rcuit Noise Calculations-Equivalent Input Noise Generator-Effect of Fee oise in Operation Amplifier-Noise Bandwidth-Noise Figure and Noise Tempo	nalog Multiplier- pise Models of IC dback on Noise
UNIT – V Analog Multipli Gilbert Multipli Components-Ci	er: Emitter Coupled pair as Multiplier-Gilbert Cell as Multiplier-Complete A er Cell as Balanced Modulator and Phase Shifter. Noise: Sources of Noise-No rcuit Noise Calculations-Equivalent Input Noise Generator-Effect of Fee oise in Operation Amplifier-Noise Bandwidth-Noise Figure and Noise Tempo s:	nalog Multiplier- pise Models of IC dback on Noise
UNIT – V Analog Multipli Gilbert Multipli Components-Ci Performance-No Contact Period	er: Emitter Coupled pair as Multiplier-Gilbert Cell as Multiplier-Complete A er Cell as Balanced Modulator and Phase Shifter. Noise: Sources of Noise-No rcuit Noise Calculations-Equivalent Input Noise Generator-Effect of Fee oise in Operation Amplifier-Noise Bandwidth-Noise Figure and Noise Tempo s:	nalog Multiplier- pise Models of IC dback on Noise

1	Paul R. Gray, Paul J.Hurst, Stephen H.Lewis, and Robert G. Meyer, "Analysis and Design of Analog
	Integrated circuits", Wiley, 5th Edition, 2009.
2	Behzad Razavi, " Design of Analog CMOS Integrated circuits" , McGraw Hill Education, 2 nd Edition, 2016.
3	David Johns, Ken Martin, "Analog Integrated circuit design", Wiley, 2 nd Edition, 2013.
4	Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits" McGraw Hill

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Analyse the basic circuits required to build up Bipolar IC	K4				
C02	Analyse the basic circuits required to build up MOS IC	K4				
CO3	Design and describe the characteristics of two stage Bipolar and MOS Operation amplifiers	K4				
C04	Analyse the various types of PLL circuit and explain their applications	K4				
C05	Discuss the construction and working of non-linear analog circuits and describe noise characteristics in analog circuits	K2				

Course Articulati	ion Matrix					
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	2	-	1	-	1
CO2	3	2	-	1	-	1
CO3	3	2	-	1	-	1
CO4	3	2	-	1	-	1
C05	3	2	-	1	-	1
23VLPE03	3	2	Contraction	1	-	1
1 – Slight, 2 – Mod	lerate, 3 – Sub	stantial	Date: NSV			•
		28	and the			
			TI			

ASSESSMENT	PATTERN – THE	ORY	2311				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	25%	25%	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	25%	25%	-	-	100%
ESE	30%	40%	20%	10%	-	-	100%

23VLPE04		MIXED SIGNAL CIRCUITS			SEMESTER I			
PREREQUISITES	5		CATEGORY	L	Т	Р	С	
NIL			PE 3					
Course Objective	•	To gain knowledge on sampling circuits A-D converter architectures	s, sample and ho	old arch	itectu	res, D	A and	
UNIT – I	SAM	PLE-AND-HOLD ARCHITECTURES				9 Pe	eriods	
MOS Switch Perf with Miller Cap	ormar bacitar	onversion and Processing- Sampling Switch ace-Conventional Open-Loop and Closed-Lo ace, Multiplexed-Input Architectures, Rec Mode Architecture.	oop Architecture	e, Open	-Loop	Archit	ecture	
UNIT – II		TAL-TO-ANALOG CONVERTER ARCHITE	CTURES		9 Periods			
		Architectures-Ladder architecture with st teering Architectures, R2R network based a						
UNIT – III		LOG-TO-DIGITAL CONVERTER ARCHITEC				9 Period		
		s- Performance Metrics- Flash Architectur ares, Pipelined Architectures, Successive A	-			-		
UNIT – IV	DAT	A CONVERSION SYSTEMS				9 Pe	eriods	
• •		p Amplifiers, Closed-Loop Amplifiers, ors- Bipolar Comparators, CMOS Comparato	-	-		in Bo	osting	
UNIT – V	-	SET CANCELLATION AND CALIBRATION T		1		9 Pe	eriods	
-		ncellation- Input, Output and multistage C pAmp Offset Cancellation. Calibration T	-	-		-		
Contact Periods Lecture: 45 Peri		Tutorial: 0 Periods Practical: 0 Perio	ods Total: 45	Period	s			

REFERENCES:

1	BehzadRazavi, "PrinciplesofDataConversionSystemDesign", JohnWiley&Sons,2011.
2	SundaramNatarajan,"MicroelectronicsAnalysis&design",McGrawHill2006
3	R.Jbaker," CMOSmixedsignalcircuitdesign ",Wileyinterscience,2 nd edition,2009.
4	B.Razavi," DesignofAnalogCMOSIntegratedCircuits ",McGrawHill,2 nd edition,2011.
5	DavidA. Johns and Ken Martin, " Analog Integrated Circuit Design ",WileyIndia,2 nd edition,2013

	SE OUTCOMES: completion of the course, the students will have a/an:	Bloom's Taxonomy Mapped
C01	Basic knowledge of sampling circuits and Sample & Hold architectures	K2
CO2	In-depth knowledge in digital to analog converter architectures	К3
CO3	In-depth knowledge in analog to digital converter architectures	К3
CO4	Knowledge on various blocks of data conversion systems	K2
C05	Knowledge in various offset cancellation techniques and Calibration techniques	К2

Course Articulation Matrix

Course Articulation Ma	ıtrix					
COs/POs	P01	P02	PO3	P04	P05	P06
C01	3	3	-	2	-	2
CO2	3	3	-	2	-	2
CO3	3	3	-	2	-	2
CO4	3	3	-	2	-	2
C05	3	3	-	2	-	2
23VLPE04	3	3	-	2	-	2

ASSESSMEN	T PATTERN – TH	IEORY	1993 Bar	5.2			
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	- 1	-	-	100%
CAT2	40%	40%	20%	- 1	-	-	100%
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%		-	-	100%
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

SEMESTER I

PREREQUISITES	CATEGORY	L	Τ	Р	C
NIL	PE	3	0	0	3

Course	To gain knowledge on Quantum Computation, Quantum Informati	on, Quantum
Objective	Circuits and Quantum cryptography	
UNIT – I	INTRODUCTION	9 Periods
Quantum Comput	ation vs Classical Computation - Mathematics and Quantum Mechanics	s Preliminaries -
Linear Algebra - U	Initary Matrices - Tensor Product - Pauli Matrices - Notions of Quantu	m Information -
Quantum state –	Dirac Notation - Superpostition - Entanglement - Bell State - P	robabilities and
Measurements.		
UNIT – II	QUANTUM GATES AND CIRCUITS	9 Periods
Qubits - Quantum	Gates - Single Qubit Gates - Multiple Qubit Gates - Quantum GatesActin	g on One Qubit -
Bloch sphere Repr	esentation - Circuit Models - Design of Quantum Circuits.	
UNIT – III	QUANTUM ALGORITHM AND IMPLEMENTATION	9 Periods
Deutsch's Algorit	hm - Deutsch-Jozsa Algorithm - Bernstein-Vazirani Algorithm - Q	uantum Fourier
Transform - Shor's	s Factoring Algorithm - Grover's Search Algorithm.	
UNIT – IV	QUANTUM ERROR CORRECTION AND SIMULATION	9 Periods
Quantum error co	rrection - Fault-tolerant Computation - Computational Complexity. Analy	ysis of Error
Correction Simula	tion.	
UNIT – V	QUANTUM CRYPTOGRAPHY	9 Periods
No Cloning Theor	rem - Private Key Cryptography - Quantum Key Distribution - BB84	protocol - B92
protocol - EPR pro	tocol - Secured Quantum Key Distribution - Post Quantum Cryptography	/.
	NEW BERGER	
Contact Periods :		
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	Michael A Nielsen and Isaac L Chuang, "Quantum Computation and Quantum Information",
	Cambridge University Press, 2010.
2	Phillip Kaye, Raymond Laflamme and Michele Mosca, "An Introduction to Quantum Computing",
	Oxford University Press, 2007.
3	Eleanor Rieffel and Wolfgang Polak, "Quantum Computing A Gentle Introduction", The MIT Press,
	2011.
4	George F Viamontes, Igor L Markov and John P Hayes, "Quantum Circuit Simulation", Springer,
	2009.
5	Chris Bernhardt, "Quantum Computing for Everyone", The MIT Press, 2019.

	OUTCOMES: npletion of this course, students will be able to	Bloom's Taxonomy Mapped
C01	Understand Quantum Computation and Quantum Information	K2
CO2	Explain the Quantum gates and design of Quantum circuits	К3
CO3	Develop and simulate Quantum algorithms	К3
CO4	Explain Quantum error correction and Fault-tolerant computation	K2
C05	Explain Quantum Cryptography and Key distribution	K2

Course Articulation	Matrix					
COs/POs	P01	PO2	PO3	P04	P05	P06
C01	3	2	-	1	-	1
CO2	3	2	-	1	-	1
CO3	3	2	-	1	-	1
C04	3	2	-	1	-	1
CO5	3	2	-	1	-	1
23VLPE05	3	2	-	1	-	1

ASSESSME	NT PATTERN – 1	THEORY	AND	E.S.			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	<u>.</u>	-	-	100%
CAT2	40%	40%	20%	S	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%		-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

LOW POWER IC DESIGN (Common to Applied Electronics and VLSI Design)

SEMESTER II

PREREQUISITES		CATEGORY	L	Τ	Р	С
	NIL PE 3 0					
Course Objective	• To acquire knowledge in low power CMOS	design and optim	izati	on.		
UNIT – I	INTRODUCTION TO LOW POWER DESIGN				9 P	eriods
Physics of Power Di	ssipation in CMOS FET Devices-Sources of power co	onsumptionBas	sic Pi	rinci	ples	of Low
Power Design. Sour	ces of Power dissipation in Ultra Deep Submicron	CMOS Circuits -	Stati	c, D	ynam	ic and
Short circuit compo	onents Effects of scaling on power consumption- I	Low power desig	n flo)W-	Norn	nalized
Figure of Merit – PD	P& EDP.					
UNIT – II	POWER DISSIPATION IN CMOS					eriods
SPICE circuit simula	ntion-Gate level Analysis, Architecture level Analys	is, Data Correlati	on A	naly	vsis, I	Monte
Carlo Simulation, P	robabilistic Power Analysis. Statistical Technique	s - Estimation o	f Gli	tchi	ng Po	ower -
Sensitivity Analysis	- Circuit Reliability - Power Estimation at the circuit	level - High leve	l Pov	ver I	Estim	ation ·
Information Theory	based approaches - Estimation of maximum power.					
UNIT – III	POWER OPTIMIZATION TECHNIQUES				9 P	eriods
Circuit Level – T	ransistor and Gate Sizing, Equivalent Pin Ord	ering, Network	Res	truc	turin	g and
Reorganization, Spe	cial Latches and Flip Flops, Low Power Digital Cell	Library, Adjustab	le D	evice	e Thr	eshold
Voltage. Leakage cui	rent in deep sub micrometer transistors.					
UNIT – IV	SPECIAL TECHNIQUES				9 P	eriods
Gate Reorganizatio	n, Signal Gating, Logic Encoding, State Machine	Encoding, Prec	omp	utati	onal	Logic
Architectural and S	System Level – Power and Performance Manage	ment, Switching	Acti	vity	Red	uction
Parallel Architectur	e with Voltage Reduction, Flow Graph Transformat	ion. Advanced Te	echni	que	s- Ad	iabatio
Computation Pass	Transistor Logic Synthesis, Asynchronous Circuits	s, Low power bu	s –	low	swin	ıg bus
computation, 1 ass	Contraction of the Contraction o					
charge recycling bus	s, delay balancing.					
=	, delay balancing. LOW POWER MEMORIES:				9 P	eriods
charge recycling bus UNIT – V		v Cell-Low Power	· SRA	\М 7		
charge recycling bus UNIT – V Basics of ROM, Low	LOW POWER MEMORIES:				echr	ology
charge recycling bus UNIT – V Basics of ROM, Low Precharge and Equa	LOW POWER MEMORIES: power ROM Technology, Basics of SRAM-Memory	M Technology. Co	onve	ntio	echr	ology
charge recycling bus UNIT – V Basics of ROM, Low Precharge and Equa	LOW POWER MEMORIES: power ROM Technology, Basics of SRAM-Memory alization Circuit-Basics of DRAM-Low Power DRAM Family-Low Voltage BiCMOS Logic family-Low Volta	M Technology. Co age BiCMOS Appli	onve catic	ntio	echr	ology

1	Kaushik Roy and Sharat C Prasad ," Low Power CMOS VLSI circuit Design ", John Wiley and Sons, 2010.
2	Soudris, Dimitrios, Christrian Pignet, Goutis, Costas, "Designing CMOS circuits for low power", Springer
	US, First Edition, 2011.
3	Gary B Yeap K, " Practical Low Power Digital VLSI Design ", Springer US, First Edition 2010.
4	AjitPal , "Low Power VLSI circuits and Systems", Springer India, First Edition, 2014.
5	Jan M.Rabaey, Massoud Pedram, " Low power Design methodologies ", SpringerUS, First Edition, 2014.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:			
C01	Understand low power design in CMOS	K2		
CO2	Analyze various sources of power dissipation in CMOS circuits	K2		
CO3	Reduce the power consumption by optimizing the circuit structures	КЗ		
C04	Design CMOS low power circuits using various special techniques.	К3		
C05	Understand low power memories	K2		

Course Articulation M	atrix					
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	1	3	-	-	1
C02	3	1	3	-	-	1
CO3	3	1	1	-	-	1
C04	3	1	1	-	-	1
C05	3	1	1	-	-	1
23VLPE06	3	1	3	-	-	1
1 – Slight, 2 – Moderate	, 3 – Substantial		and all		·	

ASSESSMENT I	PATTERN – THE	ORY		67		_	
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	40%	40%	20%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40%	40%	20%	-	-	-	100%
ESE	40%	40%	20%	-	-	-	100%

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To acquire knowledge on image and video processing VLSI architectures.	algorithms and design		
UNIT – I	IMAGE PROCESSING ALGORITHMS AND ARCHITECTURES	9 Periods		
Image Processing Tas	ks - Low level Image Processing Operations - intermediate l	evel operations Image		
processor architecture	: Requirements and Classification - Uni and Multi processors -	MIMD systems - SIMD		
systems - Pipelines - I	Design aspects of real time low level image processors - Desi	gn method for special		
architectures.				
UNIT – II	3D IMAGE PROCESSING	9 Periods		
Overview of 3D image	- Types and characteristics of 3D image processing - Examples o	of 3D image processing,		
Continuous and digitiz	ed images, Models of image operations, Algorithm of image o	perations - Smoothing		
filter - Difference filter	- Differential features of a curved surface - Region growing.			
UNIT – III	PIPELINED, 2D AND 3D IMAGE PROCESSING	9 Periods		
	ARCHITECTURES			
Architecture of a cellul	ar logic processing element - Second decomposition in data path	and control -Real time		
pipeline for low level i	mage processing - Design aspects of Image Processing architec	tures -Implementation		
of Low level 2D and 3D	and Intermediate level algorithms.			
UNIT – IV	VIDEO PROCESSING ALGORITHMS	9 Periods		
Introduction to Video	Processing, Video Sampling and Interpolation, Motion Determined	ection and Estimation		
Algorithms, Video Enh	ancement and Restoration, Video Stabilization and Mosaicing	-Video Segmentation -		
MPEG-4 Visual and Fas	t Motion Estimation Algorithms.			
UNIT – V	VIDEO PROCESSING ARCHITECTURES	9 Periods		
General design space evaluation - Design space motion estimation architectures - Motion estimation				
architectures for MPEC	-4 - Design Tradeoffs - VLSI Implementation search engine I and	Search engine II.		
Contact Periods: Lecture: 45 Periods	Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ods		

1	Peter M. Kuhn, "Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion
	Estimation", Springer, 2010.
2	Pieter Jonker, "Morphological Image Processing: Architecture and VLSI design", Springer, First
	Edition,1992.
3	Sid Ahmed M.A., "Image Processing - Theory, Algorithm and Architectures", McGraw Hill, 2009.
4	A.MuratTekalp, "Digital Video Processing", Pearson Education, Noida, 2010.
5	Junichiro Toriwaki · Hiroyuki Yoshida, "Fundamentals of Three-Dimensional Digital Image

	COURSE OUTCOMES: Upon completion of the course, the students will have an ability to		
		Mapped	
C01	Analyze various architectures to realize Image processing algorithms	К2	
CO2	Explain the 3D image processing algorithms	К2	
CO3	Explain the Pipelined image processing algorithms	К2	
C04	Explore various processing techniques of Image and Video signals and design	КЗ	
	different architectures for Image and Video signal processing.		
CO5	Discuss on Video processing architectures.	К3	

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05	P06		
C01	2	2	1	1		1		
C02	2	2	1	1		1		
C03	2	2	1	1		1		
C04	2	2	1	1		1		
C05	2	2	1	1		1		
23VLPE07	2	2	1	1		1		
1 – Slight, 2 – Moderate, 3 – Substantial								

2.2

0

22

ASSESSMENT P	ATTERN – THEO	RY	STORT				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	40%	40%	20%	<u>-</u>	-	-	100%
Assessment 1		100	0027				
/Case Study 1/		10123	all and a second				
Seminar 1 /							
Project1							
Individual	40%	40%	20%	-	-	-	100%
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

SIGNAL INTEGRITY FOR HIGH SPEED DESIGN

SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	To understand signal propagation, transmission line	issues, power			
	considerations, clock distribution and system design	-			
UNIT – I	SIGNAL PROPAGATION ON TRANSMISSION LINES	9 Periods			
Transmission line e	quations-wave solution- wave vs. Circuits-Characteristic impedance -	wave propagation-			
reflection and bound	ce diagrams. Reactive terminations – L, C , static field maps of micro	strip and strip line			
cross-sections. PCB	layer stack ups and layer/Cu thicknesses- cross-sectional analysis	s tools- Z_o and T_d			
equations for micro	strip and stripline. Reflection and terminations for logic gates, fan-o	ut-logic switching-			
reflection coefficient	t- skin-effect-dispersion				
UNIT – II	MULTI-CONDUCTOR TRANSMISSION LINES AND	9 Periods			
	CROSS-TALK				
Multi-conductor tra	nsmission-lines-coupling physics- per unit length parameters -Near	and far-end cross-			
talk- minimizing cro	ss-talk (stripline and microstrip) Differential signaling- termination-b	alanced circuits -S-			
parameters-Lossy a	nd Lossles models.				
UNIT – III	NON-IDEAL EFFECTS	9 Periods			
Non-ideal signal ref	turn paths – gaps -BGA fields- via transitions - Parasitic inductance	and capacitance-			
Transmission line lo	osses –Rs-tan δ - Routing parasitic- Common-mode current- Different	ial-mode current -			
Connectors.					
UNIT – IV	POWER CONSIDERATIONS AND SYSTEM DESIGN	9 Periods			
SSN/SSO -DC powe	r bus design-layer stack up- SMT decoupling-Logic families-power	consumption and			
system power deliv	very-Logic families and speed Package types and parasitic-SPICE-	IBIS models -Bit			
streams- PRBS and	l filtering functions of link-path components - Eye diagrams -jitt	ter - inter-symbol			
interference Bit-error rate -Timing analysis.					
UNIT - V CLOCK DISTRIBUTION AND CLOCK OSCILLATORS 9 Period					
Timing margin- Clo	ck slew- low impedance drivers- terminations-Delay Adjustments- C	ancelling parasitic			
capacitance-Clock jit	tter.				
Contact Periods:					
Lecture: 45 Period	Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

1	H. W. Johnson and M. Graham, " High-Speed Digital Design ": A Handbook of Black Magic, Prentice Hall, 1993.
2	Douglas Brooks, "Signal Integrity Issues and Printed Circuit Board Design", Prentice Hall PTR, 2003.
3	S. Hall, G. Hall, and J. McCall, "High-Speed Digital System Design": A Handbook of Interconnect Theory and Design Practices, Wiley-Interscience, 2000.
4	Eric Bogatin , " Signal Integrity – Simplified" , Prentice Hall PTR, 2003.

	OUTCOMES: ppletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand signal propagation on transmission lines and cross talk	K1
C02	Understand multi-conductor transmission lines and cross talk	K2
C03	Explain non ideal effects in transmission lines	КЗ
C04	Understand power considerations and system design	K2
C05	Explain clock distributions	K1

COs/POs	P01	P02	P03	P04	P05	P06
C01	2	1	-	1	-	-
CO2	2	1	-	1	-	-
CO3	2	1	·***	1	-	-
CO4	2	1	10000	1	-	-
C05	2	1		1	-	-
23VLPE08	2	1	- X 1	1	-	-
1 – Slight, 2 – Modera	ite, 3 – Substanti	al				

ASSESSMENT	PATTERN – TH	EORY	8	4			
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	30%	40%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30%	40%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

POWER MANAGEMENT AND CLOCK DISTRIBUTION

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To learn and design various circuits related to power management and clock
	distribution.

UNIT – I	VOLTAGE AND CURRENT REFERENCES	9 Periods					
Current Mirrors, Se	lf Biased Current Reference, startup circuits, VBE based Current Refer	rence, VT Based					
Current Reference, Band Gap Reference, Supply Independent Biasing, Temperature Independent Biasing, PTAT							
Current Generation,	Constant Gm Biasing.						
UNIT – II	LOW DROP OUT REGULATORS	9 Periods					
5 5	cks, Negative Feedback, Performance Metrics, AC Design, Stability, Intern 2 – Internal and External compensation circuits.	nal and External					
UNIT – III	OSCILLATOR FUNDAMENTALS	9 Periods					
	ons, Ring oscillators, LC oscillators, Colpitts Oscillator, Jitter and Phas Sensitivity Function for LC & Ring Oscillators, Phase Noise in Differential L	5					
UNIT – IV	CLOCK DISTRIBUTION CIRCUITS	9 Periods					
	LL stability, Noise Performance, Charge-Pump PLL Topology, CPPLLBuildir formance, DLL fundamentals.	ig blocks, Jitter					
UNIT – V	CLOCK AND DATA RECOVERY CIRCUITS	9 Periods					
	CDR Architectures, Trans Impedance Amplifiers and Limiters, CMOS Interface, Linear HalfRate CMOS CDR Circuits, Wide capture Range CDR Circuits.						
Lecture: 45 Periods	s Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Gabriel.a. Rincon-Mora, "Voltage References from Diode to Precision Higher Order Band gap circuits", John Wiley & Sons Inc, 2002.
2	Gabriel.a. Rincon-Mora, "Analog IC Design with Low-Dropout Regulators", Mcgraw-Hill Professional Pub, 2009.
3	BehzadRazavi, "Design of Analog CMOS Integrated Circuits", Tata Mcgraw Hill, 2001
4	Floyd M. Gardner ,"Phase Lock Techniques" John Wiley& Sons, Inc 2005.
5	MichielSteyaert, Arthur H.M. Van Roermund, Herman Casier, "Analog Circuit Design: High Speed Clock and
	Data Recovery, High-Performance Amplifiers Power Management", Springer, 2008.
6	Behzadrazavi, "Design of Integrated Circuits for Optical Communications", McGraw Hill, 2003

COURSE	COURSE OUTCOMES:							
Upon co	mpletion of the cou	rse, the studen	ts will be able	e to:			Taxonomy Mapped	
C01	Design voltage a	nd current ref	erence circui	ts for a given	specification.		КЗ	
CO2	D2 Recognize the concepts of low drop out regulators.							
CO3	CO3 Choose oscillator topology and handle noises in oscillator circuits.							
CO4	CO4 Design clock distribution circuits.					КЗ		
C05	CO5 Design clock generation circuits in the context of high speed I/Os, High speed Broad						К3	
Course	Articulation Matrix	X					11	
	COs/POs	P01	P02	P03	P04	P05	P06	
	C01	3	1	2	2	1		
	CO2	3	1	2	2	1		
	CO3	3	1	2	2	1		
	CO4	3	1	2	2	1		
	C05	3	1	2	2	1		
	23VLPE09	3	1	2	2	1		
1 – Sligh	t, 2 – Moderate, 3 –	Substantial						

ASSESSMENT	PATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	40				100
CAT2	30	30	40				100
CAT3	30	30	40				100
Assignment 1	20	30	50				100
Assignment 2	20	30	50				100
Assignment 3	20	30	50				100
Quiz1	50	50					100
Quiz 2	50	50					100
Quiz 3	50	50					100
ESE	30	30	40				100

23VLPE10

QUANTUM DOT CELLULAR AUTOMATA NANOTECHNOLOGY

SEMESTER II

PREREQUISITES	5	CATEGORY	L	Т	Р	C	
NIL		PE	3	0	0	3	
			<u> </u>	<u> </u>			
Course	To understand quantum dot cell	ular automata nanotech	nology	basics	s, term	inology,	
Objective	design of digital circuits and tran	isforms.					
UNIT – I	INTRODUCTION	TRODUCTION 9 Perio					
Emerging Nanot	echnologies-Electronics beyond Moore's la	w – Limitations of CMO	S Techn	ology	– Alte	rnatives	
to MOSFET and (Challenges – Emerging Transistor based De	evices – IC Technology b	eyond C	MOS	Era-US	DM and	
Quantum Compu	ting – QCA modeling approach.						
UNIT – II	QCA TERMINOLOGY				9]	Periods	
QCA Basics – Sc	hrÖdinger's equation in quantum wires	– Quantum boxes – No	n-zero	angula	ar moi	mentum	
states – Spherica	l quantum dots – Tiny quantum dots – Cu	boidal dots - Dots of ar	bitrary	shape	– App	roaches	
to pyramidal do	s – Matrix approaches – Transport throu	gh dot arrays - Crosso	vers in	QCA -	- Conv	ergence	
tests – Efficiency	– Tool for QCA Simulation.						
UNIT – III	DESIGN OF BASIC DIGITAL CIRCUITS I	N QCA			9]	Periods	
Logic Primitives	in QCA – Clocking in QCA – Role and Type	es – Design of Logic Gate	es and N	Aultip	lexer i	n QCA –	
Design of a One-	Bit Full-Adder – Flip-Flop in QCA.						
UNIT – IV	DESIGN OF ADDERS AND MULTIPLIER	S IN QCA			9]	Periods	
Design of Ripple	Carry Adder (RCA) and Prefix Adders in Q	CA – Design of 16-bit Hy	brid Ad	der in	QCA -	- Layout	
Level Implement	ation of adders and comparisons. Introdu	ction to Multipliers – D	esign of	Multi	plier i	n QCA –	
The Baugh-Wool	ey Multiplier for 2's Complement Numbers	– Design of Baugh-Woo	ley Mul	tiplier	in QC/	4.	
UNIT – V	TRANSFORM IN QCA	4			9	Periods	
Discrete Hadama	rd Transform Computation in QCA – Basic	cs of Discrete Hadamard	Transf	orm –	Mathe	ematical	
Formulation of	DHT Computation – QCA Realization – P	Performance of a Full-P	arallel	Additi	on Str	ategy –	
	uantum Dot Cellular Automata Technology						
Contact Periods	:						
Lecture: 45 Per	ods Tutorial: 0 Periods Practical: 0 I	Periods Total: 45 Peri	ods				

1	Paul Harrison, Alex Valavanis, " Quantum Wells, Wires and Dots: Theoretical and Computational
	Physics of Semiconductor Nanostructures" 4th Edition, Wiley, 2016.
2	K.Sridharan, Vikramkumar Pudi, "Design of Arithmetic Circuits in Quantum Dot Cellular Automata
	Nanotechnology – Studies on Computational Intelligence", Springer International Publishing, 2015.
3	Fabrizio Lombardi, Jing Huang, "Design and Test of Digital cirucits by Quantum-Dot Cellular
	Automata", Artech House, 2007.
4	Kasper.E and Paul. D, "Silicon Quantum Integrated circuits-Silicon-Germanium Heterostructure
	Devices: Basics and Realizations", Springer-Verlag Berlin Heidelberg, 2005.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon completion of the course, the students will be able to:		Mapped
C01	Explain the basics of QCA	K2
CO2	Describe the QCA terminology	K2
CO3	Design basic Digital Circuits in QCA	КЗ
CO4	Design of adders and multipliers in QCA	КЗ
CO5	Discuss the transform in QCA	K2

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	1	-	-	2	-			
CO2	3	1	-	-	2	-			
CO3	3	3	-	3	2	2			
CO4	3	3	-	3	2	2			
C05	3	1	-	-	2	-			
23VLPE10	3	3	-	3	2	2			
1 – Slight, 2 – Moderate	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT P	ASSESSMENT PATTERN- THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	40%	40%	20%	-	-	-	100%					
CAT2	40%	40%	20%	-	-	-	100%					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	30%	20%	-	-	100%					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	30%	20%	-	-	100%					
ESE	30%	30%	20%	20%	-	-	100%					

23VLPE11	EMBEDDED SYSTEM DESIGN AND IOT	SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	Course• To learn the basic concepts of ARM CORTEX processor and IOT.										
Objective											
UNIT – I	ARM CORTEX M4	9 Periods									
Introduction to Cortex -M Processor family – Cortex M4 – Features - Architecture – Block Diagram –											
Operation modes a	nd states – Registers - Memory System – Exceptions and Interrupts – In	nstruction Set – Low									
power characterist	ics.										
UNIT – II	INTERFACING WITH ARM CORTEX	9 Periods									
ARM Cortex STM32	2F controller – Configuring GPIO Ports – Switches and LEDs - LCD displ	ay Seven Segment									
LED Display – Mati	rix Keypad – ADC – DAC – Pulse Width Modulation – DMA - Serial Comm	nunication USART.									
UNIT – III	APPLICATIONS AND CASE STUDIES	9 Periods									
Applications of Em	bedded systems – Case study of embedded system (using ARM/cortex)) for monitoring,									
controlling and ind	lustrial automation–Smart Card–Engine Control Unit - Digital still came	era -Video									
accelerator.	77										
UNIT – IV	IOT DESIGN METHODOLOGY	9 Periods									
Overview of Intern	et of Things – Physical Design - IoT System Management with NETCON	F-YANG, SNMP - IoT									
design methodolog	gy - Specifications - Integration and Application Development.										
UNIT – V	IIOT AND CASE STUDIES OF IOT	9 Periods									
IIOT Architecture -	- IIOT Requirements - IIoT Business Model: Categorization- Business o	oportunities -									
Reference Architecture of IIoT – Case Studies illustrating IOT design- Home Automation – Smart Cities -											
Environment – Agriculture.											
Contact Periods:											
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										

1	Joseph Yiu, " The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors" , Newnes Third
	Edition, 2013.
2	Andrew N. Sloss Dominic Symes Chris Wright, "ARM System Developer's Guide Designing and
	Optimizing System Software", 1st edition Elsevier Inc 2010.
3	Dr. Mark Fisher, ARM Cortex M4 Cook Book, Packt Publishing, 2016.
4	ArshdeepBahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015.
5	Sudip Misra, Chandana Roy, Anandarup Mukherjee, "Introduction to Industrial Internet of Tings and
	Industry 4.0", CRC Press, 1st edition, 2021

COURSE OUTCOMES:				
Upon comp	letion of the course, the students will be able to:	Mapped		
C01	Interpret the Architecture and features of ARM CORTEX processor.	K2		
CO2	Apply programming skill for interfacing with ARM CORTEX processor.	КЗ		
CO3	Relate the applications and case studies of embedded system.	K2		
C04	Discuss the advanced IOT design specifications.	K2		
C05	Analyze and apply IOT to real time applications.	K2		

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05	P06		
C01	3	1	2	2	1			
C02	3	1	2	2	1			
C03	3	1	2	2	1			
C04	3	1	2	2	1			
C05	3	1	2	2	1			
23VLPE11	3	1	2	2	1			
1 – Slight, 2 – Moderate, 3 -	- Substantial							

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	30%	30%	40%	-	-	-	100%				
CAT2	30%	30%	40%	-	-	-	100%				
Individual	20%	30%	50%	-	-	-	100%				
Assessment 1/		200									
Case Study 1/		199	1000								
Seminar 1/			1991.0								
Project 1											
Individual	20%	30%	50%	-	-	-	100%				
Assessment 2/											
Case Study 2/											
Seminar 2/											
Project 2											
ESE	30%	30%	40%	-	-	-	100%				

TESTING AND TESTABILITY

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To gain knowledge on fault modeling, testing and test vecto combinational and sequential logic circuits and get exposur approaches, various fault diagnosis methods in logic circuits.	0
UNIT – I	FAULT MODELING AND SIMULATION IN COMBINATIONAL AND	9 Periods
	SEQUENTIAL CIRCUITS	
Basics of Testing: Fa	ault models, Combinational logic and fault simulation - Test generation fo	or Combinational
Circuits - Classificati	ion of sequential ATPG methods - Fault collapsing and simulation.	
UNIT – II	FUNCTIONAL TESTING AND DELAY FAULT TESTING	9 Periods
Universal test sets:	Pseudo-exhaustive and iterative logic array testing - Clocking scheme	s for delay fault
testing - Testability	classifications for path delay faults - Test generation and fault simulation	for path and gate
delay faults.		
UNIT – III	CMOS TESTING	9 Periods
Testing of static and	dynamic circuits - Fault diagnosis: Fault models for diagnosis, Cause-effec	t diagnosis -
Effect-cause diagnos	sis.	
UNIT – IV	DESIGN FOR TESTABILITY	9 Periods
Scan design - Partia	l scan - Use of scan chains - Boundary scan - DFT for other test objectives -	Memory Testing
– SOC testing – Core	level test – Core test access – Core test wrapper.	
UNIT – V	BUILT-IN SELF-TEST	9 Periods
Pattern Generators	- Estimation of test length - Test points to improve testability - Analysis of	aliasing in linear
compression - BIST	methodologies - BIST for delay fault testing.	
Contact Periods:		
Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	N. Jha& S.D. Gupta, " Testing of Digital Systems ", Cambridge, 2003.
2	W. W. Wen, "VLSI Test Principles and Architectures Design for Testability", Morgan
	Kaufmann Publishers. 2006.
3	Michael L. Bushnell &Vishwani D. Agrawal," Essentials of Electronic Testing for
	Digital,memory & Mixed signal VLSI Circuits", Kluwar Academic Publishers, 2000.
4	P. K. Lala," Digital circuit Testing and Testability", Academic Press, 1997.
5	M. Abramovici, M. A. Breuer, & A.D. Friedman, "Digital System Testing and Testable
	Design", Computer Science Press, 1990.
6	A.L.Crouch, "Design Test for Digital IC's and Embedded Core systems", Beijing China Electric Power
	Press, 2010.

COURSE OUTCOMES: On completion of the course, the students will have		Bloom's Taxonomy Mapped
C01	Basic knowledge on fault modeling, testing and test generation in	КЗ
	combinational & sequential .logic circuits	
CO2	Exposure to functional testing and delay fault testing	K4
CO3	Understanding of various test generation methods for static & dynamic CMOS circuits and the various fault diagnosis methods in logic systems	К2
C04	Identify the Design for Testability methods for combinational &	K2
	sequential circuits.	
CO5	Recognize the BIST techniques for improving testability.	K2

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	1	2	2	2	-
C02	3	and 1 2	2	-	-	-
CO3	3	10.22 A.M.	2	-	-	-
CO4	3	3	1	-	2	-
C05	3	3	1	-	2	-
23VLPE12	3	3	2	2	2	-
1 – Slight, 2 – Moderate, 3	– Substantial	1 3 4				
	6	8 8 1	24			

ASSESSMENT PA	ASSESSMENT PATTERN								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	40%	40%	20%	-	-	-	100%		
CAT2	40%	40%	20%	-	-	-	100%		
Individual	-	50%	25%	25%	-	-	100%		
Assessment 1									
/Case Study 1/									
Seminar 1 /									
Project1									
Individual	-	50%	25%	25%	-	-	100%		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE	30%	40%	20%	10%	-	-	100%		

23VLPE13	HARDWARE SECURITY	SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
Nil	PE	3	0	0	3

Course	• To acquire knowledge about the broader aspects of Hardware Se	ecurity services,
Objective	understand the different hardware attacks and chipper technic	ques, hardware
,	side channel analysis and physical unclonable functions	
UNIT – I	INTRODUCTION	9 Periods
Introduction - Nee	d of Hardware security - Security vs Hardware Trust - Attacks, Vulr	nerabilities and
Countermeasures ·	Conflict between security and Test/Debug-Overview of Cryptol	logy-Symmetric
cryptography – Cryp	otanalysis - Modular Arithmetic and more Historical Ciphers - Stream Ciphe	ers.
UNIT – II	CIPHER TECHNIQUES	9 Periods
Data Encryption Sta	ndard (DES) - Internal structure of DES - Security of DES - Implementat	ion in Software
and Hardware - D	ES Alternatives - Advanced Encryption Standard (AES) - Introduction	to public key
cryptography.		
UNIT – III	HARDWARE ATTACKS	9 Periods
Hardware Trojan -	Hardware Trojans in FPGA Designs - Trojan taxonomy - Effect of Hardware	ware Trojan on
Circuit Reliability	- Countermeasures against Hardware Trojans - Trojan detection	techniques –
Classification of Tro	jan detection – Challenges in Trojan detection.	
UNIT – IV	SIDE CHANNEL ANALYSIS	9 Periods
		a. 1 p
Introduction to Sid	e Channel Analysis - Types of Side Channel Attacks - Power Attacks -	Simple Power
	e Channel Analysis - Types of Side Channel Attacks - Power Attacks - tack - Fault Attacks - Cache Attacks - Scan Chain Based Attacks.	Simple Power
		9 Periods
Analysis - Timing At UNIT – V	tack - Fault Attacks - Cache Attacks - Scan Chain Based Attacks.	9 Periods
Analysis - Timing At UNIT – V Introduction – Class	tack - Fault Attacks - Cache Attacks - Scan Chain Based Attacks. PHYSICAL UNCLONABLE FUNCTIONS	9 Periods ased PUF - PUF

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	C. Paar, and Jan Pelz, Springer-Verlag Berlin Heidelberg,"Understanding Cryptography: A Textbook
	for Students and Practitioners", Springer, 2010.
2	Debdeep Mukhopadhyay and Rajat Subhra Chakraborty, "Hardware Security: Design, Threats, and
	Safeguards", CRC Press,2015
3	Swarup Bhunia and Mark Tehranipoor, "Hardware security: a hands-on learning approach"
	Morgan Kaufmann, 2018.
4	Mohammad Tehranipoor and Cliff Wang, "Introduction to Hardware Security and Trust", Springer,
	2012.

		Bloom's
COURSE O		Taxonomy
Upon comp	letion of the course, the students will be able to:	Mapped
C01	Explain the scope and significance of various security mechanisms and	К2
	services applicable hardware security	
CO2	Interpret hardware attacks and techniques.	К2
CO3	Explain about different techniques of block and Stream ciphers.	К2
C04	Discuss the different side channel analysis.	КЗ
C05	Identify and reproduce the different classifications of physical unclonable	КЗ
	functions.	

Course Articulat	tion Matrix					
COs/POs	P01	PO2	P03	P04	PO5	P06
C01	2	1	1	-	-	1
CO2	2	1	1	-	-	1
CO3	2	1	1	-	-	1
CO4	2	1	1	-	-	1
CO5	2	1	1	-	-	1
23VLPE13	2	1 02	1200	-	-	1
1 – Slight, 2 – Mo	derate, 3 – Subs	tantial				
		1	TT.			
			1620			

ASSESSMENT P	ATTERN- THEO	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

23VLPE14	RECONFIGURABLE ARCHITECTURE FOR VLSI					SEMESTER III		
PREREQUISITES		Т	Р	С				
NIL		CATEGORY PE	3	0	0	3		
Course Objective • To understand the concepts of reconfigurable architectures, management and apply optimization techniques to increase the performance of the processor for different applications.								
UNIT – I	RECONFIGURABLE ARCHITECTURES AND S	YSTEMS			9	Periods		
grained with and wi	ic, Array and Interconnects, Extending logic, Co thout processors. Systems PAM, VC, Splash, Pri rable Supercomputing- Cray, SRC, Silicon Graph	sm, CAL, Cloning						
UNIT – II	RECONFIGURATION MANAGEMENT				9	Periods		
Computing Models a	tectures, Managing the Reconfiguration Proce and System Architectures- Computing C for Spa computing- Flexible Binding, Scheduling, Preem	atial Computing,	0per	ating Sy	ystem	Support		
UNIT – III	IMPLEMENTATION ISSUES ON RECONFIGUE	RABLE PLATFOR	RMS		9	Periods		
Resources. FPGA P Partition-based Pla	Algorithms, Integrated Mapping Algorithms lacement- FPGA Placement Problem, Cluste cement, Analytic Placement. Data path Comp ce to Module Generators, Mapping, Placement,	ring Simulated position- Fundar	Anne	aling f	or Pla	cement,		
UNIT – IV	APPLICATION DEVELOPMENT	P			9	Periods		
Retiming, Re-pipelining, and C-slow Retiming- Configuration Bit stream Generation- Downloading Mechanisms, Instance-specific Design, Partial Evaluation, Precision Analysis for Fixed-point Computation, Hardware/Software Partitioning.								
UNIT – V	IIT - V CASE STUDIES OF FPGA APPLICATIONS 9 Periods					Periods		
Systems, Network	ression, Automatic Target Recognition Syster Packet Processing in Reconfigurable Hardwa ithms- Seed-Based Heuristics. Profiles, HMMs a	re Bioinformatio	cs Ap	plicatio	ns - I	Dynamic		
Contact Periods: Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Period	ls Total: 45 Pe	riods					

_		
	1	Hauck & DeHon . "Reconfigurable Computing, 1st Edition-The Theory and Practice of FPGA-Based
		Computation", Elsevier India Private Limited, New Delhi, 2011.
	2	Gokhale, Maya B., Graham, Paul S., "Reconfigurable Computing -Accelerating Computation with
		FieldProgrammable Gate Arrays" Springer Publications, 2007.
	3	Joao Cardoso and Michael Hübner, "Reconfigurable Computing: From FPGAs to Hardware/Software
		Codesign", Springer Publications, 2011.
	4	CliveMaxfield, "The Design Warrior's Guide to FPGAs: Devices, Tools and Flows", Newnes, Elsevier,
		2006.

COURSE O Upon comp	Bloom's Taxonomy Mapped	
C01	Explain the concepts of architecture reconfigure ability, programmable logic devices and optimization of the RCS architecture	К2
CO2	Study the redundant functionality of the management and implementation.	К2
CO3	Design various algorithms for FPGA placement and Data Composition.	К3
CO4	Apply optimization techniques to increase the performance of the processor.	КЗ
C05	Develop the different applications with reconfigurable devices	К3

Course Articulation M	latrix					
COs/POs	P01	P02	PO3	P04	P05	P06
C01	3		2			3
CO2	2		2			3
CO3	3		2			3
CO4	3		2			3
C05	3		2			3
23VLPE14	3		2			3
1 – Slight, 2 – Moderate	e, 3 – Substanti	al				-

		Second Second	C. C. Street Harry								
ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	40%	40%	20%	-	-	-	100%				
CAT2	40%	40%	20%	-	-	-	100%				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%				
ESE	30%	40%	30%	-	-	-	100%				

23VLPE15

VLSI RF CIRCUIT DESIGN

SEMESTER III

PREREQUISITES : CATEGORY Т Р L C NIL PE 3 0 0 3 **Course Objective** To gain knowledge in designing RFIC, IC design using Passive components, RF Amplifiers and RF Mixers designs. UNIT – I **RFIC DESIGN** 9 Periods Lower frequency analog design and microwave design versus radio frequency integrated circuit design -Impedance levels for microwave and low-Frequency analog design- Noise - Linearity and distortion in RF Circuits -Dynamic range –Filtering issue. UNIT – II **REVIEW OF TECHNOLOGY** 9 Periods Small -signal model of bipolar transistor -High frequency effects - Noise in bipolar transistors - Base shot noise-Noise sources in the transistor model - Bipolar transistor design considerations-CMOS transistor.-Impedance matching - Tapped capacitors and inductors - Concept of mutual inductance - Tuning a transformer-Bandwidth of an impedance transformation network- Quality factor of an LC resonator. UNIT – III **DESIGN OF PASSIVE CIRCUIT ELEMENTS IN IC** 9 Periods

TECHNOLOGIESTechnology backend and metallization in IC technologies - Sheet resistance and skin effect -Parasiticcapacitance and inductance-Current handling in metal lines-Design of inductors and transformers-Characterization of inductor-Layout of spiral inductors-On-chip transmission lines-High frequencymeasurements of on-chip passives and common De-Embedding techniques-packaging.

UNIT – IV	LNAAND POWER AMPLIFIER	9 Periods				
Basic amplifiers - Amplifiers with feedback - Noise in amplifiers - Linearity in amplifiers - Differential pair						
and other differenti	and other differential amplifiers-Low-voltage topologies for LNAs and the use of on-chip transformers -DC					
bias networks - Ten	perature effects - Broad band LNA design. Power amplifier: Powe	er capability -Efficiency				
calculations - Match	calculations - Matching considerations - Class A,B,C.D.E.F,G,H and S amplifiers -Summary of amplifier classes					
for RF Integrated circuits- AC load line-Matching to achieve desired power-Packaging -effects and						
implications of non-linearity - Linearization techniques - CMOS power amplifier example.						
	MINERO	0 0 1				

UNIT - VMIXERS9 PeriodsMixing with nonlinearity-Basic mixer operation-Controlled trans conductance mixer-Double-balanced mixer- Mixer with switching of upper quad - Analysis of switching modulator-Mixer noise - Linearity - Improvingisolation - Image reject and single -Sideband mixers-Alternative mixer designs -General design comments-CMOS mixers.

Contact Periods:

Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	John Rogers and Calvin Plett, "Radio Frequency Integrated Circuit Design", Artech House, 2002.
2	Stephan A Mass, "Non-Linear Microwave and RF circuits", Artech House, 2003.
3	FerriLosee, "RFSystems, Components and Circuits handbook", Artechhouse,2002.
4	Larson LE , " RF and Microwave Circuit for Wireless Applications", Artech House, 1997

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Detailed Knowledge in designing RF IC	K2
CO2	Understand the concepts of transistors	K2
CO3	An ability to design integrated circuits using Passive components	КЗ
CO4	Detailed Knowledge on RF Amplifiers Designs.	КЗ
C05	Ability to design RF Mixers	K2

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	3	2	-	-	-	1	
CO2	3	2	-	-	-	1	
CO3	3	2	-	-	-	1	
CO4	3	2	-	-	-	1	
CO5	3	2	-	-	-	1	
23VLPE15	3	2	-	-	-	1	
1 – Slight, 2 – Moderat	e, 3 – Substanti	ial	•	•			

ASSESSMENT PA	ATTERN – THEO	RY	2232				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	_	50%	50%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	_	-	100%
ESE	30%	40%	30%	-	-	-	100%

23VLPE16

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	• To increase the performance of the DSP systems in terms of powe speed and area	r consumption,							
Objective									
UNIT – I	INTRODUCTION TO DSP SYSTEMS, PIPELINING AND PARALLEL	9 Periods							
	PROCESSING OF FIRFILTERS								
	P systems – Typical DSP algorithms, Data flow and Dependence graphs - criti								
	bound, Longest path matrix algorithm, Pipelining and Parallel processing	of FIR filters,							
Pipelining and Par	allel processing for low power.								
UNIT – II	RETIMING, ALGORITHMIC STRENGTH REDUCTION, RANK ORDER	9 Periods							
	FILTERS								
Retiming – definiti	ons and properties, Unfolding – an algorithm for unfolding, properties of un	folding, sample							
period reduction	and parallel processing application, Systolic Architecture Design-Algorit	thmic strength							
reduction in filters	and transforms – 2-parallel FIR filter, 2-parallel fast FIR filter, DCT architect	ure, rank-order							
filters, Odd-Even n	nerge-sort architecture, parallel rank-order filters								
UNIT – III	FAST CONVOLUTION, PIPELINING AND PARALLEL PROCESSING OF	9 Periods							
	IIR FILTERS								
Fast convolution-	Cook-Toom algorithm, modified Cook-Toom algorithm, Pipelined and par	rallel recursive							
filters – Look-Ahea	d pipelining in first-order IIR filters, Look-Ahead pipelining with power-of-2	decomposition,							
Clustered look-ahe	ead pipelining, Parallel processing of IIR filters, combined pipelining and para	allel processing							
of IIR filters, Low-	power IIR Filter design using pipelining and parallel processing, Pipelined A	Adaptive digital							
filters.									
UNIT – IV	BIT-LEVEL ARITHMETIC ARCHITECTURES	9 Periods							
Scaling and Round	l off Noise Computations -Bit-level arithmetic architectures – parallel multip	oliers with sign							
extension, paralle	l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu	ultipliers using							
Horner's rule, bit-	serial FIR filter, CSD representation, CSD multiplication using Horner's rul	e for precision							
improvement, Dist	ributed Arithmetic fundamentals and FIR filters.								
UNIT – V	NUMERICAL STRENGTH REDUCTION, SYNCHRONOUS, WAVE AND	9 Periods							
	ASYNCHRONOUSPIPELINING								
Numerical strengt	n reduction– subexpression elimination, multiple constant multiplication, iter	ative matching,							
synchronous pipel	lining and clocking styles, clock skew in edge-triggered single phase clock	ing, two-phase							
clocking, wave pip	elining, Asynchronous pipelining, Programmable Digital signal processors.								
Contact Periods									
Lecture: 45 Peri									

1	Keshab K. Parhi, "VLSI Digital Signal Processing Systems, Design and implementation", Wiley, Interscience, 2007.
2	U.Meyer–Baese, " Digital Signal Processing with Field Programmable Gate Arrays ", Springer, Second Edition, 2004.
3	KungS.Y,H.J.While House,T. Kailath, "VLSI and Modern Signal Processing", PrenticeHall,1985.

4	Jose E. France, Yannis Tsividis " Design of Analog – Digital VLSI Circuits for Teleco Signal Processing", Prentice Hall, 1994.	ommunications and
5	MedisettiV.K, " VLSI Digital Signal Processing ", IEEEPress (NY),USA, 1995.	
COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy
		Mapped
C01	Increase the performance of the FIR filter structures in terms of power consumption, speed and area.	КЗ
CO2	Reduce the complexity of DSP algorithms in VLSI hardware.	КЗ
CO3	Increase the performance of the IIR filter structures in terms of power consumption, speed and area.	К3
CO4	Improve the performance of bit level architectures in DSP systems.	K2
CO5	Understand clocking styles, wave pipelining and complexity reduction in computations.	K1

COs/POs	P01	P02	P03	P04	P05	P06
C01	2	3	-	1	-	-
CO2	2	3	77 . 2 . R . R . R . R . R . R . R . R . R	sa 1	-	-
CO3	2	3		2 1	-	-
CO4	2	3		> 1	-	-
C05	2	1	1 - 1	-	-	-
23VLPE16	2	3	10-31	1	-	-

		80.0					
ASSESSMENT PAT	ΓERN – THEORY			3			
Test / Bloom's	Remembering	Understandin	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20%	40%	40%	-	-	-	100%
CAT2	20%	40%	40%	-	-	-	100%
Individual	20%	40%	40%	-	-	-	100%
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	20%	40%	40%	-	-	-	100%
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20%	40%	40%	-	-	-	100%

23VLPE17	,
-----------------	---

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PE	3	0	0	3

Course Objective	• To acquire knowledge about architecture and op semiconductor memories, VLSI Testing techniques and pace	perations of different king technologies.
UNIT – I	RANDOM ACCESS MEMORY TECHNOLOGIES	9 Periods
Static Random A	ccess Memory(SRAMs):SRAM cell structure - MOS SRAM architectu	re - MOS SRAM cell and
Peripheral Circui	t Operation - Bipolar SRAM technologies - Silicon On Insulator (SOI) technology - Advanced
SRAM architectur	res and technologies - Application specific SRAMs - CMOS DRAM -	DRAMs Cell Theory and
Advanced cell st	ructures - BiCMOS DRAMs - Soft error failure in DRAMs - Advan	ced DRAM designs and
Architecture - Ap	plication specific DRAMs.	
UNIT – II	NON VOLATILE MEMORIES	9 Periods
Masked Read On	ly Memories (ROMs): High density ROMs - Programmable Read Or	ly Memories (PROMs) -
Bipolar PROMs -	CMOS PROMs - Erasable (UV) Programmable Read Only Memories (EPROMs) - Floating Gate
EPROM cell - One	e Time Programmable (OTP) EPROMs - Electrically Erasable PROM	s (EEPROMs) - EEPROM
technology and a	rchitecture - Nonvolatile SRAM - Flash memories (EPROMs or EEI	PROM) - Advanced flash
memory architec	ture.	
UNIT – III	ADVANCED MEMORY AND HIGH-DENSITY MEMORY	9 Periods
	PACKAGING TECHNOLOGIES	
Ferroelectric Rar	ndom Access Memories (FRAMs) - Gallium Arsenide (GaAs) FRAM	As - Analog Memories -
Magneto Resistiv	e Random Access Memories (MRAMs) - Experimental memory devic	es. Memory hybrids and
MCMs (2D) - Mer	nory stacks and MCMs (3D) - Memory MCM testing and Reliability	issues - Memory cards -
High density men	nory packaging future directions.	
UNIT – IV	SEMICONDUCTOR MEMORY RELIABILITY AND RADIATION	9 Periods
	EFFECTS	
General Reliabilit	y issues - RAM failure modes and mechanism - Nonvolatile Memor	y Reliability - Reliability
modelling and Fa	ilure rate prediction - Design for reliability - Reliability test structur	es - Reliability screening
and Qualification	Radiation effects - Single Event Phenomenon (SEP).	
UNIT – V	MEMORY FAULT MODELING, TESTING AND MEMORY DESIGN	9 Periods
	FOR TESTABILITY AND FAULT TOLERANCE	
RAM fault mode	lling, Electrical testing, Pseudo random testing – Megabit DRAM	- Nonvolatile memory
modelling and te	sting - IDDQ fault modelling and testing - Application specific memo	ory testing and the tools
for fault modellin	g and testing.	
Contact Periods		
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	riods
REFERENCE	S	
1 Ashok K.S.	harma, " Semiconductor Memories Technology, Testing and Reliab	ility", Wiley-IEEE Press,
2002.		
2		

2	Betty Prince, "Emerging Memories: Technologies and Trends", Kluwer Academic publishers, 2002.
3	Ashok K.Sharma, "Advanced Semiconductor Memories Architecture Design and Applications",
	Wiley, 2002.

4 Hai Li, "Nonvolatile Memory Design: Magnetic, Resistive and Phase Change", CRC Press, 2011.

COURSE C	Bloom's	
		Taxonomy
Upon com	pletion of the course, the students will be able to:	Mapped
C01	Explain the different types of memories and their architecture.	К2
CO2	Analyse Volatile and Non Volatile Memories.	КЗ
CO3	Reproduce the concepts of advanced memory packaging technologies.	К2
CO4	Explain the features of semiconductor memory reliability.	К2
CO5	Discuss the advanced VLSI Testing and the Fault Tolerant Detection procedures.	K2

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	1	-	-	1	2
CO2	3	1	-	-	1	2
CO3	3	1	-	-	1	2
CO4	3	1	-	-	1	2
C05	3	1	-	-	1	2
23VLPE17	3	1	-	-	1	2
1 – Slight, 2 – Moderate, 3	3 – Substantial			LL		
		195	1			

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creatin g (K6) %	Total %			
CAT1	40%	40%	20%	-	-	-	100%			
CAT2	40%	40%	20%	-	-	-	100%			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%			
ESE	30%	40%	30%	-	-	-	100%			

VLSI FOR WIRELESS COMMUNICATION

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To discuss and design various components of a typical comm	unication system.
UNIT – I	COMMUNICATION SYSTEM DESIGN COMPONENTS	9 Periods
modulation schem architecture – Filte	nmunication Standards – Integrated Inductors, Resistors and MOSFET es – Wireless channel description – Path loss – Multipath fading er Design –Band Selection Filter – Image Rejection Filter – Channel 1 ters – Derivation of NF, IIP ₃ .	- Receiver front end
UNIT – II	LOW NOISE AMPLIFIER DESIGN	9 Periods
•	s – Wideband LNA Design – Impedance matching of Narrowband LN re – Trade-off between Noise Figure and Power.	A -Narrowband LNA
UNIT – III	ACTIVE AND PASSIVE MIXERS	9 Periods
high frequency an	lance Mixer – Single Balanced Mixer – Gilbert Mixer – Conversion gair alysis of Gilbert Mixer – Complete Active Mixer – Passive Mixer sion gain and Noise in unbalanced Switching Mixer – Practical U	: Switching Mixer –
UNIT – IV	DATA CONVERTER SUB SYSTEMS	9 Periods
	DC used in Receivers – Low pass Sigma Delta Modulators – Bar ementation of Low pass and Band pass Sigma Delta Modulators – Lo	
UNIT – V	FREQUENCY SYSTHESIZER SYSTEM DESIGN	9 Periods
-	cy Synthesizer – Phase Detector – Divider – Voltage Controlled Oscill op Filter Design – Complete Synthesizer design- VLSI Architecture fo	0

1	Bosco H Leung, "VLSI for Wireless Communication", Pearson Education, 2012.
2	B.Razavi, "RF Microelectronics", Prentice-Hall of India Pvt Ltd , 2 nd Edition, 2011.
3	Thomas H.Lee, "The Design of CMOS Radio -Frequency Integrated Circuits", Cambridge University
	Press, 2013.
4	Emad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI Wireless Design - Circuits and Systems",
	Kluwer Academic Publishers, 2010.

	DUTCOMES: pletion of the course, the students will be able to:	Bloom's Taxonomy Mapped				
C01	K2					
CO2	communication systems. CO2 Perform design steps of low noise amplifiers and mention its importance in VLSI systems					
CO3	Explain the role and importance of Mixers in wireless systems	K2				
CO4	CO4 Discuss the working of data converters as subsystem in wireless systems					
C05	Design frequency synthesizer used wireless communication systems	КЗ				

Course Articulation Matrix

course in treatation int		1				
COs/POs	P01	P02	P03	P04	P05	P06
-						
C01	3	2		1		2
CO2	3	2		1		2
CO3	3	2		1		2
CO4	3	2		1		2
C05	3	2		1		2
23VLPE18	3	2		1		2
1 – Slight, 2 – Moderate,	3 – Substantia	ıl				

			Contraction Contraction						
ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %		
CAT1	40%	40%	20%	-	-	-	100%		
CAT2	40%	40%	20%	-	-	-	100%		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%)	-	-	100%		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%		
ESE	30%	40%	30%	-	-	-	100%		

23VLPE19	ASIC DESIGN (Common to Applied Electronics and VLSI Design)			SEMES	STER I	V			
PREREQUISITES		CATEGORY	L	Т	Р	С			
NIL	3	0	0	3					
Course Objective	and concents of various programming technology high level ASIC design synthesis								
UNIT – I	FUNDAMENTALS OF ASICs, CMOS LOGIC AND A DESIGN	ASIC LIBRARY			9 P	eriods			
Logic cell - Data p	Design flow-CMOS Transistors CMOS Design Rule ath Logic Cell -Transistors as Resistors -Transist		-		-				
	-Library Architecture.				0.0				
UNIT – II	PROGRAMMABLE ASICs	1 1 4 . 1	9 Periods						
	AM - EPROM and EEPROM technology - PREP ber DC and AC inputs and outputs - Clock and Power in				LCA -	Altera			
UNIT – III	PROGRAMMABLE ASIC INTERCONNECT, DESIG AND LOW LEVEL DESIGN ENTRY	GN SOFTWARE			9 P	eriods			
Actel ACT - Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX - Design Systems - Logic Synthesis - Half gate ASIC - Schematic entry - Low level design language - PLA tools - EDIF-CFI design representation.									
UNIT – IV	LOGIC SYNTHESIS - SIMULATION AND TESTIN	G			9 P	eriods			
Verilog and Logic Synthesis -VHDL and Logic Synthesis - Types of Simulation - Boundary Scan Test - Fault simulation - Automatic Test Pattern Generation.									
UNIT – V	ASIC CONSTRUCTION 9 Periods								
•	FPGA partitioning - Partitioning methods - Floo ing - Detailed Routing - Special Routing - Circuit ex		cement	t - Phy	vsical	Design			
Contact Periods: Lecture: 45 Period	ds Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Peri	ods						

1	Smith M.J.S., "Application Specific Integrated Circuits", Pearson Education Reprint, 2006.
2	FarzadNekoogar and FaranakNekoogar, "From ASICs to SoCs - A Practical Approach", Prentice
	Hall,2003.
3	Wayne Wolf, "FPGA-Based System Design", Prentice Hall, 2004.
4	Rajsuman R., "System-on-a-Chip Design and Test", Santa Clara, CA, Artech House Publishers, 2000.
5	NekoogarF., "Timing Verification of Application-Specific Integrated Circuits", Prentice Hall, 1999

COURSE C Upon com	Bloom's Taxonomy Mapped	
C01	Design sequential and combinational logic cells and analyze Programmable ASICs	К2
C02	Explain the memory technologies and architecture of Programmable ASICs	K2
CO3	Discuss the ASIC interconnects and design entry	К3
C04	Explain and execute the Logic synthesis of ASIC	К3
C05	Construct an ASIC using the described methods	КЗ

Course Articulation Matrix

course miticulation Mit						
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	1	3	1	-	2
CO2	3	-	1	1	-	2
CO3	3	1	1	2	-	2
C04	3	1	1	2	-	2
C05	3	1	1	1	-	2
23VLPE19	3	1	1	2	-	2
1 - Slight 2 - Moderate	2 _ Substantia	1	and the second s			

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSMENT PATTERN – THEORY Test / Bloom's Remembering Understanding Applying Analyzing Evaluating Creating Total (K3) % Category* (K1) % (K2) % (K4) % (K5) % (K6) % % CAT1 40% 40% 20% 100% ---40% 40% 20% CAT2 ---100% ъ. Individual 40% 40% 20% 100% ---Assessment 1 /Case Study 1/ Seminar 1 / Project1 Individual 40% 40% 20% 100% ---Assessment 2 /Case Study 2/ Seminar 2 / Project 2 40% 40% 20% 100% ESE ---

23VLPE20	

VLSI FOR IOT SYSTEMS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

	• To learn the fundamentals and recent trends of Internet of Things, various				
techniques that enable IoT solution, security aspects and cloud	computing.				
UNIT – I INTRODUCTION	9 Periods				
Concept of connected world - Need, Legacy systems for connected world - Features and	nd limitations, IoT				
architecture - Characteristics - Physical design-Logical design - Enabling technologies- Mer	its and Demerits of				
IoT technology, IoT levels-Domain specific IoT.					
UNIT – II COMPONENTS OF IOT	9 Periods				
Basic building blocks of an IoT system –Sensors, Actuators, Computing nodes and Connectiv	ity. Sensors used in				
IoT systems – Characteristics and requirements, Types of sensors for IoT systems, Connectiv	vity technologies in				
IoT – 802.15.4, Zigbee, LoWPAN, Z wave, Wi-Fi, RFID.					
UNIT – III IC TECHNOLOGY FOR IOT	9 Periods				
SoC architecture for IoT Devices- Application Processors, Microcontrollers, Smart	Analog; Memory				
architecture for IoT – Non Volatile Memories (NVM), Embedded Non-Volatile Memories, A	nti-Fuse One Time				
Programmable (OTP) memories, Power Management - Low Drop Out Regulators, DC-to-DC (Converters, Voltage				
References, Power Management Units (PMUs) in IC's and Systems, FPGA in IoT systems.					
UNIT - IV IOT ANALYTICS	9 Periods				
Introduction to IIoT -IIoT Analytics - Big Data Analytics - Software Defined Networks- Mac	chine Learning and				
Data Science in Industries - Cloud and FOG Computing- Industrial IoT: Security.	_				
UNIT - V APPLICATION	9 Periods				
Various real time application of IoT- Application Domains: Healthcare Applications in Industries - Inventory					
Management and Quality Control -Plant Safety and Security - Smart Factories and Smart Cities - Applications of					
UAVs in Industries.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Alioto, "Enabling the Internet of Things- From Integrated Circuits to Integrated Systems", Springer
	Publications, First Edition, 2017.
2	Sudip Misra, Chandana Roy, Anandarup Mukherjee,"Introduction to Industrial Internet of Tings and
	Industry 4.0", CRC Press, 1st edition, 2021
3	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2017.
4	ArshdeepBahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press,2015.
5	Jim Lipman, Sidense Corp, "NVM memory: A Critical Design Consideration for IoT Applications"-
	https://www.designreuse.com/articles/32614/nvm-memory-iot-applications.html.

COURSE O	Bloom's Taxonomy	
Upon comp	pletion of the course, the students will be able to:	Mapped
C01	Explain the concepts of advanced IOT technology.	K2
C02	Discuss various components of IOT technologies.	K2
CO3	Illustrate the different memory architectures employed in IOT.	K2
CO4	Describe various IOT Analytics platforms.	К3
C05	Develop IOT system for real time application.	К3

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	3	1		1	1	2		
CO2	3	1		1	1	2		
CO3	3	1		1	1	2		
CO4	3	1		1	1	2		
C05	3	1		1	1	2		
23VLPE20	3	1		1	1	2		
1 – Slight, 2 – Moderate, 3	– Substantial		×0					
		General States	1000					

ASSESSMENT PA	TTERN – THEOP	RY	mark				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

23SEOE01

BUILDING BYE-LAWS AND CODES OF PRACTICE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Courco	To import Imported as on the building has been been at the second	a air a tha
Course	• To impart knowledge on the building bye –laws and to emph	asize the
Objective	significance of codes of practice in construction sector.	1
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods
Introduction	to Building Bye Laws and regulation, their need and relevance, Genera	l definitions such
as building he	eight, building line, FAR, Ground Coverage, set back line. Introductio	n to Master Plan
and understa	nding various land uses like institutional, residential etc Terminol	ogies of Building
bye-laws.		
UNIT – II	ROLE OF STATUTORY BODIES	9 Periods
Role of variou	us statutory bodies governing building works like development authors	orities, municipa
corporations	etc. Local Planning Authority, Town and Country planning organisa	ation, Ministry o
urban develop	pment.	-
UNIT – III	APPLICATION OF BUILDING BYE-LAWS	9 Periods
Interpretation	n of information given in bye laws including ongoing changes as s	hown in various
annexure and	d appendices. Application of Bye-laws like structural safety, fire sa	afety, earthquake
safety, basem	ent, electricity, water, and communication lines in various building typ	bes.
UNIT – IV	INTRODUCTION TO CODES OF DRACTICE	
	INTRODUCTION TO CODES OF PRACTICE	9 Periods
	to various building codes in professional practice - Codes, regulations	
Introduction		to protect public
Introduction	to various building codes in professional practice - Codes, regulations	to protect public
Introduction the alth, safety UNIT – V	to various building codes in professional practice - Codes, regulations and welfare - Codes , regulations to ensure compliance with the local a APPLICATION OF CODES OF PRACTICE	to protect public authority. 9 Periods
Introduction thealth, safety UNIT – V Applications of	to various building codes in professional practice - Codes, regulations and welfare - Codes , regulations to ensure compliance with the local a	to protect public authority. 9 Periods
Introduction thealth, safety UNIT – V Applications of	to various building codes in professional practice - Codes, regulations and welfare - Codes , regulations to ensure compliance with the local a APPLICATION OF CODES OF PRACTICE of various codes as per various building types. Bureau of Indian Stand to other international codes.	to protect public authority. 9 Periods

1	"National Building Code of India 2016 – SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization, Ministry
	of Housing and Urban Affairs, Government of India.
3	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, " Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the building bye-laws in planning, design and construction works.	КЗ
CO2	Familiarize with the role of various statutory bodies.	К2
CO3	Execute safety related work practices in the construction sector.	КЗ
CO4	Ensure compliance with the rules and regulations in design and construction	КЗ
	practices.	
CO5	Perform design and construction practices based on national and	КЗ
	international codal provisions.	

P01	PO2	P03	P04	P05	
1				105	P06
	3	1	1	2	3
1	3	1	1	2	3
1	3	1	1	2	3
2	3	1	1	2	3
2	3	1	1	2	3
2	3	1	1	2	3
ubstantial		T			
	100	8 N I			
	1:00	1			
	2	12 C (2 C 2 C 2 C A 4 C	2 3 1	2 3 1 1	2 3 1 1 2

ASSESSMENT PAT	TERN – THEORY	A 8	1 M				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

PLANNING OF SMART CITIES (Common to all Branches)

		CATEGORY	L	Т	Р	С	
NIL OE 3					0	3	
• To have an exposure on plan	ning of sm	nart cities with	cons	idera	ation o	of the	
Objective recent challenges and to	5						
development of urban area.							
UNIT – I SMART CITIES DEVELOPMENT POT	ENTIALS	AND CHALLEN	NGES	Ģ	9 Peri	ods	
Perspectives of Smart Cities: Introduction and O	Overview	- Implemen	tatior	h Ch	alleng	ges -	
Methodological issues - Spatial distribution of startup	cities – l	Re imagining p	ostin	dust	rial ci	ties -	
Implementation Challenges for Establishing Smart Urb	an Inform	nation and Kno	wled	ge M	anage	ment	
System.							
UNIT – II SUSTAINABLE URBAN PLANNING				Ģ	9 Peri	ods	
Optimising Green Spaces for Sustainable Urban Plan	ning - 3D	City Models	for E	xtrac	ting U	Jrban	
Environmental Quality Indicators - Assessing the Rainw	ater Harv	vesting Potentia	al - Th	e Str	ategic	: Role	
of Green Spaces - Monitoring Urban Expansion.							
UNIT – III ENERGY MANAGEMENT AND SUSTA	INABLE I	DEVELOPMEN	Т	Ģ	9 Peri	ods	
Alternatives for Energy Stressed Cities - Social Accepta	bility of l	Energy - Efficie	ent Li	ghtir	ıg - Ei	nergy	
Management - Urban Dynamics and Resource Consum	ption - Is	ssues and Chall	lenge	s of S	Sustai	nable	
Tourism - Green Buildings: Eco-friendly Technique for M							
UNIT – IV MULTIFARIOUS MANAGEMENT FOR	SMART	CITIES		9	9 Peri	ods	
Assessment of Domestic Water Use Practices - Issu	e of Gove	ernance in Ur	ban '	Wate	r Sup	ply -	
Assessment of Water Consumption at Urban House					-		
economic Determinants and Reproductive Healthcare S		roblems and De	evelop	omen	nt of Sl	ums.	
UNIT – V INTELLIGENT TRANSPORT SYSTEM				Ģ	9 Peri	ods	
Introduction to Intelligent Transport Systems (ITS)		• •	-				
Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route							
information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The							
Smart Card - Dynamic Assignment - Traffic Enf	orcement	t. Urban Mob	ility	and	Econ	omic	
Development.							
Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Prac	tical: 0 Po	eriods To	tal: 4	5 Pe	riods		

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COUR	COURSE OUTCOMES:				
Upon	completion of the course, the students will be able to:	Taxonomy Mapped			
C01	Indicate the potential challenges in smart city development.	К2			
CO2	Select the different tools for sustainable urban planning.	К3			
CO3	Choose appropriate energy conservation system for smart cities.	К3			
CO4	Identify the proper method of water management system.	КЗ			
CO5	Apply Intelligent Transport System concepts in planning of smart city.	КЗ			

COs/POs	P01	P02	PO3	P04	P05	P06
C01	1	-	2	3	1	1
CO2	1	1	1	3	2	1
CO3	1	1		2	2	1
C04	1	- Second and	1	2	1	1
C05	1	Constant of	1	3	1	-
23SEOE02	1	1	2	3	2	1
– Slight, 2 – Moderate,	3 – Substanti	al	77		•	

ASSESSMENT PAT	TERN – THEORY	1 8	11				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	45	30	-	-	-	100
CAT2	25	45	30	-	-	-	100
Individual	15	40	45	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	10	45	45	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	40	40	-	-	-	100

GREEN BUILDING

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To introduce the different concepts of energy efficient b	uildings, indoor				
Objective	environmental quality management, green buildings and its d	0				
UNIT – I	INTRODUCTION	9 Periods				
Life cycle impacts	of materials and products – sustainable design concepts – strategies	of design for the				
Environment -The sun-earth relationship and the energy balance on the earth's surface, climate, wind -						
Solar radiation and solar temperature - Sun shading and solar radiation on surfaces - Energy impact on						
the shape and orie	ntation of buildings – Thermal properties of building materials.					
UNIT – II	ENERGY EFFICIENT BUILDINGS	9 Periods				
Passive cooling a	nd day lighting – Active solar and photovoltaic- Building energy a	nalysis methods-				
Building energy	simulation- Building energy efficiency standards-Lighting system	design- Lighting				
economics and a	esthetics- Impacts of lighting efficiency - Energy audit and e	nergy targeting-				
Technological opti	ons for energy management.					
UNIT – III	INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods				
Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning						
requirement- Visu	al perception- Illumination requirement- Auditory requirement- Ene	rgy management				
options- Air cond	itioning systems- Energy conservation in pumps- Fans and blowe	rs- Refrigerating				
machines- Heat re	jection equipment- Energy efficient motors- Insulation.					
UNIT – IV	GREEN BUILDING CONCEPTS	9 Periods				
Green building c	oncept- Green building rating tools- Leeds and IGBC codes. – M	aterial selection				
Embodied energy	- Operating energy- Façade systems- Ventilation systems-Transp	ortation- Water				
treatment systems	- Water efficiency- Building economics					
UNIT – V	GREEN BUILDING DESIGN - CASE STUDY	9 Periods				
Case studies - B	uilding form, orientation and site considerations; conservation m	easures; energy				
modeling; heating	system and fuel choices; renewable energy systems; material choice	es - construction				
budget						
Contact Periods:						
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods				

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURSI	E OUTCOMES:	Bloom's		
		Taxonomy		
Upon completion of the course, the students will be able to:				
C01	Apply the concepts of sustainable design in building construction.	КЗ		
CO2	Execute green building techniques including energy efficiency management in	КЗ		
	the building design.			
CO3	Establish indoor environmental quality in green building.	КЗ		
CO4	Perform the green building rating using various tools.	КЗ		
CO5	Create drawings and models of green buildings.	КЗ		

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3	2	3	3	3
C02	3	3	2	3	3	3
CO3	2	2	2	2	3	3
C04	2	3	1	3	3	3
C05	3	3	1	3	3	3
23SEOE03	3	3	2	3	3	3
1 Slight 2 Moderate	2 Substanti	C.C. Connect Harry				

cil.

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSME	NT PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	9 - 9	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20	-	-	-	100
ESE	40	40	20	-	-	-	100

23EEOE04

ENVIRONMENT HEALTH AND SAFETY MANAGEMENT (Common to all Branches)

	TES CATEGO	RY L	Τ	Р	С	
	NIL OE	3	0	0	3	
Course	To impart knowledge on occupational health hazar	ds, safe	ty m	easu	res a	
Objective	work place, accident prevention, safety managemer	nt and sa	afety	mea	sures	
	in industries.					
UNIT – I	OCCUPATIONAL HEALTH HAZARDS 9 Periods					
	Iealth and Hazards - Safety Health and Management: Occupa					
- Ergonomics	- Importance of Industrial Safety - Radiation and Industria	al Hazai	ds: '	Гурє	s and	
effects - Vibra	ation - Industrial Hygiene - Different air pollutants in indust	ries and	l the	ir ef	fects	
Electrical, fire	e and Other Hazards.					
UNIT – II	SAFETY AT WORKPLACE		9	Peri	ods	
Safety at Wo	rkplace - Safe use of Machines and Tools: Safety in use of	differen	t typ	es o	f uni	
operations -	Ergonomics of Machine guarding - working in different wo	orkplace	es - (Oper	ation	
Inspection an	d maintenance - Housekeeping, Industrial lighting, Vibration	and No	ise.			
UNIT – III	ACCIDENT PREVENTION		9	Peri	ods	
Accident Prev	vention Techniques - Principles of accident prevention - Haz	zard ide	ntifio	catio	n and	
analysis, Eve	nt tree analysis, Hazop studies, Job safety analysis - Theo	ries and	d Pri	ncip	les o	
Accident caus	sation - First Aid: Body structure and functions - Fracture an	d Dislo	catio	n, In	jurie	
to various bo	dy parts.					
UNIT – IV	SAFETY MANAGEMENT		9	Peri	ods	
Safaty Manac	ement System and Law - Legislative measures in Industrial	Safety	- 00	una		
Salety Mallag	,	5	000	- apa	tiona	
	and Environment Management, Bureau of Indian Standards	-		-		
safety, Health	543, (75) T.56	s on Hea	lth a	nd S	afety	
safety, Health	and Environment Management, Bureau of Indian Standards	s on Hea	lth a	nd S	afety	
safety, Health IS 14489 sta	and Environment Management, Bureau of Indian Standards	s on Hea	lth a ncip	nd S	afety EP <i>I</i>	
safety, Health IS 14489 sta standards UNIT – V	and Environment Management, Bureau of Indian Standards andards - OSHA, Process safety management (PSM) and	s on Hea its pri	llth a ncip 9	nd S les · Peri	afety EPA ods	
safety, Health IS 14489 sta standards UNIT – V Plant Layout	and Environment Management, Bureau of Indian Standards andards - OSHA, Process safety management (PSM) and GENERAL SAFETY MEASURES	s on Hea its pri	ilth a ncip 9 ighti	nd S les · Peri ng, c	afety EP/ ods colou	
safety, Health IS 14489 sta standards UNIT – V Plant Layout coding, pilot	and Environment Management, Bureau of Indian Standards andards - OSHA, Process safety management (PSM) and GENERAL SAFETY MEASURES for Safety - design and location, distance between hazardous	s on Hea its pri s units, I tenance	llth a ncip 9 ighti of N	nd S les · Pering, o	afety EPA ods colou ines	
safety, Health IS 14489 sta standards UNIT – V Plant Layout coding, pilot Work Permit	and Environment Management, Bureau of Indian Standards andards - OSHA, Process safety management (PSM) and GENERAL SAFETY MEASURES for Safety - design and location, distance between hazardous plant studies, Housekeeping - Accidents Related with Main	s on Hea its pri s units, I tenance	llth a ncip 9 ighti of N	nd S les · Pering, o	afety EPA ods colou	
safety, Health IS 14489 sta standards UNIT – V Plant Layout coding, pilot Work Permit	and Environment Management, Bureau of Indian Standards andards - OSHA, Process safety management (PSM) and GENERAL SAFETY MEASURES for Safety - design and location, distance between hazardous plant studies, Housekeeping - Accidents Related with Main System - Significance of Documentation - Case studies involv fety measures in Industries.	s on Hea its pri s units, I tenance	llth a ncip 9 ighti of N	nd S les · Pering, o	afety ← EPA ods colou: ines	

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications,2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao
	PharmaMed Press, 1st edition, 2021.

COURS	COURSE OUTCOMES:				
	Taxonomy				
Upon c	Mapped				
C01	Identify the occupational health hazards.	К3			
CO2	Execute various safety measures at workplace.	КЗ			
CO3	Analyze and execute accident prevention techniques.	КЗ			
C04	Implement safety management as per various standards.	К3			
C05	Develop awareness on safety measures in Industries.	К3			

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05	P06
C01	1	2	2	2	3	2
C02	2	2	2	1	2	2
C03	2	3	2	1	2	2
C04	1	1	1	2	2	2
C05	1	1	1	1	1	2
23EEOE04	1	2	2	1	2	2
1 - Slight 2 - Moderate 3 - Suk	ostantial					

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSMENT PA	TTERN – THEOF	RY See	and a				
Test / Bloom's	Rememberin	Understandin	Applyin	Analyzin	Evaluatin	Creatin	Total
Category*	g (K1) %	g (K2) %	g (K3)	g (K4) %	g (K5) %	g (K6)	%
		22: V	%			%	
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual		1883	2257				
Assessment 1/							
Case Study 1/	20	40	30	10	-	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2/							
Case Study 2/	20	40	30	10	-	-	100
Seminar 2/							
Project 2							
ESE	25	35	20	10	5	5	100

CLIMATE CHANGE AND ADAPTATION (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

_ _		
Course	To understand the Earth's climate system, changes and their effects	-
Objective	identifying the impacts, adaptation, mitigation of climate change a	nd for gaining
	knowledge on clean technology, carbon trading and alternate energy s	ources.
UNIT – I	EARTH'S CLIMATE SYSTEM	9 Periods
Introduction-C	limate in the spotlight - The Earth's Climate Machine – Climate Classi	fication- Global
Wind Systems	- Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation	n and Monsoon
Rains – Storms	and Hurricanes - The Hydrological Cycle – Global Ocean Circulation –	El Nino and its
Effect - Solar R	Radiation – The Earth's Natural Green House Effect – Green House Ga	ses and Global
Warming – Car	bon Cycle.	
UNIT – II	OBSERVED CHANGES AND ITS CAUSES	9 Periods
Observation of	Climate Change – Changes in patterns of temperature, precipitation an	nd sea level rise
- Observed eff	fects of Climate Changes – Patterns of Large-Scale Variability –Driv	vers of Climate
Change – Clima	ate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC	2 – Evidences of
Changes in Clin	nate and Environment – on a Global Scale and in India – climate change	modeling.
UNIT – III	IMPACTS OF CLIMATE CHANGE	9 Periods
Impacts of Cli	mate Change on various sectors - Agriculture, Forestry and Ecosy	ystem – Water
Resources – Hu	uman Health – Industry, Settlement and Society – Methods and Scena	rios –Projected
Impacts for Dif	fferent Regions – Uncertainties in the Projected Impacts of Climate Cl	hange – Risk of
Irreversible Ch	anges.	
UNIT – IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	9 Periods
		1
	rategy/Options in various sectors – Water – Agriculture – Infra	
	uding coastal zones – Human Health – Tourism – Transport – Energy –	• •
	and Practices – Energy Supply – Transport – Buildings – Industry	
-	bon sequestration – Carbon capture and storage (CCS) – Waste (MSV	N & Bio waste,
	dustrial waste – International and Regional cooperation.	
UNIT – V	CLEAN TECHNOLOGY AND ENERGY	9 Periods
-	nent Mechanism – Carbon Trading - examples of future Clean Technolo	
-	ost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels–	Solar Energy –
-	electric Power – Mitigation Efforts in India and Adaptation funding.	
Contact Period Lecture: 45 Pe		
		45 Periods

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report – Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007

5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate
	Change, Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	Classify the Earths climatic system and factors causing climate change and	К2
	global warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise	K2
	and Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	КЗ
	changes.	
C04	Articulate the strategies for adaptation and mitigation of climatic changes.	КЗ
C05	Discover clean technologies and alternate energy source for sustainable growth.	К3

Course Articulation Ma	atrix					
COs/POs	P01	PO2	P03	P04	P05	P06
C01	2	2	3	2	3	1
C02	3	2	2	2	3	2
CO3	2	2	2	2	3	2
CO4	3	2	2	2	2	2
C05	3	3	2	3	3	3
23EEOE05	3	3	3	3	3	3
1 – Slight, 2 – Moderate,	3 – Substant	tial	N.			

Sager

ASSESSMENT P	ATTERN – THEO	RY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual							
Assessment 1/							
Case Study 1/	20	30	40	10	-	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2/							
Case Study 2/	20	30	40	10	-	-	100
Seminar 2/							
Project 2							
ESE	25	30	35	10	-	-	100

23EEOE06

WASTE TO ENERGY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	• To classify waste as fuel, introduce conversion devices, gain k	nowledge about
Objective	Biomass Pyrolysis, demonstrate methods, factors for biomass	gasification, and
	acquire knowledge about biogas and its development in India.	
UNIT – I	INTRODUCTION	9 Periods
Introduction t	to Energy from Waste: Classification of waste as fuel - Agro based,	Forest residue
Industrial was	te - MSW – Conversion devices – Incinerators, Gasifiers, Digestors.	
UNIT – II	BIOMASS PYROLYSIS	9 Periods
Biomass Pyrol	ysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis – Manufacture of cha	arcoal – Methods
- Yields and A	pplications – Manufacture of Pyrolytic oils and gases, Yields and Applicatio	ons.
UNIT – III	BIOMASS GASIFICATION	9 Periods
Gasifiers – Fiz	xed bed system – Downdraft and updraft gasifiers – Fluidized bed gas	sifiers – Design
	and Operation - Gasifier burner arrangement for thermal heating -	Gasifier Engine
Construction a	and Operation – Gasifier burner arrangement for thermal heating – and electrical power – Equilibrium and Kinetic Considerations in gasifier op	
Construction a		
Construction a		
Construction a arrangement a UNIT – IV	and electrical power – Equilibrium and Kinetic Considerations in gasifier of	peration. 9 Periods
Construction a arrangement a UNIT – IV Biomass Comb	and electrical power – Equilibrium and Kinetic Considerations in gasifier of BIOMASS COMBUSTION	peration. 9 Periods signs, Fixed bed
Construction a arrangement a UNIT – IV Biomass Comb combustors, ty	and electrical power – Equilibrium and Kinetic Considerations in gasifier of BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic destriction	peration. 9 Periods signs, Fixed bed
Construction a arrangement a UNIT – IV Biomass Comb combustors, ty	and electrical power – Equilibrium and Kinetic Considerations in gasifier of BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c	peration. 9 Periods signs, Fixed bed
Construction a arrangement a UNIT – IV Biomass Coml combustors, ty operation of al UNIT – V	BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c Il the above biomass combustors.	peration. 9 Periods signs, Fixed bec construction and 9 Periods
Construction a arrangement a UNIT – IV Biomass Coml combustors, ty operation of al UNIT – V Biogas: Proper	and electrical power – Equilibrium and Kinetic Considerations in gasifier of BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c It the above biomass combustors. BIOENERGY SYSTEM	peration. 9 Periods signs, Fixed bec construction and 9 Periods and status – Bio
Construction a arrangement a UNIT – IV Biomass Coml combustors, ty operation of al UNIT – V Biogas: Proper energy system	and electrical power – Equilibrium and Kinetic Considerations in gasifier of BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c Il the above biomass combustors. BIOENERGY SYSTEM "ties of biogas (Calorific value and composition) – Biogas plant technology	peration. 9 Periods signs, Fixed beconstruction and 9 Periods and status – Bion r classification
Construction a arrangement a UNIT – IV Biomass Coml combustors, ty operation of al UNIT – V Biogas: Proper energy system Biomass conv	BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c It the above biomass combustors. BIOENERGY SYSTEM ties of biogas (Calorific value and composition) – Biogas plant technology n – Design and constructional features – Biomass resources and their	peration. 9 Periods signs, Fixed beconstruction and 9 Periods and status – Bion r classification tion – biomass
Construction a arrangement a UNIT – IV Biomass Comb combustors, ty operation of al UNIT – V Biogas: Proper energy system Biomass conv gasification –	and electrical power – Equilibrium and Kinetic Considerations in gasifier of BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c Il the above biomass combustors. BIOENERGY SYSTEM rties of biogas (Calorific value and composition) – Biogas plant technology n – Design and constructional features – Biomass resources and their version processes – Thermo chemical conversion – Direct combustor	peration. 9 Periods signs, Fixed bec construction and 9 Periods and status – Bio c classification tion – biomass stion – Types o
Construction a arrangement a UNIT – IV Biomass Comb combustors, ty operation of al UNIT – V Biogas: Proper energy system Biomass conv gasification – biogas plants –	BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c It the above biomass combustors. BIOENERGY SYSTEM rties of biogas (Calorific value and composition) – Biogas plant technology n – Design and constructional features – Biomass resources and their version processes – Thermo chemical conversion – Direct combust pyrolysis and liquefaction – biochemical conversion – anaerobic diges	peration. 9 Periods signs, Fixed bec construction and 9 Periods and status – Bio c classification tion – biomass stion – Types o
Construction a arrangement a UNIT – IV Biomass Comb combustors, ty operation of al UNIT – V Biogas: Proper energy system Biomass conv gasification – biogas plants – to energy conv	and electrical power – Equilibrium and Kinetic Considerations in gasifier of BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c It the above biomass combustors. BIOENERGY SYSTEM rties of biogas (Calorific value and composition) – Biogas plant technology n – Design and constructional features – Biomass resources and their version processes – Thermo chemical conversion – Direct combust pyrolysis and liquefaction – biochemical conversion – anaerobic diges – Applications – Alcohol production from biomass – Bio diesel production version – Biomass energy programme in India.	9 Periods signs, Fixed bec construction and 9 Periods and status – Bio c classification – tion – biomass stion – Types o
Construction a arrangement a UNIT – IV Biomass Comb combustors, ty operation of al UNIT – V Biogas: Proper energy system Biomass conv gasification – biogas plants –	and electrical power – Equilibrium and Kinetic Considerations in gasifier of BIOMASS COMBUSTION bustion – Biomass Stoves – Improved Chullahs, types, some exotic des ypes – Inclined grate combustors – Fluidized bed combustors, design, c I the above biomass combustors. BIOENERGY SYSTEM rties of biogas (Calorific value and composition) – Biogas plant technology n – Design and constructional features – Biomass resources and their version processes – Thermo chemical conversion – Direct combust pyrolysis and liquefaction – biochemical conversion – anaerobic diges – Applications – Alcohol production from biomass – Bio diesel production version – Biomass energy programme in India.	9 Periods signs, Fixed becommended construction and 9 Periods and status – Bion classification – tion – biomass stion – Types of n – Urban waste

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P
	Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste - to - Energy: Technologies and project Implementations", Marc J Rogoff, Francois
	Screve,ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated
	Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications,

2010.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	K3
CO3	Demonstrate methods and factors considered for biomass gasification.	КЗ
C04	Identify the features of different facilities available for biomass combustion.	K4
C05	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

COs/POs	P01	P02	P03	P04	P05	P06
C01	2	3	3	2	3	1
CO2	3	2	2	2	3	1
CO3	3	3	2	3	2	1
CO4	3	2	2	3	3	1
C05	2	3	3	3	2	1
23EEOE06	3	3	3	3	3	1
1 – Slight, 2 – Moderate, 3 – Sub	stantial	1		1 1		•

ASSESSMEN	T PATTERN – TH	EORY	14				
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	10	20	20	25	15	10	100
CAT2	10	25	20	10	25	10	100
Individual							
Assessment							
1/ Case		15	35	50			100
Study 1/	-	15	55	50	-	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment							
2/ Case		10	40	50			100
Study 2/	-	10	40	50	-	-	100
Seminar 2/							
Project 2							
ESE	10	25	25	20	10	10	100

23GEOE07

ENERGY IN BUILT ENVIRONMENT

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	Толи	nderstand constructional energy requirements of buildings, en	orgy audit				
Objective		nods and conservation of energy.	leigy auult				
UNIT-I		RODUCTION	9 Periods				
		environmental control - Internal and external factors on					
Characteristics of	of ener	rgy use and its management -Macro aspect of energy use in dw	ellings and its				
implications -Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual							
perception-Illumination requirement-Auditory requirement.							
UNIT-II		LIGHTING REQUIREMENTS IN BUILDING	9 Periods				
The sun-earth r	elatio	nship - Climate, wind, solar radiation and temperature - Sur	n shading and				
solar radiation on surfaces-Energy impact on the shape and orientation of buildings–Lighting and							
day lighting :Cha	aracte	ristics and estimation, methods of day-lighting–Architectural c	considerations				
for day-lighting.							
UNIT-III		ENERGY REQUIREMENTS IN BUILDING	9 Periods				
Steady and un	steady	heat transfer through wall and glazed window-Standard	s for thermal				
performance of	buildi	ng envelope- Evaluation of the overall thermal transfer- The	rmal gain and				
net heat gain-En	d-Use	energy requirements-Status of energy use in buildings-Estima	tion of energy				
use in a building							
UNIT-IV		ENERGY AUDIT	9 Periods				
Energy audit a	and er	nergy targeting-Technological options for energy manageme	nt-Natural and				
forced ventilation	n–Ind	oor environment and air quality-Air flow and air pressure on	buildings-Flow				
due to Stack effe	ct.						
UNIT-V		COOLING IN BUILT ENVIRONMENT	9 Periods				
Passive buildir	Passive building architecture-Radiative cooling-Solar cooling techniques-Solar desiccant						
dehumidification	dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative						
cooling –Zero en	cooling –Zero energy building concept.						
Contact Periods	S:						
Lecture: 45 Per	iods	Tutorial: 0 Period Practical: 0 Period Total: 45 Pe	eriods				
Lecture: 45 Per	1005	rutoriai, v rerioù riacultai; v rerioù 101ai; 45 Pe	erious				

1	J.Krie	eder and A.Rabl <mark>, "Heating and Cooling of Buildings</mark> : Design for Efficiency ", M	lcGraw-Hill,
	2000		
2	S.M.G	Guinnes and Reynolds, " Mechanical and Electrical Equipment for Buildings ",	Wiley, 1989.
3	A.Shc	aw, " Energy Design for Architects" , AEE Energy Books, 1991.	
4	ASHF	RAE," Hand book of Fundamentals" ,ASHRAE,Atlanta,GA.,2001.	
5	Refer	ence Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, Univer	sity of
	Calife	ornia, and Blast, University of Illinois ,USA.	
	COUR	SE OUTCOMES:	Bloom's
			Taxonomy
	Upon	completion of the course, the students will be able to:	Mapped
	C01	Understand energy and its usage	K2
	CO2	Know lighting to be given to a building	K1
	CO3	Analyse the energy requirements in a building	K3
	C04	Apply the energy audit concepts.	K3
	C05	Study architectural specifications of a building	K1

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	2	A- Ma	3	1	2	1			
CO2	2	1000	3	1	2	1			
CO3	2	0.025	3	1	2	1			
CO4	2	-	3	1	2	1			
CO5	2	-	3	1	2	1			
23GEOE07	2	-	3	1	2	1			
	1-9	Slight, 2–Moo	lerate, 3–Sub	stantial	•	•			

ASSESSMENT P	ATTERN – THI	EORY					
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	40	40	20	-	-	-	100

EARTH AND ITS ENVIRONMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To know about the planet earth, the geosystems and the resource	es like ground					
Objective	water and air and to learn about the Environmental Assessment and	-					
UNIT-I	EVOLUTION OF EARTH	9 Periods					
Evolution of ear	th as habitable planet-Evolution of continents-oceans and landforms-e	volution of life					
through geological times - Exploring the earth's interior - thermal and chemical structure - origin of							
gravitational an	d magnetic fields.						
UNIT-II	GEOSYSTEMS	9 Periods					
Plate tectonics ·	working and shaping the earth - Internal geosystems - earthquakes	s – volcanoes -					
climatic excurs	ions through time - Basic Geological processes - igneous, see	dimentation –					
metamorphic pi	ocesses.						
UNIT-III	GROUND WATER GEOLOGY	9 Periods					
Geology of grou	ind water occurrence -recharge process-Ground water movement-	Ground water					
discharge and c	atchment hydrology – Ground water as a resource - Natural ground	l water quality					
and contaminat	on-Modelling and managing ground water systems.						
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	9 Periods					
Engineering an	d sustainable development - population and urbanization - toxic chem	nicals and finite					
resources - wat	er scarcity and conflict - Environmental risk - risk assessment and cha	aracterization –					
hazard assessm	ent-exposure assessment.						
UNIT-V	AIR AND SOLIDWASTE	9 Periods					
Air resources e	ngineering-introduction to atmospheric composition-behaviour-atmo	ospheric photo					
chemistry-Solid	waste management-characterization-management concepts.						
Contact Period	S:						
Lecture: 45 Per	iods Tutorial: 0 Period Practical: 0 Period Total: 45	5 Periods					

1	John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman, 2010.									
2	Younger,P.L., "Ground water in the Environment: An introduction", Blackwell Publishing,2007.									
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,									
	Sustainability and Design", Wiley, NJ, 2010.									

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K2
	the Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	К3
	water and the modeling systems.	
C04	To assess the Environmental risks and the sustainability developments.	К3
C05	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX									
P01	P02	P03	P04	P05	P06				
1	-	-	2	2	-				
3	-	3	3	-	3				
2	-	James of	-	-	-				
-	2	States	b -	1	-				
2	2	CALCENCE OF	1	-	-				
2	2	3	3	2	3				
3–Substanti	al								
	Allow a	N.							
	1 3 2 - 2 2 2	1 - 3 - 2 - - 2 2 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

ASSESSMENT	PATTERN – THE	ORY	751237	2			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

23GEOE09

NATURAL HAZARDS AND MITIGATION

(Common to all Branches)

PREREQUISITES:	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To get idea on the causes, effects and mitigation measures of dif	ferent types of hazards						
Objective	with case studies.	lerent types of nazarus						
UNIT-I	EARTH QUAKES	9 Periods						
Definitions and	basic concepts-different kinds of hazards-causes-Geologic	Hazards–Earthquakes-						
causes of earth	nquakes–effects-plate tectonics-seismic waves-measures of	size of earthquakes-						
earthquake resis	stant design concepts.							
UNIT-II	SLOPE STABILITY	9 Periods						
Slope stability	and landslides-causes of landslides-principles of stability	analysis-remedial and						
corrective meas	ures for slope stabilization.	-						
UNIT-III	UNIT-III FLOODS 9 Periods							
Climatic Hazar	ds–Floods-causes of flooding-regional flood frequency	analysis–flood control						
measures-flood	routing-flood forecasting-warning systems.							
UNIT-IV	DROUGHTS	9 Periods						
Droughts -cause	es - types of droughts –effects of drought -hazard assessment	 decision making-Use 						
of GIS in natural	hazard assessment-mitigation-management.							
UNIT-V	TSUNAMI	9 Periods						
Tsunami-causes	-effects-under sea earthquakes-landslides-volcanic eruption	s–impact of sea						
meteorite-reme	dial measures-precautions-case studies.							
Contact Period	5:							
Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods								

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press,2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	mpletion of the course, the students will be able to:	Mapped
CO1	Learn the basic concepts of earthquakes and the design concepts of	К2
	earthquake Resistant buildings.	
CO2	Acquire knowledge on the causes and remedial measures of slope	КЗ
	stabilization.	
CO3	As certain the causes and control measures of flood.	КЗ
CO4	Know the types, causes and mitigation of droughts.	К2
CO5	Study the causes, effects and precautionary measures of Tsunami.	К2

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	PO5	P06			
C01	3	1	-	3	2	3			
CO2	3	1	2	3	3	3			
CO3	3	2	3	-	-	3			
CO4	3	-	-	3	2	3			
CO5	3	-	2	2	-	3			
23GEOE09	3	1	2	3	2	3			
	1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20	-	-	-	100			

BUSINESS ANALYTICS (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

_		-							
Course	• To apprehend the fundamentals of business analytics and its life cy	vcle.							
Objectives	• To gain knowledge about fundamental business analytics.								
	• To study modeling for uncertainty and statistical inference.	,							
	• To apprehend analytics the usage of Hadoop and Map Reduce fram	neworks.							
UNIT – I	To acquire insight on other analytical frameworks.	9 Periods							
	BUSINESS ANALYTICS AND PROCESS	9 Periods							
5	ics: Overview of Business analytics, Scope of Business analytics, Business								
-	Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of								
	Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of								
	ribution and data modelling, sampling andestimation methods overview.								
UNIT – II	REGRESSION ANALYSIS	9 Periods							
Trendiness and	Regression Analysis: Modelling Relationships and Trends in Data, simple								
0	on. Important Resources, Business Analytics Personnel, Data and models for								
Business analyt	ics, problem solving, Visualizing and Exploring Data, Business Analytics								
Technology.									
UNIT – III	STRUCTURE OF BUSINESS ANALYTICS	9 Periods							
Organization St	ructures of Business analytics, Team management, Management Issues, Desi	gning Information							
Policy, Outsour	cing, Ensuring Data Quality, Measuring contribution of Business analytics, M	lanaging Changes.							
Descriptive Ana	alytics, predictive analytics, predicative Modelling, Predictive analytics ana	lysis, Data Mining,							
Data Mining Me	ethodologies, Prescriptive analytics and its step in the business analytics Pre	ocess, Prescriptive							
Modelling, nonl	inear Optimization.								
UNIT – IV	FORECASTING TECHNIQUES	9 Periods							
Forecasting Te	chniques: Qualitative and Judgmental Forecasting, Statistical Forecasting M	odels, Forecasting							
Models for Stat	ionary Time Series, Forecasting Models for Time Series								
with a Linear T	rend, Forecasting Time Series with Seasonality, Regression Forecasting with								
Casual Variable	s, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and								
Risk Analysis: M	Ionte Carle Simulation Using Analytic Solver Platform, New-Product								
Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.									
UNIT – V	DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS ANALYTICS	9 Periods							
Decision Analys	sis: Formulating Decision Problems, Decision Strategies with the without								
Outcome Proba	bilities, Decision Trees, The Value of Information, Utility and Decision								
Making. Recen	t Trends: Embedded and collaborative business intelligence, Visual da	ta recovery, Data							
-	l Data journalism	-							
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ods							

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach", Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, "Essentials of
	Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making", Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
C01	Identify the real world business problems and model with analytical solutions.	K4
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4
CO3	Convert any real world decision making problem to hypothesis and apply suitable statistical testing.	K4
C04	Write and Demonstrate simple applications involving analytics using Hadoop and Map Reduce	K4
C05	Use open source frameworks for modeling and storing data.	K4
	77	

COs/POs	P01	PO2	P03	P04	P05
C01	1	2	1	2	1
CO2	1	1	1	2	1
CO3	2	2	1	1	-
CO4	2	2	1	-	-
C05	1	2	-	-	-
23EDOE10	1	2	1	2	1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

2	3	E	D	ი	E	1	1
_	J	•	ν	υ	Б	T	T.

INTRODUCTION TO INDUSTRIAL SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

• Summarize basics of industrial safety.	
Describe fundamentals of maintenance engineering.	
Explain wear and corrosion.	
Illustrate fault tracing.	
Identify preventive and periodic maintenance. INTRODUCTION	9 Periods
Accident, causes, types, results and control, mechanical and electrical hazards, types, causes	-
steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms	-
layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention	and firefighting,
equipment and methods.	
UNIT – II FUNDAMENTALS OF MAINTENANCE ENGINEERING	9 Periods
Definition and aim of maintenance engineering, Primary and secondary functions and	esponsibility of
maintenance department, Types of maintenance, Types and applications of tools used for	or maintenance,
Maintenance cost & its relation with replacement economy, Service life of equipment.	
UNIT - III WEAR AND CORROSION AND THEIR PREVENTION	9 Periods
Wear- types, causes, effects, wear reduction methods, lubricants-types and applications,	
Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pres	sure grease gun,
iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii.	Ring lubrication,
Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention n	nethods.
UNIT – IV FAULT TRACING	9 Periods
Fault tracing-concept and importance, decision tree concept, need and applications, sequence	of fault-finding
activities, show as decision tree, draw decision tree for problems in machine tools, hydra	ulic, pneumatic,
automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air	-
Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools a	-
causes.	8
UNIT - V PERIODIC AND PREVENTIVE MAINTENANCE	9 Periods
Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhaulin	g of mechanical
components, overhauling of electrical motor, common troubles and remedies of electric motor, rep	oair complexities
and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure	for periodic and
preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (D	G) sets, Program
and schedule of preventive maintenance of mechanical and electrical equipment, advantage	es of preventive
maintenance. Repair cycle concept and importance	
Lecture: 45 Periods Tutorial: 0 Periods Practical:0Periods Total:45 Periods	

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London,2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers, 2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition ,2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COURS	SE OUTCOMES:	Bloom's Taxonomy	
Upon c	pon completion of the course, the students will be able to:		
C01	Ability to summarize basics of industrial safety	K4	
CO2	Ability to describe fundamentals of maintenance engineering	K4	
CO3	Ability to explain wear and corrosion	K4	
CO4	Ability to illustrate fault tracing	K4	
C05	Ability to identify preventive and periodic maintenance	K4	

Course Articulation Matrix	Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	PO5				
C01	2	1	1	-	-				
C02	2	2	1	-	1				
C03	1	2	1	1	1				
C04	2	1	1	1	1				
C05	2	1	2	1	1				
23ED0E11	2	1	1	1	1				
1 – Slight, 2 – Moderate, 3 – Sub	stantial								

article 2 Petropa									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	25	25	25			100		
CAT2	20	25	25	30			100		
Assignment 1	25	30	25	20			100		
Assignment 2	30	20	30	20			100		
ESE	20	30	20	30			100		

23ED0E12

OPERATIONS RESEARCH

(Common to all Branches)

PREREQUISITES CATEGORY					Р	С	
	NIL OE					3	
Course	Solve linear programming problem and solve u	sing graphical meth	od.				
Objectives	Solve LPP using simplex method.Solve transportation, assignment problems.						
	 Solve project management problems. 						
	• Solve scheduling problems.						
UNIT – I	INTRODUCTION			9	Per	iods	
Optimization T	echniques, Model Formulation, models, General L.R F	ormulation, Simplex	Tech	niqu	es, S	ensitivity	
Analysis, Inven	tory Control Models						
UNIT – II	LINEAR PROGRAMMING PROBLEM			9	Per	iods	
Formulation of	a LPP - Graphical solution revised simplex method - dual	ity theory - dual sim	plex r	netho	od - s	ensitivity	
analysis - parar	netric programming						
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM			9	Per	iods	
Nonlinear prog	ramming problem - Kuhn-Tucker conditions min cost flow	w problem - max flow	v prob	lem ·	· CPM	I/PERT	
UNIT – IV	SEQUENCING AND INVENTORY MODEL			9	Per	iods	
Scheduling an	d sequencing - single server and multiple server m	nodels - determinis	tic in	vent	ory	nodels -	
Probabilistic inventory control models - Geometric Programming.							
UNIT – V	GAME THEORY			9	Per	iods	
Competitive M	odels, Single and Multi-channel Problems, Sequencing	g Models, Dynamic	Prog	ramr	ning,	Flow in	
Networks, Elen	Networks, Elementary Graph Theory, Game Theory Simulation						
Lecture: 45 Periods Tutorial: 0 Periods Practical:0Periods Total:45 Periods							

	V6. (1997) 47 (47) (47) (47) (47) (47)
1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

COURSE OUTCOMES:		Bloom's Taxonomy Mapped
Upon c	ompletion of the course, the students will be able to:	
C01	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
C04	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

COs/POs	P01	P02	PO3	P04	P05
C01	2	1	1	-	-
CO2	2	2	1	-	-
CO3	1	1	2	1	1
CO4	1	1	-	-	-
CO5	2	1	-	-	-
23EDOE12	2	1	1	1	1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23MF0E13

OCCUPATIONAL HEALTH AND SAFETY

(Common to all Branches)

PREREQUISI	ſES		CATEGORY	L	Т	Р	С
	NIL		OE	3	0	0	3
Course	• To gain k	knowledge about occupat	ional health ha	zard	l ar	nd s	safety
Objectives	measures a	it work place.					
	 To learn ab 	out accident prevention and	d safety managem	ient.			
	 To learn ab 	out general safety measures	s in industries.				
UNIT – I	OCCUPATIONAL HEAD	LTH AND HAZARDS			9 P	erio	ods
Safety- Histor	y and development, Nat	ional Safety Policy- Occupat	ional Health Haza	ards	- Er	gon	omics
- Importance	of Industrial Safety Rad	liation and Industrial Hazar	ds- Machine Gua	rds	and	its 1	types,
Automation.							
UNIT – II	SAFETY AT WORKPLA					erio	
Safety at Wo	kplace - Safe use of M	Machines and Tools: Safety	in use of differ	ent	type	es of	f unit
operations -							
-	f Machine guarding - v	working in different workp	laces - Operation	n, In	ispe	ctioi	n and
		-			-		
	Plant Design and House	keeping, Industrial lighting,	Vibration and No				
UNIT – III Accident Pre	Plant Design and House ACCIDENT PREVENTI vention Techniques -	ekeeping, Industrial lighting, ON Principles of accident pr	evention - Defir	nitio	9 Pe ns,	e rio The	ds ories
UNIT – III Accident Pre Principles – analysis - The Fracture and	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v	ekeeping, Industrial lighting, ON Principles of accident pr and analysis, Event tree an Accident causation - First A various body parts.	evention - Defir nalysis, Hazop st	nitio cudie	9 Po ns, es, J nd fu	erio The ob s unct	ds ories, safety ions -
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of Dislocation, Injuries to v SAFETY MANAGEMEN	ekeeping, Industrial lighting, ON Principles of accident pr and analysis, Event tree ar Accident causation - First A various body parts. NT	evention - Defin nalysis, Hazop st id : Body structur	nitio cudie re ai	9 P ns, es, J nd fu 9 P	erio The ob s unct	ds ories, safety ions - ods
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Law	ekeeping, Industrial lighting, ION Principles of accident pr and analysis, Event tree an Accident causation - First A various body parts. NT w - Legislative measures	evention - Defin nalysis, Hazop st id : Body structur in Industrial Saf	nitio cudie re an	9 Po ns, es, J nd fu 9 P Var	The ob s unct eric	ds ories, safety ions - ods acts
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safe	ekeeping, Industrial lighting, ION Principles of accident pr and analysis, Event tree an Accident causation - First A various body parts. NT w - Legislative measures ety, Health and Environme	evention - Defin nalysis, Hazop st id : Body structur in Industrial Saf nt Management:	nitio cudie re an ety: Bure	9 Po ns, es, J nd fu 9 P Var eau	erio The ob s unct erious of I	ds ories, safety ions - ods s acts ndian
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safe Health and Safety, 144	ekeeping, Industrial lighting, ON Principles of accident pr and analysis, Event tree an Accident causation - First A various body parts. NT w - Legislative measures ety, Health and Environmen 89, 15001 - OSHA, Process	evention - Defin nalysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme	nitio cudie re an ety: Bure ent	9 Po ns, es, J nd fu 9 P Var eau (PSN	erio The ob s unct erious of I (1) a	ds ories, safety ions - ods s acts ndian nd its
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safe Health and Safety, 1444 PA standards- Safety Ma	ekeeping, Industrial lighting, ION Principles of accident pr and analysis, Event tree an Accident causation - First A various body parts. NT w - Legislative measures ety, Health and Environme	evention - Defin nalysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme	nitio cudie re an ety: Bure ent	9 Po ns, es, J nd fu 9 P Var eau (PSN	erio The ob s unct erious of I (1) a	ds ories, safety ions - ods s acts ndian nd its
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safe Health and Safety, 1444 PA standards- Safety Ma	ekeeping, Industrial lighting, ON Principles of accident principles of accident principles and analysis, Event tree and Accident causation - First Accid	evention - Defin nalysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme	nitio cudie re an ety: Bure ent	9 Po ns, es, J nd fu 9 P Var eau (PSN - its	erio The ob s unct erious of I: (1) au stru	ds ories, safety ions - ods acts ndian nd its acture
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions UNIT – V	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safe Health and Safety, 1448 PA standards- Safety Ma GENERAL SAFETY ME	ekeeping, Industrial lighting, ION Principles of accident pr and analysis, Event tree an Accident causation - First A various body parts. VT w - Legislative measures ety, Health and Environmen 89, 15001 - OSHA, Process anagement: Organisational EASURES	evention - Defin nalysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme & Safety Commit	nitio cudie re an etty: Bure ent tee	9 P ns, es, J nd fr 9 P Var eau (PSN - its 9 P	erio The ob s unct rious of I: (1) an stru	ds ories, safety ions - ods acts ndian nd its acture ods
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions UNIT – V Plant Layout	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safe Health and Safety, 1444 PA standards- Safety Ma GENERAL SAFETY ME for Safety -design and	ekeeping, Industrial lighting, ION Principles of accident print and analysis, Event tree and Accident causation - First A various body parts. VT w - Legislative measures ety, Health and Environment 89, 15001 - OSHA, Process anagement: Organisational EASURES location, distance between	evention - Defin halysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme & Safety Commit	nitio cudie re an ety: Bure ent tee s, lig	9 Pa ns, es, J nd fu 9 P Var eau (PSN - its 9 P	erio The ob sunct erious of I (1) an stru	ds ories safety ions - ods acts ndian nd its acture ods
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions UNIT – V Plant Layout coding, pilot p	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safe Health and Safety, 1444 PA standards- Safety Ma GENERAL SAFETY ME for Safety -design and plant studies, Housekeep	Principles of accident principles and principles of accident princip	evention - Defin halysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme & Safety Commit h hazardous units h Maintenance of	hitio cudie re an ety: Bure ent (tee - tee -	9 Pe ns, es, J nd fu 9 P Var eau (PSN - its 9 P ghtir chin	erio The ob s unct erio of I A) au stru erio ng, c es -	ds ories, safety ions - ods acts ndian nd its acture ods colour Work
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions UNIT – V Plant Layout coding, pilot p Permit Syster	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Law etail- Occupational safe Health and Safety, 1444 PA standards- Safety Ma GENERAL SAFETY ME for Safety -design and lant studies, Housekeep n: Significance of Docum	ekeeping, Industrial lighting, ION Principles of accident print and analysis, Event tree and Accident causation - First A various body parts. VT w - Legislative measures ety, Health and Environment 89, 15001 - OSHA, Process anagement: Organisational EASURES location, distance between ping - Accidents Related witt mentation Directing Safety, J	evention - Defin halysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme & Safety Commit h hazardous units h Maintenance of	hitio cudie re an ety: Bure ent (tee - tee -	9 Pe ns, es, J nd fu 9 P Var eau (PSN - its 9 P ghtir chin	erio The ob s unct erio of I A) au stru erio ng, c es -	ds ories safety ions - ods acts ndian nd its acture ods colour Work
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions UNIT – V Plant Layout coding, pilot p Permit Syster implementati	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lave etail- Occupational safe Health and Safety, 1444 PA standards- Safety Ma GENERAL SAFETY ME for Safety -design and blant studies, Housekeep n: Significance of Docum on of health and safety n	ekeeping, Industrial lighting, ION Principles of accident print and analysis, Event tree and Accident causation - First A various body parts. VT w - Legislative measures ety, Health and Environment 89, 15001 - OSHA, Process anagement: Organisational EASURES location, distance between ping - Accidents Related witt mentation Directing Safety, In neasures in Industries.	evention - Defin halysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme & Safety Commit h hazardous units h Maintenance of Leadership -Case	itio cudie re an ert : Bure ent : tee - s, lig S lig	9 Pd ns, es, J es, J nd fu 9 P Var eau (PSN - its 9 P ghtir chin dies	erio The ob s unct erious of I: (1) an stru erio ng, c es - invo	ds ories, safety ions - ods acts ndian nd its acture ods colour Work
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions UNIT – V Plant Layout coding, pilot p Permit Syster	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Law etail- Occupational safet Health and Safety, 1444 PA standards- Safety Ma GENERAL SAFETY ME for Safety -design and blant studies, Housekeep n: Significance of Docum on of health and safety n	ekeeping, Industrial lighting, ION Principles of accident print and analysis, Event tree and Accident causation - First A various body parts. VT w - Legislative measures ety, Health and Environment 89, 15001 - OSHA, Process anagement: Organisational EASURES location, distance between ping - Accidents Related witt mentation Directing Safety, In neasures in Industries.	evention - Defin halysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme & Safety Commit h hazardous units h Maintenance of Leadership -Case	itio cudie re an ert : Bure ent : tee - s, lig S lig	9 Pd ns, es, J es, J nd fu 9 P Var eau (PSN - its 9 P ghtir chin dies	erio The ob s unct erious of I: (1) an stru erio ng, c es - invo	ds ories, safety ions - ods acts ndian nd its acture ods colour Work
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions UNIT – V Plant Layout coding, pilot p Permit Syster implementati Lecture: 45 F	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safe Health and Safety, 1444 PA standards- Safety Ma GENERAL SAFETY ME for Safety -design and blant studies, Housekeep n: Significance of Docum on of health and safety n eriods Tutorial: 0 I	ekeeping, Industrial lighting, ION Principles of accident print and analysis, Event tree and Accident causation - First A various body parts. VT w - Legislative measures ety, Health and Environment 89, 15001 - OSHA, Process anagement: Organisational EASURES location, distance between ping - Accidents Related witt mentation Directing Safety, In neasures in Industries.	evention - Defin halysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme & Safety Commit h hazardous units h Maintenance of Leadership -Case	itio cudie re an ert : Bure ent : tee - s, lig S lig	9 Pd ns, es, J es, J nd fu 9 P Var eau (PSN - its 9 P ghtir chin dies	erio The ob s unct erious of I: (1) an stru erio ng, c es - invo	ds ories safety ions - ods acts ndian nd its acture ods colour Work
UNIT – III Accident Pre Principles – analysis - The Fracture and UNIT – IV Safety Manag involved in D Standards on principles - E and functions UNIT – V Plant Layout coding, pilot p Permit Syster implementati Lecture: 45 F	Plant Design and House ACCIDENT PREVENTI vention Techniques - Hazard identification a ories and Principles of A Dislocation, Injuries to v SAFETY MANAGEMEN ement System and Lav etail- Occupational safet Health and Safety, 1444 PA standards- Safety Ma GENERAL SAFETY ME for Safety -design and blant studies, Housekeep n: Significance of Docum on of health and safety m eriods Tutorial: 0 I	ekeeping, Industrial lighting, ION Principles of accident print and analysis, Event tree and Accident causation - First A various body parts. VT w - Legislative measures ety, Health and Environment 89, 15001 - OSHA, Process anagement: Organisational EASURES location, distance between ping - Accidents Related witt mentation Directing Safety, In neasures in Industries.	evention - Defin halysis, Hazop st id : Body structur in Industrial Saf nt Management: safety manageme & Safety Commit h hazardous units h Maintenance of Leadership -Case eriods Total:4	itio cudie re an ety: Burd ent tee s, lig s, lig stuc stuc	9 Pe ns, es, J es, J nd fu 9 P Var eau (PSN - its 9 P ghtir chin dies erio	erio The ob s unct erious of I: (1) an stru erio ng, c es - invo	ds ories safety ions ods acts ndiar nd its acture ods colour

4	Dunata Noradecka, Handbook of Occupational Health and Sufery , 686, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, New Delhi, 2008.

5 https://nptel.ac.in/courses/110105094

6 https://archive.nptel.ac.in/courses/110/105/110105094/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Gain the knowledge about occupational health hazard and safety measures	КЗ
	at work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in	КЗ
	industries.	
C04	Know various laws, standards and legislations.	K2
C05	Implement safety and proper management of industries.	K4

Course Articulation Matrix:

Cos/Pos	P01	PO2	PO3	P04	P05	
C01	2	1	1	1	1	
C02	2	2	1	1	1	
C03	1	2	1	1	1	
C04	2	1	1	1	1	
C05	2	1	2	1	1	
23MF0E13	2	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA Test / Bloom's	Rememb	Understandin	Applying	Analyzin	Evaluatin	Creating	Tota
Category*	ering	g (K2) %	(K3) %	g (K4) %	g (K5) %	(K6) %	1%
	(K1) %	8()		8()/*	8() /0	() / 0	- 70
CAT1		50	50				100
CAT2		50	30	20			100
Individual Assessment 1 /Case Study 1/		50	50				100
Seminar 1 / Project1							
Individual Assessment 2		50	30	20			100
/Case Study 2/ Seminar 2 / Project 2							
ESE		40	40	20			100

COST MANAGEMENT OF ENGINEERING PROJECTS

(Common to all Branches)

Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Stand Costing and Variance Analysis.Various decision-making 9 PeriodsUNIT - IVPRICING STRATEGIES AND BUDGETORY CONTROL9 PeriodsPricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just- in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability profitability profitability profitability profitability profitability profitability anagement and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.	PREREQUISIT	ES	CATEGORY	L	Т	Р	С
Objectives • To acquire the project management concepts and their various aspects in selection. • To gain the knowledge in costing concepts with project execution. • To gain the knowledge of costing techniques in service sector and various budgetary control techniques. • To familiarize with quantitative techniques in cost management. 9 Periods Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making. UNIT - II PROJECT PLANNING ACTIVITIES 9 Periods Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project contracts. Types and contents. Project execution Project control. Bar required with significance. Project contracts. Types and contents. Project execution Project control. Bar colared. UNIT - III COST ANALYSIS 9 Periods Ost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing. Break-even Analysis. Cost-Volume-Profit Analysis. Various decision-making problems.Standard Costing and Variance Analysis. 9 Periods VNIT - IV PRICING STRATEGIES AND BUDGETORY CONTROL 9 Periods Pricing str		NIL	OE	3	0	0	3
Objectives • To acquire the project management concepts and their various aspects in selection. • To gain the knowledge in costing concepts with project execution. • To gain the knowledge of costing techniques in service sector and various budgetary control techniques. • To familiarize with quantitative techniques in cost management. 9 Periods Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making. UNIT - II PROJECT PLANNING ACTIVITIES 9 Periods Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project contracts. Types and contents. Project execution Project control. Bar required with significance. Project contracts. Types and contents. Project execution Project control. Bar colared. UNIT - III COST ANALYSIS 9 Periods Ost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing. Break-even Analysis. Cost-Volume-Profit Analysis. Various decision-making problems.Standard Costing and Variance Analysis. 9 Periods VNIT - IV PRICING STRATEGIES AND BUDGETORY CONTROL 9 Periods Pricing str							
Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision- making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making.UNIT - IIPROJECT PLANNING ACTIVITIES9 PeriodsProject: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.9 PeriodsUNIT - IIICOST ANALYSIS9 PeriodsCosting Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.9 PeriodsUNIT - IVPRICING STRATEGIES AND BUDGETORY CONTROL9 PeriodsPricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just- in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.9 PeriodsUNIT - VTQM AND OPERATIONS REASEARCH TOOLS9 PeriodsTotal Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for	 Objectives To acquire the project management concepts and their various aspects in selection. To gain the knowledge in costing concepts with project execution. To develop knowledge of costing techniques in service sector and various budgetary control techniques. 						
making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making. UNIT - II PROJECT PLANNING ACTIVITIES 9 Periods Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process. 9 Periods UNIT - III COST ANALYSIS 9 Periods Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. 9 Periods UNIT - IV PRICING STRATEGIES AND BUDGETORY CONTROL 9 Periods Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just-in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing. 9 Periods UNIT - V TQM AND OPERATIONS REASEARCH TOOLS 9 Periods Total Quality Management and Theory of constraints, Activity-Based Cost Managem	UNIT – I	INTRODUCTION TO COSTING CONCEPTS			9	Peri	ods
UNIT - IIPROJECT PLANNING ACTIVITIES9 PeriodsProject: meaning, Different types, why to manage, cost overruns centers, various stages of projectexecution: conception to commissioning. Project execution as conglomeration of technical andnontechnical activities. Detailed Engineering activities. Pre project execution main clearances anddocuments Project team: Role of each member. Importance Project site: Data required withsignificance. Project contracts. Types and contents. Project execution Project control. Barcharts and Network diagram. Project commissioning: mechanical and process.UNIT - IIICOST ANALYSIS9 PeriodsCost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.9 PeriodsVNIT - IVPRICING STRATEGIES AND BUDGETORY CONTROL9 PeriodsPricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just- in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.9 PeriodsUNIT - VTQM AND OPERATIONS REASEARCH TOOLS9 PeriodsTotal Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.	making; Releva Costing System	ant cost, Differential cost, Incremental cost and n; Inventory valuation; Creation of a Database for	Opportunity cos	st. 0	bjec	tive	s of a
execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.9 PeriodsUNIT - IIICOST ANALYSIS9 PeriodsCost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.9 PeriodsUNIT - IVPRICING STRATEGIES AND BUDGETORY CONTROL9 PeriodsPricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just- 		0			9	Peri	ods
Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. VariousOutputUNIT - IVPRICING STRATEGIES AND BUDGETORY CONTROL9 Periods Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just- in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing. 9 Periods Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balarced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory. 9 Periods	nontechnical a documents Pro significance. P	ctivities. Detailed Engineering activities. Pre projo oject team: Role of each member. Importance roject contracts. Types and contents. Project ex	ect execution ma Project site: Da xecution Project	in cl ita r	lear: equ	ance ired	es and with
Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Stand Costing and Variance Analysis.Various decision-making 9 PeriodsUNIT - IVPRICING STRATEGIES AND BUDGETORY CONTROL9 PeriodsPricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just- in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability profitability profitability profitability profitability profitability profitability anagement and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.	UNIT – III	COST ANALYSIS			9	Peri	ods
Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just- in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing. UNIT - V TQM AND OPERATIONS REASEARCH TOOLS 9 Periods Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.	Absorption Co	Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.					
 in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing. UNIT - V TQM AND OPERATIONS REASEARCH TOOLS 9 Periods Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory. 	UNIT – IV	PRICING STRATEGIES AND BUDGETORY CONT	ROL		9	Peri	ods
Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.							
Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.		-	Pagad Cast Ma	nce			
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.						

REFERENCES:

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall
	of India, New Delhi, 2011.
5	https://archive.pntel.ac.in/courses/110/104/110104073/

5 <u>https://archive.nptel.ac.in/courses/110/104/110104073/</u>

COURSE OUTCOMES: Bloom's Taxonomy Upon completion of the course, the students will be able to: Mapped C01 Apply the costing concepts and their role in decision making. K3 CO2 Apply the project management concepts and analyze their various aspects K4 in selection. Interpret costing concepts with project execution. CO3 K4 C04 Gain knowledge of costing techniques in service sector and various K2 budgetary control techniques. Become familiar with quantitative techniques in cost management. КЗ CO5

COs/Pos	P01	P02	P03	P04	P05
C01	1		2	1	1
C02	2	2 1	1	1	-
C03	2	2	2	-	-
C04	1	1	1	1	1
C05	1	2	1	1	-
23MF0E14	1	1	1	1	1

16

ASSESSMENT PATTE	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1			40	60			100			
CAT2		30	30	40			100			
Individual			40	60			100			
Assessment 1 /Case										
Study 1/ Seminar 1										
/ Project1										
Individual		30	30	40			100			
Assessment 2 /Case										
Study 2/ Seminar 2										
/ Project 2										
ESE		20	40	40			100			

COMPOSITE MATERIALS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	• To summarize the characteristics of composite materials	and effect of					
Objectives	reinforcement in composite materials.						
,	• To identify the various reinforcements used in composite mat	erials.					
	• To compare the manufacturing process of metal matrix composites.						
	To understand the manufacturing processes of polymer matri	x composites.					
	• To analyze the strength of composite materials.						
UNIT – I	INTRODUCTION	9 Periods					
	assification and characteristics of Composite materials. Advantages and						
-	unctional requirements of reinforcement and matrix. Effect of rei	nforcement on					
	site performance.						
UNIT – II	REINFORCEMENT	9 Periods					
	yup, curing, properties and applications of glass fibers, carbon fibers						
and Boron fil	pers. Properties and applications of whiskers, particle reinforcemen	nts. Mechanical					
Behavior of	composites: Rule of mixtures, Inverse rule of mixtures.	Isostrain and					
Isosterescond	itions.						
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods					
Casting – Sol	id State diffusion technique, Cladding – Hot isostatic pressing- Ma	nufacturing of					
Ceramic Matr	ix Composites: Liquid Metal Infiltration – Liquid phase sintering–Ma	anufacturing of					
Carbon – Carb	on composites: Knitting, Braiding, Weaving- Properties and application	1S.					
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods					
Preparation o	f Moulding compounds and prepregs - hand layup method - Autoc	lave method –					
Filament wind	ling method – Compression moulding – Reaction injection moulding.	Properties and					
applications.							
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	9 Periods					
Laminar Fail	ure Criteria-strength ratio, maximum stress criteria, maximum	strain criteria,					
interacting fa	ilure criteria, hygrothermal failure. Laminate first play failure-in:	sight strength;					
Laminate stre	ngth-ply discount truncated maximum strain criterion; strength desig	gn using caplet					
plots; stress co	oncentrations.						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Tota	l: 45 Periods					

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz,
	2013.
5	https://nptel.ac.in/courses/112104168

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Know the characteristics of composite materials and effect of reinforcement in	K2
	composite materials.	
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix	К3
	composites	
C04	Understand and apply the manufacturing processes of polymer matrix	К3
	composites.	
CO5	Analyze the strength of composite materials.	K4

Course Articulation Matrix:	
-	

Course Articulation Matrix:								
COs/Pos	P01	P02	P03	P04	P05			
C01	1	2	1	1	1			
CO2	2	2	1	1	2			
CO3	2	1	2	1	1			
CO4	1	2	2	2	1			
C05	1	2	1	1	1			
23MF0E15	1	2	2	1	1			
1 – Slight, 2 – Moderate, 3 – S	ubstantial	1 1001			·			

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Rememberi ng (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creating (K6) %	Tota 1%			
Category*										
CAT1		60	40				100			
CAT2			60	40			100			
Individual		60	40				100			
Assessment										
1 /Case										
Study 1/										
Seminar 1 /										
Project1										
Individual			60	40			100			
Assessment										
2 /Case										
Study 2/										
Seminar 2 /										
Project 2										
ESE		40	40	20			100			

GLOBAL WARMING SCIENCE (Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	To make the students learn about the material consequences of gli	mata changa caa
	To make the students learn about the material consequences of cli	0
Objective	level change due to increase in the emission of greenhouse gases an	id to examine the
	science behind mitigation and adaptation proposals.	
UNIT – I	INTRODUCTION	9 Periods
Terminology	relating to atmospheric particles – Aerosols - Types, characteristics,	measurements –
Particle mass	spectrometry - Anthropogenic-sources, effects on humans.	
UNIT – II	CLIMATE MODELS	9 Periods
General clima	te modeling- Atmospheric general circulation model - Oceanic ge	eneral circulation
model, sea ice	model, land model concept, paleo-climate - Weather prediction by n	umerical process.
Impacts of clin	nate change - Climate Sensitivity - Forcing and feedback.	
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods
Carbon cycle-	process, importance, advantages - Carbon on earth - Global car	bon reservoirs -
Interactions b	etween human activities and carbon cycle - Geologic time scales -	Fossil fuels and
energy - Pertu	rbed carbon cycle.	
UNIT – IV	GREENHOUSE GASES	9 Periods
Blackbody rac	liation - Layer model - Earth's atmospheric composition and Green ho	ouse gases effects
on weather an	d climate - Radioactive equilibrium - Earth's energy balance.	
UNIT – V	GEO ENGINEERING	9 Periods
Solar mitigati	on - Strategies – Carbon dioxide removal - Solar radiation mana	gement - Recent
observed tren	ds in global warming for sea level rise, drought, glacier extent.	
Contact Perio	ods:	
Lecture: 45 P	eriods Tutorial: OPeriods Practical: O Periods Total:	45 Periods

TEXT BOOK:

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and	
	Its Consequences", Princeton University Press, 1st Edition, 2022.	
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th	
	Edition, 2015.	

1	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
2	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions
	for Global Warming", Elsevier, 1 st Edition, 2021.
3	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1st edition, 2000.
4	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
5	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the global warming in relation to climate changes throughout	К2
COI	the earth.	KZ
CO2	Assess the best predictions of current climate models.	K4
C03	Understand the importance of carbon cycle and its implication on fossil	К2
003	fuels.	KZ
C04	Know about current issues, including impact from society, environment,	К4
0.04	economy as well as ecology related to greenhouse gases.	174
C05	Know the safety measures and precautions regarding global warming.	К5

Course Artic	Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05	P06		
C01	2	1	2	1	1	2		
CO2	1	1	2	1	1	1		
CO3	1	2	1	1	1	2		
CO4	1	1	1-	9 1	1	2		
C05	2	1	2	1	1	2		
23TEOE16	1	1	1	1	1	2		
1 – Slight, 2 –	Moderate, 3 –	Substantial	1 4 -	1				

i),

12

Assessment pa	ttern – theory	12.83	102227				
Test / Bloom's	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*	8()/0	() /0	() / 0	() /0	() /0	() / 0	70
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	25	20	20	35	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	20	20	35	15	10	-	100
ESE	25	20	25	20	10	-	100

INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	To make the students provide strong, essential, important methods	and foundations
Objective	of quantum mechanics and apply quantum mechanics on engineering	g fields.
		0.0.1.1
UNIT – I	INTRODUCTION	9 Periods
Particles and	Waves - Operators in quantum mechanics - The Postulates of quantum	n mechanics - The
Schrodinger e	quation values and wave packet Solutions - Ehrenfest's Theorem.	
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods
Atoms- The H	ydrogen Atom - Many-Electron Atoms – Pseudopotentials, Nuclear Stru	ıcture, Molecules,
Crystals - Tra	nslational motion - Penetration through barriers - Particle in a bo	x - Two terminal
quantum dot o	levices - Two terminal quantum wire devices.	
UNIT – III	SCATTERING THEORY	9 Periods
The formulati	on of scattering events - Scattering cross section - Stationary scatter	ing state - Partial
wave stationa	ry scattering events - multi-channel scattering - Solution for Schro	dinger equation-
Radial and wa	ve equation - Greens' function.	
UNIT – IV	CLASSICAL STATISTICS	9 Periods
Probabilities a	nd microscopic behaviours - Kinetic theory and transport processes in	n gases - Magnetic
properties of i	naterials - The partition function.	
UNIT – V	QUANTUM STATISTICS	9 Periods
Statistical med	chanics - Basic Concepts - Statistical models applied to metals and sem	iconductors - The
thermal prop	erties of solids- The electrical properties of materials - Black body	radiation - Low
temperatures	and degenerate systems.	
Contact Perio	ods:	
Lecture:45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods

TEXT BOOK:

1	Vladimi	V.Mitin,	Viatcheslav	А.	Kochelap	and	Michael	A.Str	oscio,	"Introd	uction	to
	Nanoelee	ctronics:	Science, Na	note	echnology,	Engir	neering,	and A	Applica	ations",	Cambri	dge
	Universit	y Press, 1 ^s	Edition, 2007									
2	Vinod Ku	mar Khar	na, "Introdu	ctory	y Nanoelec	tronic	s: Physic	al The	ory an	d Device	e Analys	is",
	Routledg	e, 1 st Editi	on, 2020.									

1	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States
	Edition, 2007.
2	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.

3	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian
	Edition, 2009.
4	Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum
	Statistical Mechanics", Wiley, 2004.
5	A. F. J. Levi, "Applied Quantum Mechanics", 2 nd Edition, Cambridge, 2012.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the postulates of quantum mechanics.	K2
C02	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
C04	Learn the concepts involved in kinetic theory of gases.	K2
C05	Know about statistical models applies to metals and semiconductor.	К3

COs/POs	P01	PO2	P03	PO4	PO5	P06
C01	1	1	1	1	1	1
CO2	2	2	1	> 1	1	1
CO3	2	2	2	1	1	1
CO4	1	1	1	1	1	1
CO5	1	1	§ 1-	1	1	1
23TEOE17	1	1	1	1	1	1
1 – Slight, 2 –	Moderate, 3 -	- Substantial	13.02.24		•	

Assessment patter	Assessment pattern – theory									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	30	30	20	20	-	-	100			
CAT2	30	30	20	20	-	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	35	25	20	20	-	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	25	20	25	-	-	100			
ESE	20	30	30	20	-	-	100			

22TEOE18
221E0E10

GREEN SUPPLY CHAIN MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	To make the students learn and focus on the fundamental stra	tegies, tools and								
Objective	techniques required to analyze and design environmentally sustain	0								
,	systems.	11.5								
UNIT – I	INTRODUCTION	9 Periods								
Intro to SCM -	- complexity in SCM, Facility location - Logistics – Aim, activities, imp	ortance, progress,								
current trends	current trends - Integrating logistics with an organization.									
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT	9 Periods								
Basic concept	s of supply chain management - Supply chain operations – Plannir	ng and sourcing -								
Making and d	elivering - Supply chain coordination and use of technology - Develo	ping supply chain								
systems.										
UNIT – III	PLANNING THE SUPPLY CHAIN	9 Periods								
Types of decis	Types of decisions – strategic, tactical, operational - Logistics strategies, implementing the strategy -									
Planning reso	urces – types, capacity, schedule, controlling material flow, measuring	ng and improving								
performance.	77									
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN	9 Periods								
Procurement	- cycle, types of purchase - Framework of e-procurement - Invento	ry management –								
EOQ, uncertai	n demand and safety stock, stock control - Material handling – Purp	ose of warehouse								
and ownershi	p, layout, packaging - Transport – mode, ownership, vehicle routin	g and scheduling								
models- Trave	lling salesman problems - Exact and heuristic methods.									
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATEGIES	9 Periods								
Five key confi	guration components - Four criteria of good supply chain strategies	- Next generation								
strategies- No	ew roles for end-to-end supply chain management - Evolution	of supply chain								
organization -	International issues in SCM – Regional differences in logistics.									
Contact Perio	ods:									
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods								

TEXT BOOK:

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply
	Chain Management", Routledge, 1st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta,"Green Supply Chain Management: Product Life Cycle
	Approach",McGraw-Hill Education, 1 st Edition, 2011.

1	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1stEdition, 2017.								
2	Arunachalam Rajagopal,"Green Supply Chain Management: A Practical Approach", Replica,								
	2021.								
3	Mehmood Khan, Matloub Hussain and Mian M. Ajmal,"Green Supply Chain Management for								
	Sustainable Business Practice", IGI Global, 1st Edition, 2016.								
4	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.								
5	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction",								
	Routledge, 1 st Edition, 2017.								

COURSE	OUTCOMES:	Bloom's
Unon con	enletion of the source the students will be able to	Taxonomy
Upon con	npletion of the course, the students will be able to:	Mapped
C01	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and	К5
	operational decisions.	КЭ
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	КЗ
C04	Analyze inventory management models and dynamics of supply chain.	K4
C05	Identify issues in international supply chain management and outsources strategies.	КЗ

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	1	1	1	1	1	3		
CO2	2	2	1	1	1	1		
CO3	2	1	2	1	1	1		
CO4	2	2	1	1	2	2		
CO5	1	1	2	1	1	3		
23TEOE18	2	1	1	1	1	2		

Assessment pat	Assessment pattern – theory									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	25	25	30	10	10	-	100			
CAT2	30	40	20	10	-	-	100			
Individual										
Assessment 1 /										
Case Study 1 /	30	20	25	15	10	-	100			
Seminar 1 /										
Project 1										
Individual										
Assessment 2 /										
Case Study 2 /	35	30	25	10	-	-	100			
Seminar 2 /										
Project 2										
ESE	30	30	20	10	10	-	100			

DISTRIBUTION AUTOMATION SYSTEM

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	To study about the distributed automation and economic evaluation schemes	of power			
Objectives	Objectives network				
UNIT – I	INTRODUCTION	9 Periods			
Introduction to	Distribution Automation (DA) - Control system interfaces- Control and data re	quirements-			
Centralized (vs) decentralized control- DA system-DA hardware-DAS software.				
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods			
DA capabilitie	es - Automation system computer facilities- Management processes-	Information			
management- S	System reliability management- System efficiency management- Voltage manag	ement- Load			
management.					
UNIT – III	COMMUNICATION SYSTEMS	9 Periods			
Communication	n requirements - reliability- Cost effectiveness- Data requirements- Two wa	y capability-			
Communication	n during outages and faults - Ease of operation and maintenance- Confor	ming to the			
architecture of	flow. Distribution line carrier- Ripple control-Zero crossing technique- Telepho	one, cableTV,			
radio, AM broa	dcast, FM SCA,VHF radio, microwave satellite, fiber optics-Hybrid communica	tion systems			
used in field te	sts.				
UNIT – IV	ECONOMIC EVALUATION METHODS	9 Periods			
Development a	and evaluation of alternate plans- select study area - Select study period-	Project load			
growth-Develo	p alternatives- Calculate operating and maintenance costs-Evaluate alternative	s.			
UNIT – V	ECONOMIC COMPARISON	9 Periods			
Economic com	parison of alternate plans-Classification of expenses - capital expenditures-Co	mparison of			
revenue requir	rements of alternative plans-Book life and continuing plant analysis- Year by y	vear revenue			
requirement a	requirement analysis, Short term analysis- End of study adjustment-Break even analysis, sensitivity				
analysis - Com	putational aids.				
Contact Perio	ds:				
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications,
	Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design",
	Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE
	Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society.
	Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	К2
CO3	Perform detailed analysis of communication systems for distributed	К3
	automation.	
C04	Study the economic evaluation method	K4
C05	Understand the comparison of alternate plans	K5

Course Articulation Matrix

COs/Pos	P01	PO2	P03	P04
C01	2	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	3	1.3000	3	1
C05	2	Sec. and	1	2
23PS0E19	3		3	2
1 – Slight, 2 – Moderate, 3 – Subs	tantial			•

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test /	Rememberin	Understandin	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	g (K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*			1. St. C				
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	10%	30%	20%	20%	-	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	10%	20%	20%	-	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	20%	20%	20%	10%	-	100%

23PSOE20

ELECTRICITY TRADING AND ELECTRICITY ACTS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	To acquire expertise on Electric supply and demand of Indian Grid, gain e	exposure on		
Objectives	ectives energy trading in the Indian market and infer the electricity acts and regulatory			
	authorities.			
UNIT – I	ENERGY DEMAND	9 Periods		
Basic concepts	in Economics - Descriptive Analysis of Energy Demand - Decomposition A	nalysis and		
Parametric Ap	proach - Demand Side Management - Load Management - Demand Side Ma	anagement -		
Energy Efficien	cy - Rebound Effect			
UNIT – II	ENERGY SUPPLY	9 Periods		
Supply Behavio	or of a Producer - Energy Investment - Economics of Non-renewable Resources	- Economics		
of Renewable I	Energy Supply Setting the context - Economics of Renewable Energy Supply - E	conomics of		
Electricity Supp	ply			
UNIT – III	ENERGY MARKET	9 Periods		
Perfect Compe	tition as a Market Form - Why is the Energy Market not Perfectly Competitiv	ve? - Market		
Failure and Mo	nopoly - Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC Era II - Oil Market: O	PEC		
UNIT – IV	LAW ON ELECTRICITY	9 Periods		
Introduction o	f the Electricity Law; Constitutional Design - Evolution of Laws on Electr	icity Salient		
Features of Ele	ctricity Act, 2003 - Evolution of Laws on Electricity - Salient Features of the El	ectricity Act		
2003				
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT	9 Periods		
Regulatory Cor	nmissions - Appellate Tribunal - Other Institutions under the Act - Electricity (A	mendment)		
Bill 2020/202	1. A Critical Comment - Renewable Energy - Role of Civil Society; Commen	nts on Draft		
Din 2020/202				
Renewable Ene	ergy Act, 2015			
-				

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy" , Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018

4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands,
	2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	Practices" , Cambridge Univesity Press, 2014.

COURS	COURSE OUTCOMES:		
Upon c	Mapped		
C01	Describe electric supply and demand of power grid	K1	
C02	Summarize various energy trading strategies	K2	
CO3	Relate the electricity acts practically	КЗ	
C04	Cite the electricity regulatory authorities	K2	
C05	Analyze/check the existing power grid for its technical and economical	K4	
	sustainability		

Course Articulation Matrix				
COs/Pos	P01	P02	P03	P04
C01	3		3	3
C02	3		1	1
CO3	3	A l	2	2
C04	3	((0),)-	1	2
CO5	3		3	3
23PSOE20	3	1	2	2
1 – Slight, 2 – Moderate, 3 – Sub	stantial	10000	1	1

ASSESSMENT	PATTERN – THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	30%	20%	-	-	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2			and the second s				
ESE	30%	30%	Surger State	20%	20%	-	100%

23PSOE21

MODERN AUTOMOTIVE SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	C
NIL	OE	3	0	0	3

Course	To expose the students with theory and applications of Automotive Electrical	and				
Objectives	Electronic Systems.					
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS	9 Periods				
Introduction to modern automotive systems and need for electronics in automobiles- Role of electronics						
and microcon	trollers- Sensors and actuators- Possibilities and challenges in automotiv	ve industry-				
Enabling techn	ologies and industry trends.					
UNIT – II	SENSORS AND ACTUATORS	9 Periods				
Introduction-	basic sensor arrangement- Types of sensors- Oxygen sensor, engine cranks	haft angular				
position senso	r – Engine cooling water temperature sensor- Engine oil pressure sensor- Fu	el metering-				
vehicle speed	sensor and detonation sensor- Pressure Sensor- Linear and angle sensors- F	'low sensor-				
Temperature a	nd humidity sensors- Gas sensor- Speed and Acceleration sensors- Knock sen	sor- Torque				
sensor- Yaw ra	te sensor- Tyre Pressure sensor- Actuators - Stepper motors – Relays.					
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE	9 Periods				
Electronic Tra	nsmission Control - Digital engine control system: Open loop and close l	oop control				
systems- Engin	e cooling and warm up control- Acceleration- Detonation and idle speed contr	ol - Exhaust				
emission contr	ol engineering- Onboard diagnostics- Future automotive powertrain systems.					
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SYSTEMS	9 Periods				
Cruise Contro	l- Anti-lock Braking Control- Traction and Stability control- Airbag cont	rol system-				
Suspension cor	ntrol- Steering control- HVAC Control.					
UNIT – V	ELECTRONIC CONTROL UNITS (ECU)	9 Periods				
Introduction to	b Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotiv	ves - Design				
complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166						
-	Tricore) used in the design of automobile ECUs- On chip peripherals, protoco	ol interfaces,				
analog and digi	tal interfaces.					
Contact Perio						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John
	Wiley and Sons, 2001.
2	M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE
	Press, series on Power Engineering, 2000.
3	Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power
	SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
4	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COURS	Bloom's Taxonomy	
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering applications	K4
CO4	Develop modern automotive control system for electrical and electronics systems	K6
CO5	Understand the function of sensors and actuators	К2

Course Articulation Matrix				
COs/Pos	P01	P02	P03	P04
C01	3	-	1	3
CO2	3	a Roman	3	2
CO3	3		3	2
CO4	2		3	1
CO5	2		1	2
23PS0E21	3		2	2
1 – Slight, 2 – Moderate, 3 – Sub	ostantial	11		
	8	14		

ASSESSMENT	PATTERN – THE	ORY	1000				
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	-	20%	-	30%	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	30%	20%	20%	-	-	100%

23PEOE22

VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To comprehend the Virtual instrumentation programming concepts towards me	easurements
Objectives	and control and to instill knowledge on DAQ, signal conditioning and its associa	ted software
	tools	
UNIT – I	INTRODUCTION	7 Period
Introduction ·	- advantages - Block diagram and architecture of a virtual instrument - (Conventiona
Instruments v	ersus Traditional Instruments - Data-flow techniques, graphical programming	in data flow
comparison wi	ith conventional programming.	
UNIT – II	GRAPHICAL PROGRAMMING AND LabVIEW	9 Period
Concepts of gr	aphical programming - LabVIEW software - Concept of VIs and sub VI - Display ty	ypes - Digita
- Analog - Cha	rt and Graphs. Loops - structures - Arrays – Clusters- Local and global variabl	es – String
Timers and dia	alog controls.	
UNIT – III	MANAGING FILES & DESIGN PATTERNS	11 Period
High lovel and	low-level file I/O functions available in LabVIEW – Implementing File I/O functions	tiona to noo
ingli-level and	10w-level me 1/0 functions available in Labview – implementing rile 1/0 functions	tions to reat
-	a to files – Binary Files – TDMS – sequential programming – State machine pro	
and write data		gramming -
and write data	a to files – Binary Files – TDMS – sequential programming – State machine pro	gramming -
and write data Communicatio	a to files – Binary Files – TDMS – sequential programming – State machine pro	ogramming - sumer design
and write data Communicatio patterns UNIT – IV	a to files – Binary Files – TDMS – sequential programming – State machine pro n between parallel loops –Race conditions – Notifiers & Queues – Producer Cons	ogramming - oumer design 9 Periods
and write data Communicatio patterns UNIT – IV Introduction t	a to files – Binary Files – TDMS – sequential programming – State machine pro n between parallel loops –Race conditions – Notifiers & Queues – Producer Cons PC BASED DATA ACQUISITION	ogramming - sumer design 9 Periods Resolution,
and write data Communicatio patterns UNIT – IV Introduction t analog inputs	a to files – Binary Files – TDMS – sequential programming – State machine pro on between parallel loops –Race conditions – Notifiers & Queues – Producer Cons PC BASED DATA ACQUISITION to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, D	ogramming - cumer design 9 Periods Resolution, cimers, DMA
and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio	a to files – Binary Files – TDMS – sequential programming – State machine pro in between parallel loops –Race conditions – Notifiers & Queues – Producer Cons PC BASED DATA ACQUISITION to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, I and outputs - Single-ended and differential inputs - Digital I/O, counters and t	ogramming - cumer design 9 Period s Resolution, cimers, DMA
and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio	a to files – Binary Files – TDMS – sequential programming – State machine pro on between parallel loops –Race conditions – Notifiers & Queues – Producer Cons PC BASED DATA ACQUISITION to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, I and outputs - Single-ended and differential inputs - Digital I/O, counters and t on interface requirements - Issues involved in selection of Data acquisition ca	ogramming - cumer design 9 Periods Resolution, cimers, DMA
and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V	a to files – Binary Files – TDMS – sequential programming – State machine pro- on between parallel loops –Race conditions – Notifiers & Queues – Producer Conservations – Notifiers & Queues – Producer Conservation of Acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, I and outputs - Single-ended and differential inputs - Digital I/O, counters and to on interface requirements - Issues involved in selection of Data acquisition ca and analog outputs on the universal DAQ card.	ogramming - sumer design 9 Period Resolution, cimers, DMA ards - Use o 9 Period
and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V Components o	a to files – Binary Files – TDMS – sequential programming – State machine pro in between parallel loops –Race conditions – Notifiers & Queues – Producer Cons PC BASED DATA ACQUISITION to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, I and outputs - Single-ended and differential inputs - Digital I/O, counters and to on interface requirements - Issues involved in selection of Data acquisition ca and analog outputs on the universal DAQ card. DATA ACQUISITION AND SIGNAL CONDITIONING	ogramming sumer design 9 Period Resolution, timers, DMA ards - Use o 9 Period hardware
and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V Components of Measurement	a to files – Binary Files – TDMS – sequential programming – State machine pro- on between parallel loops –Race conditions – Notifiers & Queues – Producer Conservation of PC BASED DATA ACQUISITION to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, I and outputs - Single-ended and differential inputs - Digital I/O, counters and to on interface requirements - Issues involved in selection of Data acquisition ca and analog outputs on the universal DAQ card. DATA ACQUISITION AND SIGNAL CONDITIONING of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ	ogramming umer design 9 Period Resolution, timers, DMA ards - Use o 9 Period hardware generation
and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V Components of Measurement Signal conditio	a to files – Binary Files – TDMS – sequential programming – State machine pro- n between parallel loops –Race conditions – Notifiers & Queues – Producer Conservation of PC BASED DATA ACQUISITION to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, I and outputs - Single-ended and differential inputs - Digital I/O, counters and to on interface requirements - Issues involved in selection of Data acquisition ca and analog outputs on the universal DAQ card. DATA ACQUISITION AND SIGNAL CONDITIONING of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ of analog signal with Finite and continuous buffered acquisition- analog output	ogramming - sumer design 9 Period s Resolution, cimers, DMA ards - Use o 9 Period s hardware - generation -
and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V Components of Measurement Signal conditio	a to files – Binary Files – TDMS – sequential programming – State machine pro- n between parallel loops –Race conditions – Notifiers & Queues – Producer Conse PC BASED DATA ACQUISITION to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, I and outputs - Single-ended and differential inputs - Digital I/O, counters and to on interface requirements - Issues involved in selection of Data acquisition ca and analog outputs on the universal DAQ card. DATA ACQUISITION AND SIGNAL CONDITIONING of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ of analog signal with Finite and continuous buffered acquisition- analog output oning systems – Synchronizing measurements in single & multiple devices – Po- Electrical Power Measurement tool kit.	ogramming umer design 9 Period Resolution, timers, DMA ards - Use o 9 Period hardware generation

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010

3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation
	and Control", Newness, 2000

Kevin James, "**PC Interfacing** and Control", Newness, 2000

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	К6
C05	Familiarize and experiment with DAQ and Signal Conditioning	КЗ

Course Articulation Matrix)							
COs/POs	P01	PO2	P03	P04	P05		
C01	3	1	3	2	1		
CO2	3	1 1661	3	2	1		
CO3	3	1000	2	2	2		
CO4	3	1	3	3	1		
C05	3	1	3	3	2		
23PEOE22	3	a state and	3	2	1		

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	30	40	15	15	-	-	100			
CAT2	15	10	25	30	20	-	100			
Individual	10	10	20	30	20	10	100			
Assessment1										
/ Case										
study1/										
Seminar										
1/Project1										
Individual	25	40	20	15	-	-	100			
Assessment2										
/ Case										
study2/										
Seminar 2										
/Project2			and the second							
ESE	30	25	15	20	5	5	100			

ENERGY MANAGEMENT SYSTEMS (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

C		1 .					
Course	To Comprehend energy management schemes, perform energy audit a	and execute					
Objectives	economic analysis and load management in electrical systems.						
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT	9 Periods					
Energy Conser	vation Act 2001 and policies – Eight National Missions - Basics of Energy at	nd its forms					
(Thermal and	(Thermal and Electrical) - Energy Management and Audit - Energy Managers and Auditors - Types and						
Methodology A	Audit Report - Material and energy balance diagramsEnergy Monitoring and	Гargeting.					
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENERATION	9 Periods					
Boiler Systems	- Types - Performance Evaluation of boilers - Energy Conservation Opportu	nity - Steam					
Distribution - I	Efficient Steam Utilisation - Furnaces:types and classification - Performance ev	aluation of a					
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technical options - classification	ı - Technical					
parameters and	d factors influencing cogeneration choice - Prime Movers - Trigeneration.						
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS	9 Periods					
Electricity Billi	ng – Electricity load management - Maximum Demand Control - Power Factor in	nprovement					
and its benefit	ts - pf controllers - capacitors - Energy efficient transformers and Inducti	on motors -					
rewinding and	l other factors influencing energy efficiency - Standards and labeling pro	ogramme of					
distribution tra	insformers and IM - Analysis of distribution losses - demand side management	- harmonics					
- filters - VFD a	and its selection.						
UNIT – IV	STUDY OF ELECTRICAL UTILITIES	9 Periods					
Compressor ty	pes - Performance - Air system components - Efficient operation of compressed	air systems-					
Compressor ca	apacity assessment - HVAC: psychrometrics and air-conditioning processes	- Types of					
refrigeration s	ystem - Compressor types and applications - Performance assessment of a	refrigeration					
plants - Lightin	g Systems: Energy efficient lighting controls - design of interior lighting - Case s	tudy.					
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMENT	9 Periods					
Performing Fin	nancial analysis: Fixed and variable costs – Payback period – ROI - metho	ds – factors					
affecting analys	affecting analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy						
Conservation in	n buildings and ECBC.						
Contact Perio	ds:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
L							

1	Murphy W.R. and G.Mckay Butter worth , "Energy Management", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
	Prakashan Publications, 2021.

5 w	ww.em-ea.org/gbook1.asp	
COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze the feature of energy audit methodology and documentation of report.	КЗ
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
C04	Familiarize with electrical utilities.	К4
C05	Perform assessment of different systems.	K5

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	P05			
C01	3	2	2	1	1			
CO2	3	2	2	1	1			
C03	3	2	2	1	1			
CO4	3	2	2	1	1			
C05	3	2	2	1	1			
23PE0E23	3	2	2	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								
		1						
	THEODY	1200 34	1					

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	10	30	30	20	10	-	100			
CAT2	10	30	30	20	10	-	100			
Individual Assessment1 / Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100			
Individual Assessment2 / Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100			
ESE	10	30	30	20	10	-	100			

ADVANCED ENERGY STORAGE TECHNOLOGY ((

23PEOE24

Common	to	all	Bran	ches)	
Gommon	$\iota \upsilon$	un	Drun	Chicoj	

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course • To explore the fundamentals, technologies and applications of energy storage Objective • To explore the fundamentals, technologies and applications of energy storage								
UNIT – I ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND 9	9 Periods							
CHANGES								
Storage Needs- Variations in Energy Demand- Variations in Energy Supply- Interruptions in	n Energy							
Supply- Transmission Congestion - Demand for Portable Energy-Demand and scale require	ements -							
Environmental and sustainability issues-conventional energy storage methods: battery-types.								
UNIT - IITECHNICAL METHODS OF STORAGE9	9 Periods							
Introduction: Energy and Energy Transformations, Potential energy (pumped hydro, compre	essed air,							
springs)- Kinetic energy (mechanical flywheels)- Thermal energy without phase change passive	e (adobe)							
and active (water)-Thermal energy with phase change (ice, molten salts, steam)- Chemica	al energy							
(hydrogen, methane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electrostat	tic energy							
(capacitors), Electromagnetic energy (superconducting magnets)- Different Types of Energy	y Storage							
Systems.								
UNIT - III PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS 9	9 Periods							
Energy capture rate and efficiency- Discharge rate and efficiency- Dispatch ability and load	d flowing							
characteristics, scale flexibility, durability - Cycle lifetime, mass and safety - Risks of fire, e	explosion,							
toxicity- Ease of materials, recycling and recovery- Environmental consideration and recycling , M	lerits and							
demerits of different types of Storage.								
UNIT – IV APPLICATION CONSIDERATION 9	9 Periods							
Comparing Storage Technologies- Technology options- Performance factors and metrics- Efficiency	ciency of							
Energy Systems- Energy Recovery - Battery Storage System: Introduction with focus on Lead	Acid and							
Lithium- Chemistry of Battery Operation, Power storage calculations, Reversible reactions,	Charging							
patterns, Battery Management systems, System Performance, Areas of Application of Energy	Storage:							
Waste heat recovery, Solar energy storage, Green house heating, Power plant applications, Dr								
heating for process industries, energy storage in automotive applications in hybrid and electric ve	ehicles.							
	9 Periods							
Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation	-							
capacitors: properties, power calculations - Operation and Design methods - Hybrid Energy	0							
Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation)	-							
"Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation)								
Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric	Vehicles,							
Regenerative Power, capturing methods.								
Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								

REFERENCES :

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley,							
	2010.							
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy							
	Storage and Conversion", John Wiley and Sons, 2012.							
3	3 Francois Beguin and ElzbietaFrackowiak, " Super capacitors ", Wiley, 2013.							
4	Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The							
	Electrochemical Society, New Jersy, 2010.							

COURSE OUTCOMES:

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
C05	Outline the basics of Hydrogen cell and flow batteries.	K2

Course Articulation Matri	X				
COs/POs	P01	P02	P03	P04	PO5
C01	3	C3-1-57	3	3	3
CO2	3	1	3	3	3
CO3	3	17	3	3	3
CO4	3	1	3	3	3
C05	3	1	3	3	3
23PEOE24	3	21	3	3	3
1 – Slight, 2 – Moderate, 3 –	Substantial	la de	19	•	·

ASSESSMENT	PATTERN – THE	ORY	Street.				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23AE0E25

DESIGN OF DIGITAL SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective

To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential • circuits, PLD's and the basic concepts of testing in VLSI circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods					
Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment,						
Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart –ASM realization.						
UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods					
Analysis of Asynchronous Sequential Circuits - Races in ASC – Primitive Flow Table - Flow Table Reduction						
Techniques, State Assignment Problem and the Transition Table – Design of ASC – Static and	d Dynamic					

s, State Assignment Problem and the Transition Table – Design of ASC Static and Dynamic Hazards – Essential Hazards– Data Synchronizers. **UNIT-III SYSTEM DESIGN USING PLDS** 9 Periods

Basic concepts - Programming Technologies - Programmable Logic Element (PLE) - Programmable Array Logic (PLA)-Programmable Array Logic (PAL) -Design of combinational and sequential circuits using PLDs-Complex PLDs (CPLDs).

9 Periods

UNIT- IV INTRODUCTION TO VHDL

Design flow -Software tools - VHDL: Data Objects-Data types - Operators -Entities and Architectures

- Components and Configurations - Signal Assignment - Concurrent and Sequential statements -- Behavioral, Dataflow and Structural modeling- Transport and Inertial delays -Delta delays-Attributes - Generics-Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

9 Periods Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

2.8.10 00110 01101				
Contact Periods:				
Lecture:45Periods	Tutorial:0Periods	Practical: 0Periods	Total: 45Periods	

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL",PHILearning,2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage2ndEdition2012.
6	NripendraN.Biswas, "Logic Design Theory" PrenticeHallofIndia, 2001.

COUR	SEOUTCOMES:	Bloom's Taxonomy Mapped
	Upon completion of the course ,students will be able to/have:	Mappeu
C01	To design synchronous sequential circuits based on specifications.	КЗ
CO2	To design asynchronous sequential circuits based on specifications	КЗ
CO3	Ability to illustrate digital design implementation using PLDs.	K2
C04	To develop algorithm and VHDL code for design of digital circuits.	КЗ
C05	Understand the different testing methods for combinational and sequential	K2
	circuits.	

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
23AEOE25	3	-	2		-	1
	. 1	– Slight, 2 – N	Moderate, 3 – S	ubstantial	•	•
			NAT	7		

Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	20%	45%	35%				100%

BASICS OF NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course Objective	
The students will be able to acquire knowledge about nano device fabricat	ion technology, nano
structures, nano technology for memory devices and applications of nano	o electronics in data
transmission.	
UNIT – I TECHNOLOGY AND ANALYSIS	9 Periods
Fundamentals : Dielectric, Ferroelectric and Optical properties - Film Deposition Me	thods – Lithography
Material removing techniques - Etching and Chemical Mechanical Polishing	- Scanning Probe
Techniques.	
UNIT – II CARBON NANO STRUCTURES	9 Periods
Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mecha	anical and Vibration
Properties - Applications of Carbon Nano tubes.	
UNIT – III LOGIC DEVICES	9 Periods
Silicon MOSFET's: Novel materials and alternative concepts - Single electron	devices for logic
applications - Super conductor digital electronics - Carbon Nano tubes for data process	ing.
UNIT – IV MEMORY DEVICES AND MASS STORAGE DEVICES	9 Periods
Flash memories - Capacitor based Random Access Memories - Magnetic Random	Access Memories -
Information storage based on phase change materials - Resistive Random Access Mer	nories - Holographic
Data storage.	
UNIT - V DATA TRANSMISSION AND INTERFACING DISPLAYS	9 Periods
Photonic Networks - RF and Microwave Communication System - Liquid Crysta	l Displays - Organic
Light emitting diodes.	
Contact Periods:	
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	
	erioas

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, students will be able to/have:	Mapped
C01	Explain principles of nano device fabrication technology.	К2
C02	Describe the concept of Nano tube and Nano structure.	К2
CO3	Explain the function and application of various nano devices	КЗ
C04	Reproduce the concepts of advanced memory technologies.	К2
C05	Emphasize the need for data transmission and display systems.	К2

COs/POs	P01	P02	P03	P04	P05	P06					
C01	3	-	2	-	-	1					
CO2	3	-	2	-	-	1					
CO3	3	-	2	-	-	1					
CO4											
CO5	3	-	2	12-00	-	1					
23AEOE26 3 - 2 - 1											
			N	11							

ASSESSMENT P	ATTERN – THEOR	Y					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creati ng (K6) %	Total %
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

	ADVANCED PRO	CESSOR				
23AE0E27	(Common to all Bi	ranches)				
PREREQUISITES		CATEGORY	L	Т	Р	С
NIL		OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT – I MICROPROCESSOR ARCHITECTURE

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISCversus CISC – RISC properties – RISC evaluation.

9 Periods

9 Periods

UNIT – II HIGH PERFORMANCE CISC ARCHITECTURE –PENTIUM	9 Periods
The software model - functional description - CPU pin descriptions - Addressing modes - Pro	cessor flags –
Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – T	heinstruction
and caches – Floating point unit– Programming the Pentium processor.	

UNIT – III HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM INTERFACE	9 Periods
Protected mode operation – Segmentation – paging – Protection – multitasking – Exception and in	nterrupts
- Input /Output – Virtual 8086 model – Interrupt processing.	

UNIT - IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM9 PeriodsARM architecture - ARM assembly language program - ARM organization and implementation - ARMand implementation - ARMinstruction set - Thumb instruction set.and implementation - ARM

UNIT – V SPECIAL PURPOSE PROCESSORS

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor –Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System -On -Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COURS	SE OUTCOMES:	Bloom's
Upon c	completion of the course, students will be able to	Taxonomy
		Mapped
C01	Describe the fundamentals of various processor architecture.	K2
C02	Interpret and understand the high performance features in CISC	K2
	architecture.	
CO3	Describe the concepts of Exception and interrupt processing.	K2
C04	Develop programming skill for ARM processor.	К3
C05	Explain various special purpose processor	K2

CO1 3 - 2 - - 1 CO2 3 - 2 - - 1 CO3 3 - 2 - - 1 CO4 3 - 2 - - 1 CO5 3 - 2 - - 1 Z3AEOE27 3 - 2 - - 1	COs/POs	P01	P02	P03	P04	PO5	P06
CO2 3 - 2 - - 1 CO3 3 - 2 - - 1 CO4 3 - 2 - - 1 CO5 3 - 2 - - 1 23AEOE27 3 - 2 - - 1	003/103	101	102	105	104	105	100
CO3 3 - 2 - - 1 CO4 3 - 2 - - 1 CO5 3 - 2 - - 1 23AEOE27 3 - 2 - - 1	C01	3	-	2	-	-	1
CO4 3 - 2 - - 1 CO5 3 - 2 - - 1 23AEOE27 3 - 2 - - 1	CO2	3	-	2	-	-	1
CO5 3 - 2 - 1 23AEOE27 3 - 2 - - 1	CO3	3	-	2	-	-	1
23AEOE27 3 - 2 1	CO4	3	-	2	-	-	1
	C05	3	-	2	-	-	1
Clight 2 Moderate 2 Substantial	23AEOE27	3	a.033	2	-	-	1
Siigiit, 2 - Mouerate, 5 - Substantia	1 – Slight, 2 – Moderate,	, 3 – Substant	tial	22.55		•	•

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	30%	40%	30%				100%

HDL PROGRAMMING LANGUAGES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	• To code and simulate any digital function in Verilog HDL and	understand the
Objective	difference between synthesizable and non-synthesizable code	s.
UNIT – I	VERILOG INTRODUCTION AND MODELING	9 Periods
Introduction t	l to Verilog HDL, Language Constructs and Conventions, Gate Level Mod	eling, Modeling
at Dataflow I	Level, Behavioral Modeling, Switch Level Modeling, System Tasks,	Functions and
Compiler Dire	ctives.	
UNIT – II	SEQUENTIAL MODELING AND TESTING	9 Periods
Sequential Mo	dels - Feedback Model, Capacitive Model, Implicit Model, Basic Memor	y Components,
Functional Re	egister, Static Machine Coding, Sequential Synthesis. Test Bench -	Combinational
Circuits Testin	ng, Sequential Circuit Testing, Test Bench Techniques, Design Verifica	tion, Assertion
Verification.		
UNIT – III	SYSTEM VERILOG	9 Periods
Introduction.	System Verilog declaration spaces, System Verilog Literal Values an	d Built-in Data
	Verilog User-Defined and Enumerated Types, system Verilog Arrays,	
	n verilog Procedural Blocks, Tasks and Functions.	
UNIT – IV	SYSTEM VERILOG MODELING	9 Periods
System Verilo	g Procedural Statements, Modeling Finite State Machines with Sys	stem Verilog,
	g Design Hierarchy.	0,
UNIT – V	INTERFACES AND DESIGN MODEL	9 Periods
	g Interfaces, A Complete Design Modeled with System Verilog, I	Behavioral and
		Behavioral and
System Verilo	evel Modeling.	3ehavioral and

1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL ",Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of
	Projects on FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to
	Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Explain the verilog coding and simulate any digital function using	K2
	Verilog HDL	
CO2	Develop sequential modeling based Verilog HDL code and develop	КЗ
	the test bench for the modeling	
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	КЗ
CO5	Apply good coding techniques on system verilog interfaces and	КЗ
	complete design model	

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3		2		2
CO2	3	3		2		2
CO3	3	3		2		2
CO4	3	3		2		2
CO5	3	3	S. C. Born	2		2
23VLOE28	3	3		2		2
1 – Slight, 2 – Mod	erate, 3 – Sub	stantial	and the second	0		

ASSESSMEN	Г PATTERN – THE	ORY					
Test / Bloom's	Remembering (K1) %	Understandin g (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		101	present a				
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

CMOS VLSI DESIGN

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To gain knowledge on CMOS Circuits with its characterization a	and to design
Objective	CMOS logic and sub-system with low power	0
UNIT – I	INTRODUCTION TO MOS CIRCUITS	9 Periods
MOS Transisto	r Theory -Introduction MOS Device Design Equations -MOS Transistor as	s a Switches -
Pass Transisto	or - CMOS Transmission Gate -Complementary CMOS Inverter - Stati	c Load MOS
Inverters - Inve	erters with NMOS loads - Differential Inverter - Tri State Inverter - BiCMO	OS Inverter.
UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Periods
Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizin	g Routing
Conductors, Ch	arge Sharing, Design Margin and Reliability.	
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Periods
CMOS Logic G	ate Design, Physical Design of CMOS Gate, Designing with Transmiss	sion Gates,
CMOS Logic Str	ructures, Clocking Strategies, I/O Structures.	
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods
DataPath Oper	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,
Binary Counte	ers, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Con	
-		itrol Logic
Implementatio		itrol Logic
-		ntrol Logic 9 Periods
Implementatio UNIT – V	n	9 Periods
Implementatio UNIT – V Introduction t	n. LOW POWER CMOS VLSI DESIGN	9 Periods
Implementatio UNIT – V Introduction t CMOS, Low-Po	n. LOW POWER CMOS VLSI DESIGN o Low Power Design, Power Dissipation in FET Devices, Power Diss	9 Periods sipation in S Circuits,
Implementatio UNIT – V Introduction t CMOS, Low-Pe Architectural L	n. LOW POWER CMOS VLSI DESIGN o Low Power Design, Power Dissipation in FET Devices, Power Diss ower Design through Voltage Scaling – VTCMOS Circuits, MTCMO	9 Periods sipation in S Circuits,
Implementatio UNIT – V Introduction t CMOS, Low-Po Architectural L CMOS Gate and	n. LOW POWER CMOS VLSI DESIGN o Low Power Design, Power Dissipation in FET Devices, Power Diss ower Design through Voltage Scaling – VTCMOS Circuits, MTCMO evel Approach – Pipelining and Parallel Processing Approaches, Low Po Adder Design.	9 Periods sipation in S Circuits,
Implementatio UNIT – V Introduction t CMOS, Low-Po Architectural L CMOS Gate and Contact Perio	n. LOW POWER CMOS VLSI DESIGN o Low Power Design, Power Dissipation in FET Devices, Power Diss ower Design through Voltage Scaling – VTCMOS Circuits, MTCMO Level Approach – Pipelining and Parallel Processing Approaches, Low Po d Adder Design. ds:	9 Periods sipation in S Circuits, wer Basics
Implementatio UNIT – V Introduction t CMOS, Low-Po Architectural L CMOS Gate and	n. LOW POWER CMOS VLSI DESIGN o Low Power Design, Power Dissipation in FET Devices, Power Diss ower Design through Voltage Scaling – VTCMOS Circuits, MTCMO evel Approach – Pipelining and Parallel Processing Approaches, Low Po Adder Design. ds:	9 Periods sipation in S Circuits, wer Basics

1	Sung Mo Kang,Yusuf Lablebici,"CMOS Digital Integrated Circuits:Analysis & Design", Tata Mc-
	Graw Hill, 2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley,1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo,Kaushik Roy,"Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M.Rabaey, "Digital Integrated Circuits: A Design Perspective" , Pearson Education, 2003.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Explain the MOS circuits and Transmission gates	K2
C02	Illustrate the CMOS Circuits with its characterization	K2
C03	Design CMOS logic circuits	КЗ
C04	Design CMOS sub-system	КЗ
C05	Discuss low power CMOS VLSI Design	K2

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	2	1	-	2	-	3	
CO2	2	1	-	2	-	3	
CO3	2	1	-	2	-	3	
CO4	3	1	-	2	-	3	
CO5	3	1	-	2	-	3	
23VLOE29	3	1	-15 a 32-	2	-	3	
1 – Slight, 2 – Mod	erate, 3 – Sub	stantial		25		•	

1 - Slight, 2	2 – Moderate, 3 –	Substantial	Card Cardo	<u>8</u> 0			İ
			T	7			
ASSESSMENT	PATTERN – TH	EORY	CALL N				
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		80	Sec. and	90 A			
CAT1	40%	40%	20%		-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

HIGH LEVEL SYNTHESIS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	C
NIL	OE	3	0	0	3

Course	• To provide students with foundations in High level synthes	sis, verification
Objective	and CAD Tools	
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS	9 Periods
Overview HLS	flow, Scheduling Techniques, Resource sharing and Binding Techniq	ues, Data-path
and Controller	Generation Techniques.	
UNIT – II	HIGH LEVEL SYNTHESIS	9 Periods
Introduction t	o HDL, HDL to DFG, operation scheduling: constrained and unconstrair	ned scheduling,
ASAP, ALAP, I	ist scheduling, Force directed Scheduling, operator binding, Static Ti.	ming Analysis:
Delay models	, setup time, hold time, cycle time, critical paths, Topological mvs.	Logical timing
analysis, False	paths, Arrival time (AT), Required arrival Time (RAT), Slacks.	
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION	9 Periods
Simulation ba	ased verification - Formal Verification of digital systems- BDD base	ed approaches,
functional equ	ivalence, finite state automata, ω -automata, FSM verification.	
UNIT – IV	CAD TOOLS FOR SYNTHESIS	9 Periods
CAD tools for	synthesis, optimization, simulation and verification of design at variou	s levels as well
as for specia	l realizations and structures such as microprogrammes, PLAs, ga	te arrays etc.
Technology m	apping for FPGAs. Low power issues in high level synthesis and logic sy	nthesis.
UNIT – V	ADVANCED TOPICS	9 Periods
Relative Schee	duling, IO scheduling modes - cycle fixed scheduling modes, super-fix	xed scheduling
modes, free-f	loating scheduling mode, Pipelining, Handshaking, System Desig	gn, High-Level
Synthesis for I	FPGA.	
Contact Perio	bds:	
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	iods

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999,
	Wiley.

8 Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design and Analysis", Springer, 2006.

COUF	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
C01	Understand the fundamentals of High level synthesis	K2	
CO2	Synthesis the HDL for operation scheduling	K2	
CO3	Simulate and verify any digital systems	K2	
C04	Apply CAD tools for synthesis	K2	
C05	Have knowledge on various scheduling modes	K2	

COURSE ARTICULATION MATRIX :

COs/POs	P01	P02	P03	P04	P05	P06
C01	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	Contraction of the second	2	2	-
CO4	2	2		2	2	-
C05	2	2		2	2	-
23VL0E30	2	2	1-1	2	2	-

ASSESSMENT	PATTERN – THE	ORY	120	1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50%	50%	a production and	-	-	-	100%
CAT2	50%	50%		-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE	50%	50%		-	-	-	100%

ARTIFICIAL INTELLIGENCE (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Identify and apply AI techniques in the design of systems that	act intelligently, making			
Objectives	automatic decisions and learn from experience.				
UNIT – I	SEARCH STRATEGIES	9 Periods			
Uninformed	Strategies – BFS, DFS, Djisktra, Informed Strategies – A* search	, Heuristic functions, Hill			
Climbing, Adv	rersarial Search – Min-max algorithm, Alpha-beta Pruning				
UNIT – II	PLANNING AND REASONING	9 Periods			
State Space se	earch, Planning Graphs, Partial order planning, Uncertain Reasoning	– Probabilistic Reasoning,			
Bayesian Net	works, Dempster Shafer Theory, Fuzzy logic				
UNIT – III	PROBABILISTIC REASONING	9 Periods			
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dyr	namic Bayesian Networks.			
Knowledge R	epresentations – Ontological Engineering, Semantic Networks and de	escription logics.			
UNIT – IV	DECISION MAKING	9 Periods			
Utility Theory	r, Utility Functions, Decision Networks – Sequential Decision Proble	ems – Partially Observable			
MDPs – Game	Theory.				
UNIT – V	REINFORCEMENT LEARNING	9 Periods			
Reinforcemer	t Learning - Passive and active reinforcement learning - Gene	rations in Reinforcement			
Learning - Policy Search – Deep Reinforcement Learning.					
Contact Peri	ods:				
Lecture: 3 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

REFERENCES:

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,
	2009.

COUR	Bloom's	
		Taxonomy
Upon	Mapped	
C01	Use search techniques to solve AI problems	К2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	КЗ
CO3	Examine data using statistical codes and solve complex AI problems	К6
C04	Apply techniques to make apt decisions.	K4
C05	Use deep reinforcement learning to solve complex AI problems	К6

COURSE ARTICULATION MATRIX						
COs/ POs	PO 1	P02	PO 3	PO 4	P05	P06
C01	3		2		3	3
CO2	3		2		3	3
CO3	3		3		3	3
CO4	3		3		3	3
C05	3		3		3	3
23CSOE31	3		3		3	3
1 – Slight, 2 – Moo	lerate, 3 –	Substant	tial	-		

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		20	40	20	20		100
CAT2		10	20	40	10	20	100
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1			K A		50	50	100
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2					50	50	100
ESE	30	30	40				100

23CSOE32

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	• After the completion of the course, the students will be	able to understand the			
Objective	concept of layering in networks, functions of protocols of each layer of TCP/IP				
-	protocol suite, concepts related to network addressing and routing and build				
	simple LANs, perform basic configurations for routers and switches, and				
	implement IPv4 and IPv6 addressing schemes using Cisco Packet Tracer.				
UNIT – I	INTRODUCTION AND APPLICATION LAYER	9 Periods			
Building network	- Network Edge and Core – Layered Architecture – OSI Model	- Internet Architecture			
(TCP/IP) Networ	king Devices: Hubs, Bridges, Switches, Routers, and Gateways –	Performance Metrics -			
Ethernet Networ	king – Introduction to Sockets – Application Layer protocols	– HTTP – FTP Email			
Protocols – DNS.					
UNIT – II	TRANSPORT LAYER AND ROUTING	9 Periods			
Transport Layer	functions -User Datagram Protocol - Transmission Control Pro	otocol – Flow Control –			
Retransmission S	Strategies – Congestion Control - Routing Principles – Distance	Vector Routing – Link			
State Routing – R	IP – OSPF – BGP – Introduction to Quality of Service (QoS).Case	Study: Configuring RIP,			
OSPF BGP using F	Packet tracer				
UNIT – III	NETWORK LAYER	9 Periods			
Network Layer: S	witching concepts – Internet Protocol – IPV4 Packet Format – IP A	Addressing – Subnetting			
– Classless Inter I	Domain Routing (CIDR) – Variable Length Subnet Mask (VLSM) –	DHCP – ARP – Network			
Address Translat	ion (NAT) - ICMP - Concept of SDN.Case Study: Configuring V	LAN, DHCP, NAT using			
Packet tracer					
UNIT – IV	INTERNETWORK MANAGEMENT	9 Periods			
Introduction to the Cisco IOS - Router User Interface - CLI - Router and Switch Administrative Functions -					
Router Interfaces - Viewing, Saving, and Erasing Configurations - Switching Services - Configuring					
Switches - Managing Configuration Registers - Backing Up and Restoring IOS - Backing Up and Restoring					
the Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity					
UNIT – V	TRAFFIC MANAGEMENT AND WAN PROTOCOLS	9 Periods			
Managing Traffic with Access Lists: Introduction to Access Lists - Standard Access Lists - Extended Access					
Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to					
Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol -					
Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated					
Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR					
Contact Periods:					
Lecture: 45 Peri					

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh
	Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	npletion of the course, the students will be able to:	Mapped
C01	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	К3
C04	Build simple LANs, perform basic configurations for routers and switches	K6
C05	Illustrate various WAN protocols	K2
		,

COs/POs	P01	P02	P03	P04	P05	P06
C01	3		3	E.S.	2	1
CO2	3		3		2	2
CO3	3		3		3	2
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE32	3		3		3	2

ASSESSMEN	T PATTERN – TH	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	30	20	20			100
CAT2		30	20	30	10	10	100
Individual	10	30	20	20	20		100
Assessment							
1 /Case							
Study 1 /							
Seminar 1 /							
Project 1							
Individual		20	20	20	20	20	100
Assessment							
2 / Case							
Study 2/							
Seminar 2/							
Project 2							
ESE	20	40	40				100

23CSOE 3	22

BLOCKCHAIN TECHNOLOGIES (Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	• The objective of the course is to explore basics of block of	hain technology
Objective	and its application in various domain	0.5
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	9 Period
History of Blo	ockchain - Types of blockchain- CAP theorem and blockchain	- benefits and
Limitations of	Blockchain – Decentalization using blockchain – Blockchain ir	nplementations-
Block chain in	practical use - Legal and Governance Use Cases	
UNIT – II	BITCOIN AND CRYPTOCURRENCY	9 Period
Introduction to	Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	g Developments,
Bitcoin Wallets	s, Decentralization and Hard Forks, Ethereum Virtual Machine (EV	M), Merkle Tree,
Double-Spend	Problem, Blockchain and Digital Currency, Transactional Blo	ocks, Impact of
Blockchain Teo	chnology on Cryptocurrency	
UNIT – III	ETHEREUM	9 Period
Introduction t	o Ethereum, Consensus Mechanisms, Metamask Setup, Ethere	um Accounts, ,
Transactions, H	Receiving Ethers, Smart Contracts	
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAMMING	9 Period
Introduction t	o Hyperledger, Distributed Ledger Technology & its Challenges	s, Hyperledger &
Distributed L	edger Technology, Hyperledger Fabric, Hyperledger Comp	oser. Solidity
Programming	with solidity	
UNIT – V	BLOCKCHAIN APPLICATIONS	9 Period
Ten Steps to bi	uild your Blockchain application - Application: Internet of Things	, Medical Record
Management S	ystem, Domain Name Service and Future of Blockchain, Alt Coins	
Contact Perio	ds:	
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Tota	al: 45 Periods
<u> </u>		
REFERENCES	δ:	
1 Imran Rach	ir, "Mastering Blockchain: Distributed Ledger Technology, Dece	ntralization an

T	initian busini, Mustering biockchum. Discributeu Leuger Technology, Decentrunzation, una
	Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law,
	and Technology Solutions",McGraw Hill Education ,2018.
3	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency
	Technologies: A Comprehensive Introduction" Princeton University Press, 2016.
4	Manav Gupta " Blockchain for Dummies", IBM Limited Edition 2017.
5	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps",
	O'Reilly Publishing, 2018

6 NPTEL Course : Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Comprehend the working of Blockchain technology	K2
	Narrate working principle of smart contracts and create them using solidity for given scenario.	КЗ
CO3	Comprehend the working of Hyperledger in an real time application	К2
C04	Apply the learning of solidity to build de-centralized apps on Ethereum	К3
C05	Develop applications on Blockchain	К3

COURSE ARTIC	COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06			
C01	2		3	2		3			
CO2	2	3	3	3	2	3			
CO3	3		3	2		3			
CO4	3	3	3	3	2	3			
C05	3	3	3	3	2	3			
23CSOE33	3	3	3	3	2	3			
1 – Slight, 2 – Mo	oderate, 3 -	- Substant	ial	222 22 22					
			74	and the					
				777					

		ASSESSMENT I	PATTERN – T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	30	50				100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		30	70				100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		40	60				100
ESE	10	60	30				100

23VLACZ1

ENGLISH FOR RESEARCH PAPER WRITING

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	• The objective of the course is to make the learners understand t	he format and						
Objective	intricacies involved in writing a research paper.							
UNIT – I	PLANNING AND PREPARATION	PLANNING AND PREPARATION6 Periods						
Need for publishin	g articles, Choosing the journal, Identifying a model journal paper, Crea	ation of files for						
each section, Expe	ctations of Referees, Online Resources.							
UNIT – II	SENTENCES AND PARAGRAPHS	6 Periods						
Basic word in Engl	ish, Word order in English and Vernacular, placing nouns, Verbs, Adjectiv	ves, and Adverb						
-	suitably in a sentence, Using Short Sentences, Discourse Markers and Punctuations- Structure of a Paragraph, Breaking up lengthy Paragraphs.							
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	6 Periods						
Accuracy, Brevity	and Clarity in Writing, Reducing the linking words, Avoiding redundan	cy, Appropriate						
use of Relative and	l Reflexive Pronouns, Monologophobia, verifying the journal style, Logi	cal Connections						
between others au	thor's findings and yours.							
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods						
Making your finding	ngs stand out, Using bullet points headings, Tables and Graphs- Availin	g non-experts						
opinions, Hedging,	Toning Down Verbs, Adjectives, Not over hedging, Limitations of your re	search.						
UNIT – V	SECTIONS OF A PAPER	6 Periods						
Titles, Abstracts, In	troduction, Review of Literature, Methods, Results, Discussion, Conclusio	ons, References.						
Contact Periods:								
Lecture: 30 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods							

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book,
	1998.
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht
	Heidelberg London, 2011.

	COURSE OUTCOMES : Upon completion of this course the learners will be able to				
opon co		Mapped			
C01	Understand the need for writing good research paper.	K2			
CO2	CO2 Practice the appropriate word order, sentence structure and paragraph				
	writing.				
CO3	Practice unambiguous writing.	КЗ			
C04	Avoid wordiness in writing.	K2			
C05	Exercise the elements involved in writing journal paper.	К3			

COs/POs	P01	PO2	P03	P04	PO5	P06
C01	3	3	1	1	1	1
CO2	3	3	1	1	1	1
CO3	3	3	1	1	1	1
CO4	3	3	a provent 1	1	1	1
CO5	3	3	1	1	1	1
23VLACZ1	3	3	1	1	1	1
l – Slight, 2 – Mode	rate. 3 – Substanti	al	77 /			

ASSESSMENT PA	ATTERN – THE	ORY	11				
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Tota 1%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	-	50	50	-	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100
ESE	30	30	40	-	-	-	100

23VLACZ2	DISASTER MANAGEMENT	
25 V LACZZ	(Common to all branches)	
Course	To become familiar in key concepts and consequences about ha	azards,
Objectives	disaster and area of occurrence.To know the various steps in disaster planning.	
	To create awareness on disaster preparedness and management	nt.
UNIT – I	INTRODUCTION	6 Periods
Disasters: Differ	tion, Factors and Significance; Difference between Hazard and Disaster; Natural rence, Nature, Types and Magnitude. Areas proneto "EarthquakesFloods,Drought lone and Coastal Hazards with Special Reference to Tsunami.	
, ,		6 Periods
UNIT – II Economic Dama	REPERCUSSIONS OF DISASTERS AND HAZARDS age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters	
Economic Dama Volcanisms, Cyc	age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters clones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epid	s: Earthquakes -made disaster emics, War and
Economic Dama Volcanisms, Cyc Nuclear Reactor Conflicts. UNIT – III	age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters clones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epid DISASTER PLANNING	s: Earthquakes -made disaster emics, War and 6 Periods
Economic Dama Volcanisms, Cyc Nuclear Reactor Conflicts. UNIT – III Disaster Planni	age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters clones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epid	s: Earthquakes -made disaster emics, War and 6 Periods s, Pre-Disaster
Economic Dama Volcanisms, Cyc Nuclear Reactor Conflicts. UNIT – III Disaster Planni	age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters clones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epid DISASTER PLANNING ing-Disaster Response Personnel roles and duties, Community MitigationGoals	s: Earthquakes -made disaster emics, War and 6 Periods s, Pre-Disaste
Economic Dama Volcanisms, Cyc Nuclear Reactor Conflicts. UNIT – III Disaster Planni Mitigation Plan, UNIT – IV	age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters clones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epid DISASTER PLANNING ing-Disaster Response Personnel roles and duties, Community MitigationGoals Personnel Training, Comprehensive Emergency Management, Early Warning Systems	s: Earthquakes -made disaster emics, War and 6 Periods s, Pre-Disaste 5. 6 Periods
Economic Dama Volcanisms, Cyc Nuclear Reactor Conflicts. UNIT – III Disaster Planni Mitigation Plan, UNIT – IV Preparedness: M	age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters clones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epid DISASTER PLANNING ing-Disaster Response Personnel roles and duties, Community MitigationGoal Personnel Training, Comprehensive Emergency Management, Early Warning Systems DISASTER PREPAREDNESS AND MANAGEMENT	s: Earthquakes made disaster emics, War and 6 Periods s, Pre-Disaste s. 6 Periods ation of Remot
Economic Dama Volcanisms, Cyc Nuclear Reactor Conflicts. UNIT – III Disaster Planni Mitigation Plan, UNIT – IV Preparedness: M	Age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters clones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epid DISASTER PLANNING ing-Disaster Response Personnel roles and duties, Community MitigationGoal Personnel Training, Comprehensive Emergency Management, Early Warning Systems DISASTER PREPAREDNESS AND MANAGEMENT Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Applica	s: Earthquakes -made disaster emics, War and 6 Periods s, Pre-Disaste s. 6 Periods ation of Remote
Economic Dama Volcanisms, Cyc Nuclear Reactor Conflicts. UNIT – III Disaster Planni Mitigation Plan, UNIT – IV Preparedness: M Sensing, Data fro UNIT – V Disaster Risk: O Techniques of Ri Assessment, Stra	age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters clones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epid DISASTER PLANNING ing-Disaster Response Personnel roles and duties, Community MitigationGoal Personnel Training, Comprehensive Emergency Management, Early Warning Systems DISASTER PREPAREDNESS AND MANAGEMENT Aonitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Applica om Meteorological and other Agencies, Media Reports: Governmental and Community	s: Earthquakes -made disaster emics, War and 6 Periods s, Pre-Disaste s. 6 Periods ation of Remote Preparedness 6 Periods Risk Situation cipation in Risl

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies",
	New Royal book Company, 2007.
0	
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections" , Prentice Hall Of India, New Delhi,
	2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd.,
	New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing
	House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
C04	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
C05	Prepare risk assessment strategy for national and global disaster.	K4

Course Articulation Matrix	

P01	P02	P03	P04	P05
2	1	1	2	2
1	2	1	1	1
1	1	1	2	2
1	1	1	2	2
2	1	1	2	2
1	1	1	2	2
	P01 2 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1	P01 P02 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P01 P02 P03 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P01 P02 P03 P04 2 1 1 2 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	8	24			100
CAT2		A.	100	Re.			100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

23VLACZ3

VALUE EDUCATION

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	Value of education and self- development	
Objectives	Requirements of good values in students	
	Importance of character	
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods
	and individual attitudes. Work ethics, Indian vision of humanism. Moral ndards and principles. Value judgements.	and non-moral
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods
	entific attitude. Positive Thinking. Integrity and discipline. Punctua bid fault Thinking. Free from anger, Dignity of labour. Universal bro ance.	-
UNIT – III	VALUES IN HUMAN LIFE	6 Periods
Concentration	of cultivation of values, Sense of duty. Devotion, Self-reliance a. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, N ve for nature,Discipline.	
UNIT – IV	VALUES IN SOCIETY	6 Periods
	ip. Happiness Vs suffering, love for truth. Aware of self-destructive hab on. Doing best for saving nature.	its. Association
UNIT – V	POSITIVE VALUES	6 Periods
reincarnation.	Competence –Holy books vs Blind faith. Self-management and Good he Equality, Nonviolence, Humility, Role of Women. All religions and s nd, Self-control. Honesty, Studying effectively.	
Contact Perio	ods:	

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University
	Press, New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education" , A.P.H Publishing Corporation, New Delhi,2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COU	RSE OUTCOMES:	Bloom's Taxonomy	
Upon	Upon completion of the course, the students will be able to:		
C01	Know the values and work ethics.	КЗ	
C02	Enhance personality and behaviour development.	КЗ	
CO3	Apply the values in human life.	КЗ	
C04	Gain Knowledge of values in society.	К3	
C05	Learn the importance of positive values in human life.	КЗ	

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	3	1	1	1			
C02	-	-	3	1	2	1			
CO3	-	-	3	1	2	1			
CO4	-	-	3	1	1	1			
CO5	-	-	3	1	1	2			
23VLACZ3	-	-	3	1	1	1			
1 – Slight, 2 – Moderate, 3 -	- Substantia								

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSMENT F							
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	· -	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

CONSTITUTION OF INDIA

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	• To address the importance of constitutional rights and duties	
Objectives	To address the importance of constitutional rights and dutiesTo familiarize about Indian governance and local administration.	
objectives	 To know about the functions of election commission. 	
UNIT – I	INDIAN CONSTITUTION	6 Periods
-	ing of the Indian Constitution: History Drafting Committee, (Composition 8	
	he Indian Constitution: Preamble Salient Features.	x workingj -
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES	6 Periods
Right against H	nstitutional Rights & Duties: Fundamental Rights , Right to Equality, Right Exploitation, Right to Freedom of Religion, Cultural and Educational Rig Remedies, Directive Principles of State Policy, Fundamental Duties.	
UNIT – III	ORGANS OF GOVERNANCE	6 Periods
Functions, Exec	ernance: Parliament, Composition, Qualifications and Disqualifications, cutive, President, Governor, Council of Ministers, Judiciary, Appointment an ations, Powers and Functions.	
UNIT – IV	LOCAL ADMINISTRATION	6 Periods
Introduction, M Introduction, P role. Block leve	stration: District's Administration head: Role and Importance, M layor and role of Elected Representative, CEO of Municipal Corporation. Pa RI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: el: Organizational Hierarchy (Different departments), Village level: Role of ials, Importance of grass root democracy.	anchayat raj: Position and
UNIT – V	ELECTION COMMISSION	6 Periods
Election Comm	ission: Election Commission: Role and Functioning. Chief Election Comm issioners. State Election Commission: Role and Functioning. Institute and B T/OBC and women.	
Contact Period Lecture: 30 Pe		

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Discuss the growth of the demand for civil rights in India.	К2
C02	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	K2
CO3	Understand the various organs of Indian governance.	К2
C04	Familiarize with the various levels of local administration.	К2
C05	Gain knowledge on election commission of india.	К2

Course Articulat	ion Matrix					
COs/POs	P01	P02	P03	P04	P05	P06
C01	-	-	1	1	1	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
C04	-	-	1	1	1	1
C05	-	-	1	1	1	1
23VLACZ4	-	-	1	1	1	1
1 – Slight, 2 – Moo	lerate, 3 – Sı	ubstantial	- General			

ASSESSMENT	Γ PATTERN – TH	IEORY	77				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	- 1	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

Contract St

23VLACZ5

PEDAGOGY STUDIES

(Common to All Branches)

PREREQUISI	PREREQUISITES CATEGORY					
NIL		AC	2	0	0	0
Course Objectives	 To Understand of various theories of learning, p and design of curriculum in engineering studies. Application of knowledge in modification of c introduction of innovation in teaching methodology 	curriculum, its a	0	-		
UNIT – I	INTRODUCTION			6 Pe	erio	ds
and terminol	and Methodology: Aims and rationale, Policy back ogy Theories of learning, Curriculum, Teacher edu stions. Overview of methodology and Searching.	• •				
UNIT – II	PEDAGOGICAL PRACTICES			6 Pe	erio	ds
classrooms in of pedagogica	rview: Pedagogical practices are being used by te developing countries. Curriculum, Teacher educatio Il practices Methodology for the in depth stage: c	n. Evidence on th	ne ef	fecti	ven	ess
UNIT – III	PEDAGOGICAL APPROACHES			6 Pe	erio	ds
materials best evidence for	her education (curriculum and practicum) and the s t support effective pedagogy? Theory of change. Stre effective pedagogical practices. Pedagogic theory tudes and beliefs and Pedagogic strategies.	ength and nature	e of	the l	oody	v of
UNIT – IV	PROFESSIONAL DEVELOPMENT			6 Pe	erio	ds
support Supp	development: alignment with classroom practices ort from the head teacher and the community. Curri nited resources and large class sizes.					
UNIT – V	CURRICULUM AND ASSESSMENT			6 Pe	erio	ds
• •	s and future directions Research design Contexts ad assessment Dissemination and research impact.	s Pedagogy Tea	cher	ed	ucati	ion
Contact Perio Lecture: 30 P		ls Total: 30 Peri	iods			

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education . Oxford and Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
4	<i>Agrawal M</i> , <i>Curricular reform in schools: The importance of evaluation</i> , <i>Journal of Curriculum</i> <i>Studies</i> , 36 (3): 361-379, 2004

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the concept of curriculum, formal and informal education systems and teacher education.	КЗ
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	КЗ
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3
C04	Perform research in design a problem in pedagogy and curriculum development.	КЗ

COs/POs	P01	P02	P03	P04	P05	P06
C01	-	-	1	1	2	1
CO2	-	-	1	1^**_	1	2
CO3	-	-	1 %	1	2	1
CO4	-	-	1	1	2	1
23VLACZ5	-	-	1	1	2	1
1 – Slight, 2 – I	Moderate,	3 – Substa	ntial	Van		

Test /	Rememberin	Understandin	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	g (K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

STRESS MANAGEMENT BY YOGA

(Common to All Branches)

PREREQUISITES :	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. To create awareness on the benefits of yoga and meditation.	
Objectives	2. To understand the significance of Asana and Pranayama.	
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS	6 Periods
exercises, hand	l structure, Importance of physical exercise, Rules and regulation of exercise, leg exercise, breathing exercise, eye exercise, kapalapathressure, body relaxation.	
UNIT – II	YOGA TERMINOLOGIES	6 Periods
	nsa, satya, astheya, bramhacharya, aparigrahaNiyamas- Saucl varapranidhana.	ha, santosha, tapas
UNIT – III	ASANA	6 Periods
Asana - Rules &	ι Reg	I
UNIT – IV	PRANAYAMA	6 Periods
Regularization	of breathing techniques and its effects-Types of pranayama	
UNIT – V	MIND	6 Periods
frequency and	& mind - imprinting & magnifying – eight essential factors of ten stages of mind, benefits of meditation, such as perspi- aptability, creativity.	0 0
receptivity, ada		
Contact Period	ls:	

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I",, Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", AdvaitaAshrama (Publication
	Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New
	Dawn Press, New Delhi, 2016.
4	K. N. Udupa ,"Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi,
	2007.

COUF	RSE OUTCOMES:	Bloom's		
		Taxonom		
Upon	Upon completion of the course, the students will be able to:			
C01	Practice physical exercises and maintain good health.	К3		
C02	Attain knowledge on the various concepts of Yoga.	K2		
CO3	Perform various asanas with an understanding on their benefits.	КЗ		
C04	Practice breathing techniques in a precise manner.	КЗ		
C05	Attain emotional stability and higher level of consciousness.	K2		

Course Articulation Matrix :									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	2		-	-			
CO2	-	-	2	200	1000	-			
CO3	-	-	2	The states	200	-			
CO4	-	-	2		17	-			
CO5	-	-	2	100	- I	-			
23VLACZ6	-	-	2	: 3	<u>_</u>	-			
1 – Slight, 2 – M	oderate, 3	– Substar	ntial	2	N.				

ASSESSMENT	PATTERN – TH	EORY	ANGERS				
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

23VLACZ7

(Common to All Branches)

PREREQUISITES :	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course Objectives	 To familiar with Techniques to achieve the highest goal in To become a person with stable mind, pleasing personali determination. 	
UNIT – I		6 Periods
	Holistic development of personality-Verses- 19,20,21,22 (wisdom) m)-Verses- 26,28,6.)-Verses29,31,32
UNIT – II		6 Periods
	59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day w vadGeeta - Chapter 2-Verses 41, 47,48,	vork and duties
UNIT – III	- General -	6 Periods
Shrimad Bhagy Chapter 18-Ver	wadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5 rses 45, 46, 48.	5,13,17, 23, 35,-
UNIT – IV	N X /	6 Periods
	oasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62 15, 16,17, 18-Personality of Role model.	2, 68 -Chapter 12
UNIT – V		6 Periods
-	wadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chap 18 – Verses 37,38,63.	ter 4-Verses 18,
Contact Period Lecture: 30 Pe		Periods

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam " Bhartrihari's Three Satakam " (Niti-sringar- vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the Holistic development in life	K4
CO2	Effective Planning of day to day work and duties	K4
CO3	Identify mankind to peace and prosperity	K4
CO4	Develop versatile personality.	K4
C05	Awakening wisdom in life	K4

Course Artic	culation M	latrix				
COs/POs	P01	P02	P03	P04	P05	P06
C01	-	-	1	-	-	-
CO2	-	-	1	-	-	-
CO3	-	-	1	-	-	-
CO4	-	-	1	-	-	-
C05	-	-	1	-	-	-
23VLACZ7	-	-	1	-	-	-
1 – Slight, 2 –	- Moderate	e, 3 – Substantia	al			

Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	1 -	-	-	100%
CAT2	20%	50%	30%	M -	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

SANSKRIT FOR TECHNICAL KNOWLEDGE

(Common to all Branches)

PREREQUISITES:	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course	• To get a working knowledge in illustrious Sanskrit, the s	cientific language							
Objectives	in the world.								
	• Learning of Sanskrit to improve brain functioning.								
	 Enhancing the memory power. Learning of Sangkrit to develop the logic in methomatics 	caionas & other							
	 Learning of Sanskrit to develop the logic in mathematics subjects. 	s, science & other							
UNIT – I	BASICS OF SANSKRIT	6 Periods							
Alphabets in	Sanskrit, Past/Present/Future Tense.								
UNIT – II	SENTENCES AND ROOTS	6 Periods							
Simple Sente	nces - Order, Introduction of roots	·							
UNIT – III	SANSKRIT LITERATURE	6 Periods							
Technical inf	ormation about Sanskrit Literature								
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods							
Technical cor	acepts of Engineering-Electrical, Mechanical								
UNIT – V	TECHNICAL CONCEPTS -2	6 Periods							
Technical cor	cepts of Engineering-Architecture, Mathematics								
Contact Peri	ods:								
Lecture: 30	Periods Tutorial: 0 Periods Practical: 30 Periods T	otal: 30 Periods							

1	Dr.Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, "Teach Yourself Sanskrit", Rashtriya Sanskrit
	Sansthanam, New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition ", Ocean books (P) Ltd., New Delhi,2006.

	E OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy
		Mapped
C01	Recognize ancient literature and their basics	КЗ
CO2	Formulate the sentences with order and understand the roots of	К2
	Sanskrit	
CO3	Acquire familiarity of the major traditions of literatures written in	КЗ
	Sanskrit	
CO4	Distinguish the Technical concepts of Electrical & Mechanical	К2
	Engineering	
C05	Categorize the Technical concepts of Architecture & Mathematics	К2

COs/POs	P01	P02	P03	P04	P05	P06
C01	-	-	-	1	2	1
CO2	-	-	-	1	2	-
CO3	-	-	and the second s	1	1	1
CO4	-	- 967	South State	2	1	1
C05	-	- 34	the second	1	2	1
23VLACZ8	-	- 10	-71	1	2	1
– Slight, 2 – Mode	rate, 3 – Subs	tantial				

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%